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Summary. Singular zeros of systems of polynomial equations constitute a bottle-
neck when it comes to computing, since several methods relying on the regularity
of the Jacobian matrix of the system do not apply when the latter has a non-trivial
kernel. Therefore they require special treatment. The algebraic information regard-
ing an isolated singularity can be captured by a finite, local basis of differentials
expressing the multiplicity structure of the point.

In the present article, we review some available algebraic techniques for extract-
ing this information from a polynomial ideal. The algorithms for extracting the,
so called, dual basis of the singularity are based on matrix-kernel computations,
which can be carried out numerically, starting from an approximation of the zero in
question.

The next step after obtaining the multiplicity structure is to deflate the root,
that is, construct a new system in which the singularity is eliminated. Having a
deflated system allows to refine the solution fast and to high accuracy, since the
Jacobian matrix is regular and all the usual machinery, e.g. Newton’s method or
existence and unicity criteria may be applied. Standard verification methods, based
e.g. on interval arithmetic and a fixed point theorem, can then be employed to certify
that there exists a unique perturbed system with a singular root in the domain.

1 Introduction

A main challenge in algebraic and geometric computing is singular point iden-
tification and treatment. Such problems naturally occur when computing the
topology of implicit curves or surfaces [1], the intersection of parametric sur-
faces in geometric modeling. When algebraic representations are used, this
reduces to solving polynomial systems. Several approaches are available: alge-
braic techniques such as Gröbner bases or border bases, resultants, subdivision
algorithms [16], [19], homotopies, and so on. At the end of the day, a numerical
approximation or a box of isolation is usually computed to identify every real
root of the polynomial system. But we often need to improve the numerical
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approximation of the roots. Numerical methods such as Newton’s iteration
can be used to improve the quality of the approximation, provided that we
have a simple root. In the presence of a multiple root, the difficulties are sig-
nificantly increasing. The numerical approximation can be of very bad quality,
and the methods used to compute this approximation are converging slowly
(or not converging). The situation in practical problems, as encountered in
CAGD for instance, is even worse, since the coefficients of the input equations
are known with some incertitude. Computing multiple roots and root mul-
tiplicities of approximate polynomial systems is an ill-posed problem, since
changing slightly the coefficients may transform a multiple root into a cluster
of simple roots (or even make it disappear).

For instance Newton’s method converges only linearly to such a point, if
it converges at all [6]. Also, certification tests for the existence of roots on
a domain do not directly treat these cases. On the other hand, computing
the local multiplicity structure around a singularity breaks down to stable
linear algebra methods, which can be run approximately. One can use this
local structure to deflate the root, and thus restore super-linear convergence
of Newton iteration, or use standard verification techniques to certify a sin-
gular root of the original system. In case of inexact coefficients, known up to
a certain tolerance, an exact singular root no longer exists. Nevertheless, a
well chosen symbolic perturbation, combined with deflation, allows the certi-
fication of a nearby system, within a controlled neighborhood of the original
one, which attains a single singular point.

The numerical treatment of singular zeroes is a difficult task, mainly be-
cause of the ill-posedness of the problem. The following strategy can however
be adopted. Find a perturbation of the input system such that the root is a
deformation of an exact multiple root. Certainly, there is not a single multiple
system, if the input data is approximate. But using the knowledge of the dual
structure and interval arithmetic, our method aims at providing a controlled
deformation that is compatible with the input.

In this way, we identify the multiplicity structure and we are able to setup
deflation techniques which restore the quadratic convergence of the Newton
system. The certification of the multiple root is also possible on the sym-
bolically perturbed system by applying a fixed point theorem, based e.g. on
interval arithmetic [22] or α-theorems ([7] and references therein).

This approach has already been explored in the past. The first algebraic
work on the analysis of singular points may be due to F.S. Macaulay [14], who
introduced the terminology of “inverse system”. His so-called dialytic method
has been exploited in [12, 13, 4] to construct the inverse system of a multiple
point.

Another construction of inverse systems is described e.g. in [17], reducing
the size of the intermediate linear systems (and exploited in [23]).

In [18], another approach to construct the dual basis at the singular point
which is based on an integration strategy, has been proposed.
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Regarding deflation techniques, in [20], by applying a triangulation pre-
processing step on the Jacobian matrix at the approximate root, minors of
the Jacobian matrix are added to the system to reduce the multiplicity.

In [11], a representation of the ideal in a triangular form in a good position
and derivations with respect to the leading variables are used to iteratively
reduce the multiplicity. This process is applied for p-adic lifting with exact
computation.

In [12, 13], instead of triangulating the Jacobian matrix, the number of
variables is doubled and new equations are introduced, which are linear in
the new variables. They describe the kernel of the Jacobian matrix at the
multiple root. The process is iterative, yet for some practical applications, the
root may already be deflated with a few iterations.

In [4], the deflation method is applied iteratively until the root becomes
regular, doubling each time the number of variables.

In [21], a minimization approach is used to reduce the value of the equa-
tions and their derivatives at the approximate root, assuming a basis of the
inverse system is known.

In [24], the inverse system is constructed via Macaulay’s method; tables of
multiplications are deduced and their eigenvalues are used to improve the ap-
proximated root. They show that the convergence is quadratic at the multiple
root.

Verification of multiple roots of (approximate) polynomial equations is a
difficult task. The approach proposed in [22] consists of introducing perturba-
tion parameters and to certifying the multiple root of nearby system by using
a fixed point theorem, based on interval arithmetic. It applies only to cases
where the Jacobian has corank equal to 1.

The goal of this paper is to review different techniques that can be used
to handle efficiently the following tasks:

(a) Compute a basis for the dual space and of the local quotient ring at a
given (approximate) singular point.

(b) Deflate the system by augmenting it with new equations derived from
the dual basis, introducing adequate perturbation terms.

(c) Certify the singular point and its multiplicity structure for the per-
turbed system checking the contraction property of Newton iteration (e.g. via
interval arithmetic).

These tools can be applied to improve the quality of approximation of a
multiple isolated solution of a system of (polynomial) equations, but they can
also be used to solve geometrical problems, such as for instance computing the
number of real branches at a singular point of an algebraic curve. For more
details on these applications, we refer to [15] and references therein.
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2 Preliminary considerations

In this section we present some definitions together with the main tools that
we shall need in the sequel.

We denote by R = K[x], x = (x1, . . . , xn), a polynomial ring over the field
K of characteristic zero. The dual ring R∗ is the space of linear functionals
Λ : R→ K. It is commonly identified to the space of formal series K[[∂]] where
∂ = (∂1, . . . , ∂n) are formal variables. Thus we view dual elements as formal
series in differential operators at a point ζ ∈ Kn. To specify that we use the
point ζ, we also denote these differentials ∂ζ . When applying Λ(∂ζ) ∈ K[[∂ζ ]]
to a polynomial g(x) ∈ R we will denote by Λζ [g] = Λζg = Λ(∂ζ)[g(x)] the
operation

Λζ [g] =
∑
α∈Nn

λα
α1! · · ·αn!

· d|α|g

dxα1
1 · · · dx

αn
n

(ζ), (1)

for Λ(∂ζ) =
∑

λα
1

α!
∂αζ ∈ K[[∂ζ ]]. Extending this definition to an ordered

set D = (Λ1, . . . , Λµ) ∈ K[[∂]]µ, we shall denote Dζ [g] = (Λζ1g, . . . , Λ
ζ
µg). In

some cases, it is convenient to use normalized differentials instead of ∂: for any

α ∈ Nn, we denote dαζ =
1

α!
∂αζ . In particular, with the use of this notation

we recover the nice property that, if ζ = 0, we have dα0 x
β = 1 if α = β and

0 otherwise.
More generally, (dαζ )α∈Nn is the dual basis of ((x− ζ)α)α∈Nn , i.e., a non-

zero root implies a linear transformation of the variables, so that the root is
translated to (0, 0).

Example 1. Consider the integral of a polynomial function g ∈ R over the
unit hypercube. Since this is a linear map, it may be expressed in terms of
differentials, i.e.:

g 7−→
∫
[0,1]n

g(x) dx1 · · · dxn =
∑

α∈sup(g)

cα d
α[g] ,

where dα[g] =
1

α!

∂|α|g

∂xα
(0) and sup(g) stands for the support of g. Indeed,

it can be verified using simple calculations that the (unique) coefficients are

given by cα =

n∏
i=1

1

αi + 1
.

For Λ ∈ R∗ and p ∈ R, let us define the operation p · Λ : q 7→ Λ(p q). We
check that

(xi − ζi) · ∂αζ =
d

d∂i,ζ
(∂αζ ), (2)

and R∗ obtains the structure of an R−module. This property shall be useful
in the sequel.
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2.1 Isolated points and differentials

Let I = 〈f1, . . . , fs〉 be an ideal of R and ζ ∈ Kn a root of the polynomial
system f = (f1, . . . , fs). We call ζ an isolated zero of V (I) if, in a primary de-
composition of I, the radical of one of the primary components is the maximal
ideal mζ = 〈x1− ζ1, . . . , xn− ζn〉 defining ζ and no other primary component
is contained in mζ .

Suppose that ζ is an isolated root of f , then a minimal primary decom-
position of

I =
⋂

Q prim.⊃I
Q

contains a primary component Qζ such that
√
Qζ = mζ and

√
Q′ 6⊂ mζ for

the other primary components Q′ associated to I [2].
As
√
Qζ = mζ , it follows that R/Qζ is a finite dimensional vector space.

The multiplicity µζ of ζ is defined as the dimension of R/Qζ . A point of
multiplicity one is called regular point, or simple root, otherwise we say that
ζ is a singular isolated point, or multiple root of f . In the latter case we have
Jf (ζ) = 0.

Example 2. Consider the ideal I = 〈x1 − x2 + x21, x1 − x2 + x22〉, and the root
ζ = (0, 0). Then a minimal primary decomposition of I is

I = 〈x32, x1 − x2 + x22〉 ∩ 〈−2 + x2, 2 + x1〉 .

Among the two factors we find the maximal ideal of ζ given by the radical
ideal

√
〈x32, x1 − x2 + x22〉 = 〈x1, x2〉.

We can now define the dual space of an ideal.

Definition 1 The dual space of I is the subspace of elements of K[[∂ζ ]] (for-
mal series of the variables ∂ζ), ζ ∈ V (I), that vanish on all the elements of
I. It is also called the orthogonal of I and is denoted as I⊥.

The dual space is known to be isomorphic to the quotient R/I. Consider now
the orthogonal of Qζ , i.e. the subspace Dζ of elements of R∗ that vanish on
members of Qζ , namely

Q⊥ζ = Dζ = {Λ ∈ R∗ : Λζ [p] = 0, ∀p ∈ Qζ}.

The following is an essential property that allows extraction of the local struc-
ture Dζ directly from the “global” ideal I = 〈f〉, notably by matrix methods
that will be outlined in Section 3.

Proposition 1 ([18, Th. 8]). For any isolated point ζ ∈ K of f , we have
I⊥ ∩K[∂ζ ] = Dζ .
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In other words, we can identify Dζ = Q⊥ζ with the space of polynomial dif-
ferential operators that vanish at ζ on every element of I. Also note that
D⊥ζ = Qζ .

The space Dζ has dimension µζ , the multiplicity at ζ. As the variables (xi−
ζi) act on R∗ as derivations (see (2)), Dζ is a space of differential polynomials
in ∂ζ , which is stable under derivation. This property will be used explicitly
in constructing Dζ (Sect. 3).

Definition 2 The nilindex of Qζ is the maximal integer N ∈ N such that
mN
ζ 6⊂ Qζ.

It is directly seen that the maximal order of elements in Dζ is equal to N ,
also known as the depth of the space.

2.2 Quotient ring and dual structure

In this section we explore the relation between the dual ring and the quotient
R/Qζ , where Qζ is the primary component of the isolated point ζ. We show
how to extract a basis of this quotient ring from the support of the elements
of Dζ and how Dζ can be used to reduce any polynomial modulo Qζ .

It is convenient in terms of notation to make the assumption ζ = 0. This
poses no constraint, since it implies only a linear change of coordinates.

Let suppD0 be the set of exponents of monomials appearing in D0, with a
non-zero coefficient. These are of degree at most N , the nilindex of Q0. Since

(∀Λ ∈ D0, Λ
0[p] = 0) iff p ∈ D⊥0 = Q0 ,

we derive that supp D0 = {γ : xγ /∈ Q0}. In particular, we can find a basis
of R/Q0 between the monomials {xγ : γ ∈ supp D0}. This is a finite set
of monomials, since their degree is bounded by the nilindex of Q0. Now let
Let xγj , j = 1, . . . , s be an enumeration of these monomials. It is clear that
these are finitely many, since Q0 is zero-dimensional. Given a monomial basis
B = (xβi)i=1,...,µ of R/Q0 and, for all monomials xγj /∈ Q0, the expression
(normal form)

xγj =

µ∑
i=1

λijx
βi (mod Q0) (3)

of xγj in the basis B, then the dual elements [18, Prop. 13]

Λi(d) = dβi +

s−µ∑
j=1

λijd
γj , (4)

for i = 1, . . . , µ form a basis of Dζ . We give a proof of this fact in the following
lemma.
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Lemma 1. The set of elements D = (Λi)i=1,...,µ defined in (4) is a basis of
Dζ and the normal form of any g(x) ∈ R with respect to the monomial basis
B = (xβi)i=1,...,µ is

NF(g) =

µ∑
i=1

Λζi [g]xβi . (5)

Proof. First note that the elements of D are linearly independent, since dβi

appears only in Λi(d). Now, by construction,

µ∑
i=1

Λζi [xα]xβi = NF(xα) ,

for all xα /∈ Qζ , e.g. NF(xβi) = xβi . Also, for xα ∈ Qζ , ∀i, Λζi (xα) = 0,
since α /∈ suppD. Thus the elements of D compute NF(·) on all monomials
of R, and (5) follows by linearity. We deduce that D generates the dual, as in
Definition 1. ut

It becomes clear that with the knowledge of the dual basis at ζ, we are
able to compute any g ∈ R modulo Qζ by applying the basis elements to
the monomials of g (formal derivation plus evaluation at ζ). This lemma also
shows an isomorphism between the dual Dζ and the quotient ring R/Qζ , since
it implies a one-to-one mapping between the primal and dual basis.

Example 3. Consider f(x, y) = x4 + 2x2y2 + y4 + 3x2y − y3 and g(x, y) =
18xy2 − 6x3. The common zero ζ = (0, 0) yields the local dual space

D = (1, dx, dy, dx
2, dxdy, dy

2, dx
3 + 1

3 dxdy
2, dx

2dy + 3 dy
3,

dx
4 + 1

3 dx
2dy

2 + dy
4 + 8

3 d
3
y),

therefore ζ is a singular zero with multiplicity m = 9.
The primal counterpart is B = (1, x, y, x2, xy, y2, x3, x2y, x4). The relation

between D and B is revealed in the following construction:



1 x y x2 xy y2 x3 x2y x4 xy2 y3 x2y2 y4

1 1 0 0 0 0
dx 1 0 0 0 0
dy 1 0 0 0 0
d2x 1 0 0 0 0
dxdy 1 0 0 0 0
d2y 1 0 0 0 0
d3x 1 1/3 0 0 0
d2xdy 1 0 3 0 0
d4x 1 0 8/3 1/3 1


. (6)

The dual monomial of every row couples with a primal monomial in the corre-
sponding column. From the rows we read the coefficients basis elements in D.
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The leftmost 9× 9 block is the identity matrix, implying the duality between
D and B. Then in the last four columns there are some extra monomials;
these do not belong to the basis B, yet appear with a non-zero coefficient in
D. These monomials are not in Qζ , but they can be reduced modulo B: the
last four columns yield the normal form of these monomials with respect to

B. For example, using column 11 we find y3 = 3x2y +
8

3
x4 (mod Qζ).

Using the normal form formula (5), we can derive the table of multiplica-
tion by x and y in the quotient algebra represented by B. To do this, it suffices
to compute NF(y xαiyβi) and NF(xxαiyβi), for all monomials xαiyβi ∈ B.
This computation can be done by looking up the normal form of each mono-
mial from the rows of matrix (6). The coefficients of these normal forms fill
the i−th rows of the matrices

Mx =



0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1/3 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



and My =



0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1/3 0 0

0 0 0 0 0 0 0 3 8/3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1/3

0 0 0 0 0 0 0 0 0



.

Computing the normal form of the border monomials of B via (5) also yields
the border basis relations and the operators of multiplication in the quotient
R/Qζ (see e.g. [5] for more properties).

If a graded monomial ordering is fixed and B = (xβi)i=1,..,µ is the corre-
sponding monomial basis of R/Q0, then dβi is the leading term of (4) with
respect to the reversed ordering (that is, we reverse the outcome of the com-
parison of two monomials, keeping equality unchanged) [13, Th. 3.1].

Conversely, if we are given a basis D of Dζ whose coefficient matrix in
the dual monomials basis (dα)α/∈Qζ

is D ∈ Kµ×s, we can compute a basis
of R/Qζ by choosing µ independent columns of D, say those indexed by
dβi , i = 1, . . . , µ . If G ∈ Kµ×µ is the (invertible) matrix formed by these
columns, then D′ := G−1D, is

D′ =


β1 · · · βµ γ1 · · · γs−µ

Λ′1 1 0 λ1,1 · · · λ1,s−µ
...

. . .
...

...
Λ′µ 0 1 λµ,1 · · · λµ,s−µ

, (7)
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i.e. a basis of the form (4). Note that an arbitrary basis of D does not have the
above diagonal form, nor does it directly provide a basis for R/Qζ . However,
a basis of this form has the desired property

Λi[x
βj ] =

{
1 , if i = j
0 , if i 6= j

,

for all i = 1, . . . , µ.
For t ∈ N, Dt denotes the vector space of polynomials of D of degree ≤ t.

The Hilbert function h : N → N is defined by h(t) = dim(Dt), t ≥ 0, hence
h(0) = 1 and h(t) = dim D for t ≥ N . The integer h(1) − 1 = corank Jf is
known as the breadth of D .

3 Computing local ring structure

The computation of a local basis, given a system and a point, is done essen-
tially by matrix-kernel computations, and consequently it can be carried out
numerically, even when the point or even the system is inexact. Throughout
the section we suppose f ∈ Rm and ζ ∈ Kn with f(ζ) = 0.

Several matrix constructions have been proposed that use different condi-
tions to identify the dual space as a null-space. They are based on the stability
property of the dual basis:

∀Λ ∈ Dt,
d

d∂i
Λ ∈ Dt−1 , i = 1, . . . , n. (8)

We list existing algorithms that compute dual-space bases:

• As pointed out in (2), an equivalent form of (8) is

∀Λ ∈ Dt, Λ[gifi] = 0 , ∀gi ∈ R ⇐⇒ Λ[xβ · fi] = 0 ,∀β ∈ Nn (9)

Macaulay’s method [14] uses this equivalent characterization to derive the
algorithm that is outlined in Sect. 3.1.

• In [17] they exploit (8) by forming the matrix Di of the map

d

d∂i
: K[∂]t → K[∂]t−1

for all i = 1, . . . , n and some triangular decomposition of the differential
polynomials in terms of differential variables. This approach was used in
[23] to reduce the row dimension of Macaulay’s matrix, but not the column
dimension.

• The closedness subspace method of Zeng [25], uses the same condition to
identify a superset of supp Dt+1 when a basis of Dt is computed, and thus
reduces the column dimension of the matrix.
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• The integration method in [18] “integrates” elements of a basis of Dt,
and obtains a priori knowledge of the form of elements in degree t+ 1
(Sect. 3.2).

All methods are incremental, in the sense that they start by setting D0 = (1)
and continue by computing Di, i = 1, . . . , N,N + 1. When #DN = #DN+1

then DN is a basis of D , and N is the nilindex of Q.
We shall review two of these approaches to compute a basis for D , and

then describe an improvement, that allows simultaneous computation of a
monomial basis of the quotient ring, while avoiding redundant computations.

3.1 Macaulay’s dialytic matrices

This matrix construction is presented in [14, Ch. 4], a modern introduction is
contained in [4], together with an implementation of the method in ApaTools3.

The idea behind the algorithm is the following: An element of D is of the
form

Λ(d) =
∑
|α|≤N

λαd
α

under the condition: Λ0 evaluates to 0 at any g ∈ 〈f〉, that is,

Λ0(g) = Λ0
(∑

gifi

)
= 0 ⇐⇒ Λ0(xβfi) = 0 ,

for all monomials xβ, β ∈ N.
If we apply this condition recursively for |α| ≤ N , we get a vector of

coefficients (λα)|α|≤N in the (right) kernel of the matrix with rows indexed

by constraints Λ0[xβfi] = 0, |β| ≤ N−1. A basis of DN is given by the kernel
of this matrix in depth N . The method consists in computing the kernel of
these matrices for N = 1, 2, . . .; when N reaches the nilindex of I, For some
value of N , this kernel stabilizes and the generating vectors form a basis of
D .

Note that the only requirement is to be able to perform derivation of the
input equations and evaluation at ζ = 0.

Example 4. Let f1 = x1−x2 +x21, f2 = x1−x2 +x22. We also refer the reader
to [4, Ex. 2] for a detailed demonstration of this instance. The matrices in
order 1 and 2 are:

[ 1 d1 d2

f1 0 1 −1
f2 0 1 −1

]
,



1 d1 d2 d21 d1d2 d22
f1 0 1 −1 1 0 0
f2 0 1 −1 0 0 1
x1f1 0 0 0 1 −1 0
x1f2 0 0 0 1 −1 0
x2f1 0 0 0 0 1 −1
x2f2 0 0 0 0 1 −1

.
3 http://www.neiu.edu/∼zzeng/apatools.htm
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The kernel of the left matrix gives D1 = (1, d1 + d2). Expanding up to order
two, we get the matrix on the right, and D2 = (1, d1+d2,−d1+d21+d1d2+d22).
If we expand up to depth 3 we get the same null-space, thus D = D2.

3.2 Integration method

This method is presented in [18]. It is an evolution of Macaulay’s method, since
the matrices are not indexed by all differentials, but just by elements based
on knowledge of the previous step. This performs a computation adapted to
the given input and results in smaller matrices.

For Λ ∈ K[∂], we denote by
∫
k
Λ the element Φ ∈ K[∂] with the property

d
d∂k

Φ(∂) = Λ(∂) and with no constant term with respect to ∂k.

Theorem 3 ( [18, Th. 15] ). Let {Λ1, Λ2, . . . , Λs} be a basis of Dt−1, that
is, the subspace of D of elements of order at most t−1. An element Λ ∈ K[∂]
with no constant term lies in Dt iff it is of the form:

Λ(∂) =

s∑
i=1

n∑
k=1

λik
∫
k
Λi(∂1, . . . , ∂k, 0, . . . , 0), (10)

for λik ∈ K, and the following two conditions hold:

(i)

s∑
i=1

λik
d

d∂l
Λi(∂)−

s∑
i=1

λil
d

d∂k
Λi(∂) = 0, for all 1 ≤ k < l ≤ n .

(ii) Λζ [fk] = 0, for k = 1, . . . ,m .

Condition (i) is equivalent to d
d∂k

Λ ∈ Dt−1, for all k. Thus the two condi-
tions express exactly the fact that D must be stable under derivation and its
members must vanish on 〈f〉.

This gives the following algorithm to compute the dual basis: Start with
D0 = 〈1〉. Given a basis of Dt−1 we generate the ns candidate elements∫
k
Λi−1(∂1, . . . , ∂k, 0, . . . , 0). Conditions (i) and (ii) give a linear system with

unknowns λik. The columns of the corresponding matrix are indexed by the
candidate elements. Then, the kernel of this matrix gives a basis of Dt, which
we use to generate new candidate elements. If for some t we compute a kernel
of the same dimension as Dt−1, then we have a basis of D .

Example 5. Consider the instance of Ex. 4, f1 = x1−x2+x21, f2 = x1−x2+x22.
We have f1(ζ) = f2(ζ) = 0, thus we set D0 = {1}. Equation (10) gives
Λ = λ1d1 + λ2d2. Condition (i) induces no constraints and (ii) yields the
system [

1 −1
1 −1

] [
λ1
λ2

]
= 0 (11)

where the columns are indexed by d1, d2. We get λ1 = λ2 = 1 from the kernel
of this matrix, thus D1 = {1, d1 + d2}.
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For the second step, we compute the elements of D2, that must be of the
form

Λ = λ1d1 + λ2d2 + λ3d
2
1 + λ4(d1d2 + d22).

Condition (i) yields λ3 − λ4 = 0, and together with (ii) we form the system0 0 1 −1
1 −1 1 0
1 −1 0 1


λ1...
λ4

 = 0, (12)

with columns indexed by d1, d2, d
2
1, d1d2+d22. We get two vectors in the kernel,

the first yielding again d1 + d2 and a second one for λ1 = −1, λ2 = 0, λ3 =
λ4 = 1, so we deduce that −d1 + d21 + d1d2 + d22 is a new element of D2.

In the third step we have

Λ = λ1d1 + λ2d2 + λ3d
2
1 + λ4(d1d2 + d22) + (13)

λ5(d31 − d21) + λ6(d32 + d1d
2
2 + d21d2 − d1d2),

condition (i) leads to λ3 − λ4 + (λ5 − λ6)(d1 + d2) = 0, and together with
condition (ii) we arrive at

0 0 0 0 1 −1
0 0 1 −1 0 0
1 −1 1 0 −1 0
1 −1 0 1 0 0


λ1...
λ6

 = 0, (14)

of size 4 × 6, having two kernel elements that are already in D2. We derive
that D = 〈D2〉 = 〈D3〉 and the algorithm terminates.

Note that for this example Macaulay’s method ends with a matrix of size
12× 10, instead of 4× 6 in this approach.

3.3 Computing a primal-dual pair

In this section we provide a process that allows simultaneous computation of
a basis pair (D,B) of D and R/Q.

Computing a basis of D degree by degree involves duplicated computa-
tions. The successive spaces computed are D1 ⊂ · · · ⊂ DN = DN+1. It is more
efficient to produce only new elements Λ ∈ Dt, independent in Dt/Dt−1, at
step t.

Also, once a dual basis is computed, one has to transform it to the form (4),
in order to identify a basis of R/Q as well. This transformation can be done
a posteriori, by finding a sub-matrix of full rank and then performing Gauss–
Jordan elimination over this sub-matrix, to reach matrix form (7).

We introduce a condition (iii) extending Th. 3, that addresses these two
issues: It allows the computation of a total of µ independent elements through-
out execution, and returns a “triangular” basis, e.g. a basis of R/Q is identi-
fied.
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Lemma 2. Let Dt−1 = (Λ1, . . . , Λk) be a basis of Dt−1, whose coefficient
matrix is


β1 · · · βk γ1 · · · γs−k

Λ1 1 ∗ ∗ ∗ · · · ∗
... 0

. . . ∗
...

...
...

Λk 0 0 1 ∗ · · · ∗

, (15)

yielding the monomial basis Bt−1 = (xβi)i=1,...,k. Also, let Λ ∈ K[∂] be of the
form (10), satisfying (i–ii) of Th. 3.
If we impose the additional condition:

(iii) Λζ [xβi ] = 0, 1 ≤ i ≤ k,

then the kernel of the matrix implied by (i–iii) is isomorphic to Dt/Dt−1.
Consequently, it extends Dt−1 to a basis of Dt.

Proof. Let S be the kernel of the matrix implied by (i–iii), and let Λ ∈ K[∂] be
a non-zero functional in S. We have Λ ∈ Dt and Λζ [xβi ] = 0 for i = 1, . . . , k.

First we show that Λ /∈ Dt−1. If Λ ∈ Dt−1, then Λ =
∑k
i=1 λi Λi. Take for

i0 the minimal i such that λi 6= 0. Then Λζ [xβi0 ] = λi0 , which contradicts
condition (iii). Therefore, S ∩Dt−1 = {0}, and S can be naturally embedded
in Dt/Dt−1, i.e. dimS ≤ dim Dt − dim Dt−1.

It remains to show that dimS is exactly dim Dt − dim Dt−1. This is true,
since with condition (iii) we added k = dim Dt−1 equations, thus we excluded
from the initial kernel (equal to Dt) of (i–ii) a subspace of dimension at most
k = dim Dt−1, so that dimS ≥ dim Dt − dim Dt−1.

We deduce that S ∼= Dt/Dt−1, thus a basis of S extends Dt−1 to a basis
of Dt. ut

The above condition is easy to realize; it is equivalent to ∀i, dβi /∈ suppΛ,
which implies adding a row (linear constraint) for every i. If we choose the
elements of B with a “reversed” total degree ordering (if a monomial compares
total-degree “less than” another one, then it compares “bigger than” the same
monomial in the reversed order), then in many cases this constraint becomes
λik = 0 for some i, k. In this case we rather remove the column corresponding
to λik instead of adding a row. Hence this lemma allows to shrink the kernel
(but also the dimension) of the matrix and compute only new dual elements,
which are reduced modulo the previous basis. For a detailed size comparison,
see 1.

Let us explore our running example, to demonstrate the essence of this
improvement.

Example 6. We re-run Ex. 5 using Lem. 2. In the initialization step D0 = (1)
is already in triangular form with respect to B0 = {1}. For the first step,
we demand Λ[1] = 0, thus the matrix is the same as (11), yielding D1 =
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(1, d1 + d2). We extend B1 = {1, x2}, so that D1 is triangular with respect to
B1.

In the second step we remove from 12 the second column, hence we are
left with the 3× 3 system 0 1 −1

1 1 0
1 0 1

λ1λ3
λ4

 = 0,

yielding a single solution −d1 + d21 + d1d2 + d22. We extend B1 by adding the
monomial x1: B2 = {1, x2, x1}.

For the final step, we search an element of the form (13) with Λ[x1] =
Λ[x2] = 0, and together with (i–ii) we get:

0 0 1 −1
1 −1 0 0
1 0 −1 0
0 1 0 0


λ3...
λ6

 = 0.

We find an empty kernel, thus we recover the triangular basis D = D2, which
can be diagonalized to reach the form:


1 d2 d1 d21 d1d2 d22

Λ1 1 0 0 0 0 0
Λ2 0 1 0 1 1 1
Λ3 0 0 1 −1 −1 −1

.
This diagonal basis is dual to the basis B = (1, x2, x1) of the quotient ring
and also provides a normal form algorithm (Lem. 1) with respect to B. In the
final step we generated a 4×4 matrix, of smaller size compared to all previous
methods.

Another example is treated in figure 1, with the aid of pictures.
This technique for computing B can be applied similarly to other matrix

methods, e.g. Macaulay’s dialytic method.
If h(t)−h(t−1) > 1, i.e. there is more than one element in step t, then the

choice of monomials to add to B is obtained by extracting a non-zero maximal
minor from the coefficient matrix in (dα). In practice, we will look first at the
minimum monomials with respect to a fixed term ordering.

4 Deflation of a singular point

Deflation techniques allow to transform a system of equations defining a sin-
gular solution into a new system where the solution corresponds to a simple
point. Usually this is done by adding new variables and new equations so that
a simple isolated solution of the extended system projects onto the singular
solution of the initial system. We will illustrate different types of deflation.
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x2

x1

(a) ζ = (0, 0) nullifies the system, so
monomial 1 is inserted in B.

x2

x1

(b) In degree one we have d1 and d2, so
x1 and x2 are added to B.

x2

x1

(c) In degree two, we add the dual
monomials of d21, d1d2, and d22 to B.

x2

x1

(d) In degree three, two dual basis ele-
ments appear d31, d

3
2.

x2

x1

(e) In degree 4 we get 2d41−5d1d
2
2, 2d42−

5 d21d2, and we choose x4
1.

x2

x1

(f) In degree 5, we get 2d51+2d52−5 d21d
2
2

therefore x5
1 is a primal monomial.

x2

x1

(g) We find no element of degree 6 and
the algorithm stops: ζ has multiplicity
11.

x2

x1

(h) Different choices at each step lead to
different bases; here is another possible re-
sult.

Fig. 1. Discovering a primal-dual basis pair for the root ζ = (0, 0) of the bivariate
system {2x1x

2
2 + 5x4

1, 2x2
1x2 + 5x4

2}.
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4.1 The univariate case

In preparation for the multivariate case, we review an approach for treating
singularities of univariate polynomials.

Let g(x) ∈ K[x] be a polynomial which attains at x = 0 a root of mul-
tiplicity µ > 1. The latter is defined as the positive integer µ such that
dµg(0) 6= 0 whereas g(0) = dg(0) = · · · = dµ−1g(0) = 0. Here we denote

by dkg(x) =
1

k!

dk

dxk
g(x) the normalized derivative of order k with respect to

x.
We see that D0 = 〈1, d, . . . , dµ−1〉 is the maximal space of differentials

which is stable under derivation, that vanish when applied to members of Q0,
the 〈x〉−primary component of 〈g〉 at x = 0.

Example 7. Let g(x) = (x − 1)4, and ζ = 1. First we check that the space
of differentials that vanish on the solution include all linear combinations of
Dζ = 〈1, dζ , d2ζ , d3ζ〉. For instance, we compute d2[g] = 6(x− 1)2|ζ = 0.

Now d4 is not a member of Dζ since d4[g] = 1 6= 0 does not vanish.
Similarly, for all i ≥ 4, there exists a member of the ideal generated by g
which does not evaluate to zero when we apply the differential di, namely
di[xi−4g] = 1.

We conclude that the local dual space is exactly Dζ , and verify that ζ
4−fold zero of f .

Consider now the symbolically perturbed equation

f1(x, ε) = g(x) + ε1 + ε2x+ · · ·+ εµ−1x
µ−2 (16)

and apply every basis element of D0 to arrive at the new system

f(x, ε) =
(
f1, df1, . . . , d

µ−1f1

)
in µ− 1 variables. The i−th equation has the form

fi = di−1f1 = di−1g +

µ−1∑
k=i

(
k − 1

i− 1

)
xk−iεk ,

i.e linear in ε, the last one being fµ = dµ−1g(x). This system deflates the
root, since the determinant of its Jacobian matrix at (0,0) is

det Jf (0,0) =

∣∣∣∣∣∣∣∣∣
d
dxf1

...
d
dxfµ−1

1 0
. . .

0 1
d
dxfµ 0

∣∣∣∣∣∣∣∣∣ = −dfµ(0)
= −µdµg(0) 6= 0.

Now suppose that ζ∗ is an approximate zero, close to x = ζ. We can still
compute Dζ by evaluating g(x) and the derivatives up to a threshold rela-
tive to the error present in ζ∗. Then we can form (16) and use verification
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techniques to certify the root. Checking that the Newton operator is contract-
ing shows the existence and unicity of a multiple root in a neighborhood of
the input data. We are going to extend this approach, described in [22], to
multi-dimensional isolated multiple roots.

4.2 Deflation using the dialytic approach

Let us consider a system of equations f = (f1, . . . , fs), fk ∈ R[x], s ≥ n,
which has an isolated zero ζ.

If the Jacobian matrix

Jf (x) =

∂x1f1(x) · · · ∂xnf1(x)
...

...
∂x1

fs(x) · · · ∂xnfs(x)


at the point ζ is of (maximal) rank n, then the root ζ is simple. Moreover the
iteration

x(n+1) = x(n) + Jf (x(n))+f(x(n))

converges to ζ as soon as the initial point x(0) is close enough to ζ [9].
When the root is not simple, then the rank of Jf (ζ) is r1 < n and there

are n − r1 linearly independent differentials of order 1 of the form u1∂x1 +
· · ·+ un∂xn which satisfy

u1∂x1f(ζ) + · · ·+ un∂xnf(ζ) = 0, (17)

or equivalently

Jf (ζ)

 u1
...
un

 = 0.

To fix a solution of this system, we can choose n − r1 random vectors rj =
(r0,j , r1,j , . . . , rj,n) for j = 1, . . . , n− r1 and consider the equations

u1r1,j + · · ·+ unrj,n + rj,0 = 0, j = 1, . . . , n− r1. (18)

Extending the initial system of equations f(x) with the new equations (17),
(18), we obtain a new system of equations denoted f[1](x[1]) in the variables
x[1] = (x1, . . . , xn, u1, . . . , un). This system is called a system deflated from f .

By construction, if ζ is an isolated root of f(x) = 0 and rank Jf (ζ) = r1,
there is a unique u∗ satisfying equations (17), (18). Thus x∗[1] = (ζ,u∗) is an

isolated solution of the system f[1](x[1]) = 0.
If the root x∗[1] of this system is simple, then Newton iteration applied on

f[1] will converge quadratically to x∗[1] for an initial point x
(0)
[1] in its neighbor-

hood.



18 Angelos Mantzaflaris and Bernard Mourrain

If the root is not simple, the deflation can be applied to the system
f[1](x[1]) = 0 and we obtain a new system f[2](x[2]) = 0 in 4n variables.

As shown in the next result, the process can be applied inductively until
the root becomes simple:

Theorem 4 ([12], [3]). If ζ is an isolated root of the system f(x) = 0, there
exists a number k ∈ N such that f[k](x[k]) = 0 has a simple root x∗[k] whose
projection on the first n coordinates is ζ.

It is proved in [12] (or in [3]) that the number k of iterations is at most
the depth of the multiplicity of f at ζ, that is the maximum degree of a
differential polynomial of the inverse system of f at ζ.

Notice that the number of variables of the system f[k] is n× 2k.

Example 8. Consider the system f1(x1, x2) = 2x1x
2
2 + 5x41, f2(x1, x2) =

2x21x2 + 5x42 and the singular point ζ = (0, 0). Since Jf (ζ) = 0, we apply

a first deflation step, i.e. we compute the equations Jf (x)

(
u1
u2

)
, and two

random linear equations:

g1(x[1]) = f1 = 2x1x2
2 + 5x1

4, g2(x[1]) = f2 = 2x1
2x2 + 5x2

4

g3(x[1]) =
(
2x2

2 + 20x1
3
)
u1 + 4x1x2u2

g4(x[1]) = 4x1x2u1 +
(
2x1

2 + 20x2
3
)
u2

g5(x[1]) = 16u1 + u2 − 1, g6(x[1]) = 70u1 + 77u2

The new Jacobian matrix Jg(ζ[1]) is rank-defect, with ζ[1] = (x,u) =(
0, 0,

11

166
,
−5

83

)
is zero, and the multiplicity has dropped from 11 to 4. There-

fore we repeat the procedure for this new system using random equations from
the kernel of J(g)(ζ[1]) (18):

h1(x[2]) = 2x1x2
2 + 5x1

4, h2(x[2]) = 2x1
2x2 + 5x2

4

h3(x[2]) =
(
2x2

2 + 20x1
3)u1 + 4x1x2u2

h4(x[2]) = 4x1x2u1 +
(
2x1

2 + 20x2
3)u2

h5(x[2]) = 16u1 + u2 − 1, h6(x[2]) = 70u1 + 77u2

h7(x[2]) =
(
2x2

2 + 20x1
3) v1 + 4x1x2v2, h8(x[2]) = 4x1x2v1 +

(
2x1

2 + 20x2
3) v2

h9(x[2]) =
(
60x1

2u1 + 4x2u2

)
v1 + (4x2u1 + 4x1u2) v2 +

(
2x2

2 + 20x1
3) v3 + 4x1x2v4

h10(x[2]) = (4x2u1 + 4x1u2) v1 +
(
4x1u1 + 60x2

2u2

)
v2 + 4x1x2v3 +

(
2x1

2 + 20x2
3) v4

h11(x[2]) = 16 v3 + v4, h12(x[2]) = 70 v3 + 77 v4

h13(x[2]) = 53 v1 + 12 v2 + 19 v3 + 63 v4 − 1, h14(x[2]) = 40 v1 + 90 v2 + 3 v3 + 49 v4

We obtain a new system which has a regular root at ζ[2] = (x,u,v) =(
0, 0,

11

166
,
−5

83
,

3

143
,
−4

429
, 0, 0

)
, so deflation is achieved in two steps. We see
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that the number of (equations and) variables increased exponentially, from 2
to 8, and the system is no longer square.

4.3 Deflation using the inverse system

We consider again a system of equations f = (f1, . . . , fs), fk ∈ R[x], which
has an isolated root ζ of multiplicity µ.

In this section, we will also extend the initial system by introducing
new variables so that the extended system has a simple isolated root, which
projects onto the multiple point ζ. Contrarily to the deflation technique de-
scribed in Section 4.2, the number of new variables will be directly related with
the multiplicity µ of the point. Let b = ((x− ζ)β1 , . . . , (x− ζ)βµ) be a basis
of R/Qζ and D = (Λ1, . . . , Λµ) its dual counterpart, with β1 = (0, . . . , 0),
Λ1 = 1.

We introduce a new set of equations starting from f , as follows: add to
every fk the polynomial gk = fk + pk, pk =

∑µ
i=1 εi,k(x − ζ)βi where εk =

(εk,1, . . . , εk,µ) is a new vector of µ variables.
Consider the system

Dg(x, ε) =
(
Λ1(∂x)[g], . . . , Λµ(∂x)[g]

)
.

where Λx[gk] = Λi(dx)[gk] is defined as in (1) with ζ replaced by x, i.e. we
differentiate gk but we do not evaluate at ζ. This is a system of µs equations,
which we shall index Dg(x, ε) = (g1,1, . . . , gµ,s). We have

gik(x, ε) = Λxi [fk + pk] = Λxi [fk] + Λxi [pk] = Λxi [fk] + pi,k(x, ε).

Notice that pi,k(ζ, ε) = Λζi [pk] = εi,k because D = (Λ1, .., Λµ) is dual to b.
As the first basis element of D is 1 (the evaluation at the root), the first

s equations are g(x, ε) = 0.
Note that this system is under-determined, since the number of variables

is µ s + n and the number of equations is µs. We shall provide a systematic
way to choose n variables and purge them (or better, set them equal to zero).

By linearity of the Jacobian matrix we have

JDg(x, ε) = JDf (x, ε) + JDp(x, ε)

= [ JDf (x) |0 ] + [ JxDp(x, ε) | JεDp(x, ε) ], (19)

where JxDp(x, ε) (resp. JεDp(x, ε)) is the Jacobian matrix of Dp with respect
to x (resp. ε). By construction the Jacobian matrix JεDp(x, ε) of the system
p = (Λxi (pj))1≤i,j≤µ is, up to a reordering of the rows and columns, a block
diagonal matrix with s blocks of the form

(Λxi [bj ])1≤i,j≤µ .
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As D is dual to the basis b, (Λxi [bj ](ζ,0))1≤i,j≤µ is the identity matrix, the

Jacobian JεDp(x, ε) evaluated at (ζ,0) is, up to a reordering of the crows and
columns, the identity matrix of dimension µs.

Using decomposition (19), we easily deduce the following property:

Lemma 3. The µ s×µ s Jacobian matrix JεDg(x, ε) is of full rank µ s at (ζ,0).

Another interesting property is the following [15]:

Lemma 4. The µs×n Jacobian matrices JxDg(x, ε) and JxDf (x, ε) are of full
rank n at (ζ,0).

We are going to use these properties to construct sub-systems of Dg with a
simple root “above” ζ.

The columns of JDg(x, ε) are indexed by the variables (x, ε), while the
rows are indexed by the polynomials gik. We construct the following systems:

(a) Let Df I be a subsystem of Df s.t. the corresponding n rows of JDf (ζ)
are linearly independent (Lemma 4 implies that such a subset exists). We
denote by I = {(i1, k1), . . . , (in, kn)} their indices.

(b) Let Dg̃(x, ε̃) be the square system formed by removing the variables
εk1,i1 , . . . , εkn,in from Dg(x, ε). Therefore the Jacobian JDg̃(x, ε̃) derives
from JDg(x, ε), after purging the columns indexed by εk1,i1 , . . . , εkn,in and
it’s (ij , kj)−th row becomes [∇(Λxij g̃ij ,kj )

T | 0 ].

A first consequence is the following result, giving a n×n system deduce from
the initial system f , with a simple root at ζ:

Theorem 5 (Deflation Theorem 1 [15]). Let f(x) be a n−variate poly-
nomial system with an µ−fold isolated zero at x = ζ. Then the n× n system
Df I(x) = 0, defined in (a), has a simple root at x = ζ.

Example 9. In our running example, we expand the rectangular Jacobian ma-
trix of 6 polynomials in (x1, x2). Choosing the rows corresponding to f1 and
(d1 − d22 − d1d2 − d21)[f1], we find a non-singular minor, hence the resulting
system (f1, 2x1) has a regular root at ζ = (0, 0).

The deflated system Df I(x) = 0 is a square system in n variables. Con-
trarily to the deflation approach in [12, 4], we do not introduce new variables
and one step of deflation is provably sufficient. The trade-off is that here we
assume that exact dual elements are pointed at by indices I, so as to be able
to compute the original multiple root with high accuracy.

On the other hand, when the coefficients are machine numbers, an exact
multiple root is unlikely to exist. In the following theorem, we introduce new
variables that will allow us later to derive an approximate deflation method.
The need to introduce new variables comes from the fact that in practice the
exact root is not available, or even worse, the input coefficients contain small
error. Therefore, our method shall seek for a slightly perturbed system with
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an exact multiple zero within a controlled neighborhood of the input, that
fits as close as possible to the approximate multiplicity structure of the input
system and point.

Theorem 6 (Deflation Theorem 2 [15]). Let f(x) be a n−variate poly-
nomial system with a µ−fold isolated root at x = ζ. The square system
Dg̃(x, ε̃) = 0, as defined in (b), has a regular isolated root at (x, ε̃) = (ζ,0).

Nevertheless, this deflation does differ from the deflation strategy in [12, 4].
There, new variables are added that correspond to coefficients of differential
elements, thus introducing a perturbation in the dual basis. This is suitable for
exact equations, but, in case of perturbed data, the equations do not actually
define a true singular point.

Example 10. Consider the system [13] of 3 equations in 2 variables f1 = x31 +
x1x

2
2, f2 = x1x

2
2 + x32, f3 = x21x2 + x1x

2
2, and the singular point (0, 0) of

multiplicity equal to 7.
Suppose that the point is given. Using 3 and 2 we derive the primal-dual

pair
D = (1, d1, d2, d

2
1, d1d2, d

2
2, d

3
2 + d31 + d21d2 − d1d22) ,

where d32 is underlined to show that it corresponds to x32 in the primal mono-
mial basis B = (1, x1, x2, x

2
1, x1x2, x

2
2, x

3
2) The biggest matrix used, in depth

4, was of size 9×8, while Macaulay’s method terminates with a matrix of size
30× 15.

To deflate the root, we construct the augmented system Df of 21 equa-
tions. The 21× 2 Jacobian matrix JDf (x) is of rank 2 and a full-rank minor
consists of the rows 4 and 5. Therefore, we find the system (d21[f1], d1d2[f1]) =
(3x1, 2x2) which deflates (0, 0). Note that even though both equations of the
deflated system derive from f1, the functionals used on f1 are computed using
all initial equations.

The perturbed equations are then

g1 = f1 + ε1,1 + ε1,2x1 + ε1,3x2 + +ε1,4x
2
2 + ε1,5x

3
2

g2 = f2 + ε2,1 + ε2,2x1 + ε2,3x2 + +ε2,4x
2
1 + ε2,5x1x2 + ε2,6x

2
2 + ε2,7x

3
2

g3 = f3 + ε3,1 + ε3,2x1 + ε3,3x2 + +ε3,4x
2
1 + ε3,5x1x2 + ε3,6x

2
2 + ε3,7x

3
2

and the resulting system Dg has a simple root at (ζ,0).

5 Approximate multiple point

In real-life applications it is common to work with approximate inputs. Also,
there is the need to (numerically) decide if an (approximate) system possesses
a single (real) root in a given domain, notably for use in subdivision-based
algorithms, e.g. [19, 16].
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In the regular case, Smale’s α−theory, extending Newton’s method, can be
used to answer this problem, also partially extended to singular cases in [7],
using zero clustering. Another option is to used the following certification test,
based on the verification method of Rump [22, Th. 2.1]:

Theorem 7 ([10, 22] Krawczyk-Rump Theorem). Let f ∈ Rn, R =
K[x], be a polynomial system and ζ∗ ∈ Rn a real approximate regular isolated
point. Given an interval domain Z ∈ IRn containing ζ∗ ∈ Rn, and an interval
matrix M ∈ IRn×n whose i−th column Mi satisfies

∇fi(Z) ⊆Mi for i = 1 . . . , n

then the following holds: If the interval domain

Vf (Z, ζ∗) := −Jf (ζ∗)−1f(ζ∗) + (I − Jf (ζ∗)−1M)Z (20)

is contained in
◦
Z, the interior of Z, then there is a unique ζ ∈ Z with f(ζ) = 0

and the Jacobian matrix Jf (ζ) ∈M is non-singular.

In our implementation we use this latter approach, since it is suitable
for inexact data and suits best with the perturbation which is applied. In
particular, it coincides with the numerical scheme of [22] in the univariate
case.

In the case of an isolated multiple point of a polynomial system, we applied
a deflation to transform it into a regular root of an extended system. The
theorem is applied to the system of 6, using an (approximate) structure D. The
resulting range of the ε−parameters encloses a system that attains a single
multiple root of that structure. Hence the domain for ε−variables reflects
the distance of the input system from a precise system with local structure
D. Therefore, we obtain a perturbed system in a neighborhood of the input
together with a numerically controlled bound on the perturbation coefficients,
with a unique multiple root having a prescribed multiplicity.

If the multiple point is known approximately, we use implicitly Taylor’s
expansion of the polynomials at this approximate point to deduce the dual ba-
sis, applying the algorithm of the previous section. The following computation
can be applied:

• At each step, the solutions of linear system (10, i–iii) are computed via
Singular Value Decomposition. Using a given threshold, we determine the
numerical rank and an orthogonal basis of the solutions from the last
singular values and the last columns of the right factor of the SVD.

• For the computation of the monomials which define the equations (2, iii)
at the next step, we apply QR decomposition on the transpose of the basis
to extract a non-zero maximal minor. The monomials indexing this minor
are used to determine constraints (10, i–iii). A similar numerical technique
is employed in [25], for Macaulay’s method.
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Example 11. Let f1 = x21x2 − x1x22, f2 = x1 − x22. The verification method
of [22] applies a linear perturbation to this system, but fails to certify the
root ζ = (0, 0).

We consider an approximate point ζ∗ = (.01, .002) and we compute the
approximate multiplicity structure

D = (Λ1, . . . , Λ4) = (1.0, 1.0d2, 1.0d1 + 1.0d22, 1.0d1d2 + 1.0d32).

The augmented system g(x) = (Λj [fi]) = (f1, 2.0x1x2−1.0x22−1.0x1, 2.0x1−
2.0x2, 1.0x1 − 1.0x22, f2, −2.0x2, 0., 0.) has a Jacobian matrix:

Jg(ζ∗)T =

[
.00 .016 −.99 2.0 1.0 0 0 0
.00 −.02 .016 −2.0 −.004 −2.0 0 0

]
with a non-zero minor at the third and forth row. Using this information, we
apply the following perturbation to the original system:

g1 = x21x2 − x1x22 + ε11 + ε12x2

g5 = x1 − x22 + ε21 + ε22x2 + ε23x1 + ε24x1x2

Thus g(x1, x2, ε11, ε12, ε21, ε22, ε23, ε24), computed as before, is a square sys-
tem with additional equations:

g2 = 1.0x21 − 2.0x1x2 + 1.0ε12

g3 = 2.0x1x2 − 1.0x22 − 1.0x1

g4 = 2.0x1 − 2.0x2

g6 = −2.0x2 + 1.0ε22 + 1.0x1ε24

g7 = 1.0ε23 + 1.0x2ε24

g8 = 1.0ε24

Now take the box Z1 = [−.03, .05]×[−.04, .04]×[−.01, .01]6. We apply Th. 7 on
g, i.e. we compute Vg(Z1, ζ

∗). For the variable ε21 the interval is [−.015, .15] 6⊆
(−.01, .01), therefore we don’t get an answer.

We shrink a little Z1 down to Z2 = [−.03, .05] × [−.02, .02] × [−.01, .01]6

and we apply again Th. 7, which results in

Vg(Z2, (ζ
∗,0) ) =



[−.004, .004]
[−.004, .004]
[−.001, .001]
[−.007, .007]
[−.006, .006]
[−.009, .009]

[−.00045, .00035]
[.0, .0]


⊆
◦
Z2,

thus we certify that the input equations admit a perturbation of magnitude of
.01, so that the perturbed system has a unique exact root within the interval
[−.03, .05]× [−.02, .02].
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6 Experimentation

We have implemented the presented algorithms in Maple. It can compute
(approximate) dual bases by means of Macaulay’s method as well as the in-
tegration method, and it can derive the augmented system defined in Th. 6.
Then Krawczyk-Rump’s interval method is used to verify the root.

Example 12. Let, as in [11, 13],

f1 = 2x1 + 2x21 + 2x2 + 2x22 + x23 − 1,

f2 = (x1 + x2 − x3 − 1)3 − x31,
f3 = (2x31 + 2x22 + 10x3 + 5x23 + 5)3 − 1000x51.

The point (0, 0,−1) occurs with multiplicity equal to 18, in depth 7. The final
matrix size with our method is 54 × 37, while Macaulay’s method ends with
a 360× 165 matrix.

If the objective is to deflate as efficiently as possible, then one can go
step by step: First compute a basis of D1 and stop the process. We get the
evaluation 1 and 2 first order functionals, which we apply to f1. We arrive at

(1[f1], (d2 − d1)[f1], (d1 + d3)[f1]) = (f1,−4x1 + 4x2, 2 + 4x1 + 2x3)

and we check that the Jacobian determinant is 64, thus we have a deflated sys-
tem only with a partial local structure. The condition number of the Jacobian
matrix is also very satisfactory, with a value of around 5.55.

The recent paper [8], implementing the dialytic deflation method produces
a deflated system of size 75× 48 for this instance, with a condition number of
order 106.

Example 13. Consider the equations (taken from [4, DZ3]):

f1 = 14x1 + 33x2 − 3
√

5(x2
1 + 4x1x2 + 4x2

2 + 2) +
√

7 + x3
1 + 6x2

1x2 + 12x1x
2
2 + 8x3

2,

f2 = 41x1 − 18x2 −
√

5 + 8x3
1 − 12x2

1x2 + 6x1x
2
2 − x3

2 + 3
√

7(4x1x2 − 4x2
1 − x2

2 − 2)

and take an approximate system f̃ with those coefficients rounded to 6 digits.
A 5−fold zero of f rounded to 6 digits is ζ∗ = (1.50551, .365278).

Starting with the approximate system and with a tolerance of .001, we
compute the basis

D = (1, d1 + .33d2, d
2
1 + .33d1d2 + .11d22, d

3
1 + .33d21d2 + .11d1d

2
2 + .03d32 −

−1.54d2, d
4
1 + .33d31d2 + .11d21d

2
2 + .03d1d

3
2 + .01d42 − 1.54d1d2 − 1.03d22)

having 4 correct digits, with respect to the initial exact system, and the primal
counterpart B = (1, x1, x

2
1, x

3
1, x

4
1).

We form the deflated system (b), with I = {(3, 1), (5, 1)}, i.e. the 3rd and
5th dual element on f1 have non-null Jacobian. By adding 8 new variables,
the system is perturbed as:
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g1,1 = f̃1 + ε1,1 + ε1,2(x1 − ζ∗1 ) + ε1,4(x1 − ζ∗1 )3 ,

g2,1 = f̃2 +

5∑
i=1

ε2,i(x1 − ζ∗1 )i+1

and their derivation with respect to D.
We consider a box Z with center = ζ∗ and length = .004 at each side.

Also, we allow a range E = [−.004, .004]8 for the variables ε̃. Applying 7
we get a verified inclusion Vg(Z × E, (ζ∗,0)) inside Z × E and we deduce

that a unique specialization ε̃ ∈ E “fits” the approximate system f̃ to the
multiplicity structure D.

Indeed, one iteration of Newton’s method on g(x, ε) gives the approximate
point ζ = (1.505535473, .365266196) and corresponding values for ε0 ∈ E,
such that ζ is a 9−digit approximation of the multiple root of the perturbed
system g(x, ε0).

In Table 1 we run dual basis computation on the benchmark set of [4]. Mul-
tiplicity, matrix sizes at termination step and computation time is reported.
One sees that there is at least an order of gain in the running time using the
primal-dual approach.

System µ/n MM’11 Mourrain’97 Macaulay

cmbs1 11/3 27× 23 .18s 27× 33 .95s 105× 56 1.55s

cmbs2 8/3 21× 17 .08s 21× 24 .39s 60× 35 .48s

mth191 4/3 10× 9 .03s 10× 12 .07s 30× 20 .14s

decker2 4/2 5× 5 .02s 5× 8 .05s 20× 15 .10s

Ojika2 2/3 6× 5 .02s 6× 6 .03s 12× 10 .04s

Ojika3 4/3 12× 9 .07s 12× 12 .27s 60× 35 .59s

KSS 16/5 155× 65 8.59s 155× 80 40.41s 630× 252 70.03s

Capr. 4/4 22× 13 .28s 22× 16 .47s 60× 35 2.34s

Cyclic-9 4/9 104× 33 1.04s 104× 36 5.47s 495× 220 31.40s

DZ1 131/4 700× 394 14m 700× 524 26m 4004× 1365 220m

DZ2 16/3 43× 33 .68s 43× 48 4.38s 360× 165 25.72s

DZ3 5/2 6× 6 .04s 6× 10 .23s 30× 21 .79s

Table 1. Benchmark systems from [3], reporting matrix size at the last step of
computing a dual local basis, and overall time for primal-dual computation. The
computations are done using Maple. Observe that Macaulay’s method results in a

matrix of size n

(
p− 1 + n

p− 1

)
×

(
p + n

p

)
, in contrast to a matrix of size (

n(n− 1)

2
µ+

n)× µ(n− 1) + 1 for the primal-dual approach.
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Verlag, 2007.

6. W. J. Gilbert. Newton’s method for multiple roots. Computers & Graphics,
18(2):227–229, 1994.

7. M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approx-
imation of clusters of zeros: Case of embedding dimension one. Foundations of
Computational Mathematics, 7:1–58, 2007. 10.1007/s10208-004-0159-5.

8. W. Hao, A. J. Sommese, and Z. Zeng. Algorithm 931: An algorithm and software
for computing multiplicity structures at zeros of nonlinear systems. ACM Trans.
Math. Softw., 40(1):5:1–5:16, October 2013.

9. L. V. Kantorovich. Functional analysis and applied mathematics. Uspekhi
Matematicheskikh Nauk, 3(6):89–185, 1948.

10. R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit fehler-
schranken. Computing, 4(3):187–201, 1969.

11. G. Lecerf. Quadratic newton iteration for systems with multiplicity. Foundations
of Computational Mathematics, 2:247–293, 2002.

12. A. Leykin, J. Verschelde, and Zhao A. Newton’s method with deflation for iso-
lated singularities of polynomial systems. Theoretical Computer Science, 359(1-
3):111 – 122, 2006.

13. A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial
systems with isolated singular solutions. In A. Dickenstein, F.-O. Schreyer, and
A.J. Sommese, editors, Algorithms in Algebraic Geometry, volume 146 of The
IMA Volumes in Mathematics and its Applications, pages 79–97. Springer New
York, 2008.

14. F.S. Macaulay. The algebraic theory of modular systems. Cambridge Univ.
Press, 1916.

15. A. Mantzaflaris and B. Mourrain. Deflation and Certified Isolation of Singular
Zeros of Polynomial Systems. In A. Leykin, editor, International Symposium on
Symbolic and Algebraic Computation (ISSAC), pages 249–256, San Jose, CA,
United States, June 2011. ACM New York.

16. A. Mantzaflaris, B. Mourrain, and E. Tsigaridas. Continued fraction expansion
of real roots of polynomial systems. In Proceedings of the 2009 Conference on
Symbolic-Numeric Computation, SNC ’09, pages 85–94, New York, NY, USA,
2009. ACM.



Singular Zeros of Polynomial Systems 27
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