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EXACT SOLUTIONS OF ONE-DIMENSIONAL TOTAL
GENERALIZED VARIATION *

CHRISTIANE POSCHL T AND OTMAR SCHERZER #

Abstract. Total generalized variation regularization has been introduced by Bredies, Kunisch,
and Pock [5]. This regularization method requires careful tuning of two regularization parameters.
The focus of this paper is to derive analytical results, which allow for characterizing parameter
settings, which make this method in fact different from total variation regularization (that is the
Rudin-Osher-Fatmi model [16]) and the second order variation model [17] regularization, respectively.
In this paper we also provide explicit solutions of total generalized variation denoising for particular
one-dimensional function data.

1. Introduction Total generalized variation (TGV) denoising has been intro-
duced in [5]: Given k € Ny and a function u® : Q — R, where Q C R%, the method
consists in determining

uy = argmin {g§(u) Tu€ L2<Q)} , (1.1)
where
GE(u) = %/Q(u—u‘s)Qdm - TGVEw) (1.2)
with
TGV (u)

=sup {/Q u(V) kg dr - ¢ € C°(Q, SymF (RY)),

(v.)k_l¢HLoo S Al? l: 1"' '7k} )

and Symk(Rd) denotes the space of symmetric tensors of order k with arguments in
R<. There can be imagined several realizations of H (V')k_lUHLoo to be implemented -
one of them is H(V-)’“%HLOC = sup{|(V~)k_lq’>(m)|l2 : @ € Q}, where || denotes the
Frobenius-norm of a tensor. Note that the definition here is slightly different from
the one in [5], where in the original definition, the enumeration of the indices of A; is
reversed.

All along this paper, for the simplification of notation and considerations, we
restrict our attention to the case k = 2. Consequently, from now on, we omit the
superscript k£ in the TGV-functional.

The goal of this paper is to increase the knowledge about structural properties
of TGV-denoising, and to put this method into perspective with total variation and
second order total variation regularization by analytical means. This is done in two
different ways:
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1. The main result of this paper concerns the characterization of the sets of
regularization parameters X= (A1, A2) such that the minimizers of TGV, »,
either equal total variation minimizers or minimizers of the second order total
variation minimization, and to determine sets of parameters, where TGV
minimization is in fact different from either one of them.

2. We study analytical solutions of simple one-dimensional test-cases, where
d=1,Q=(-1,1), and k = 2. In this simple situation TGV-denoising (1.1)
simplifies to minimizing the functional

G:L*(—1,1) = RU {+o0},

1
u— Gu) := %[1(u7u6)2dx + TGV, 2, (u) . 13)

In the specific one-dimensional situation TGV}, », can be written as

TGV)\M)\2 (u)

1 " , (1.4)
=sup{/_1u¢ de: 6 € C(=1,1), ¢/l < M. ll6ll,m < Az} |

Similar, as in our previous work [15] for total variation minimization and min-
imization with totally bounded second derivative, it is possible to characterize
the minimizers of TGV, », in a simple manner using Fenchel-duality theory.
We show that the minimizers are either equal to u® or piecewise affine that
bend or jump, whenever the first or second primitives of the dual functions
attain an extremum.

We then study explicit solutions of TGV-denoising for the basic test data

cases
5 ].
x—u(x)=|z|— =,
2
6 1
r—=u’(z) = 1_1/2,1/9(x) — 3
and
5 o 1
x—ul(x) =a°— 3"

For the first two exemplary cases the minimizers of the TGV-functional (1.3)
are weighted sums of TV-minimizers and TV?-minimizers. The second exam-
ple has also been studied in [4] - however, there no complete characterization
of the parameter sets have been stated where the TGV y, »,-minimizer equals
either L? — TV, L? — TV?-minimizers, which is a focus topic of this work.
The outline of this paper is as follows: In Section 2 we introduce preliminary
notation and the main definitions. We derive characteristic properties of minimizers
of the TGV-denoising problem (in d-dimensions) via convex duality theory (Sections
3, 4). Later we restrict our attention to the case d = 1 and show that minimizers
are either equal to the data or piecewise affine linear (cf. Section 5). Finally we
calculate explicit minimizers for the TGV, x,-functional in the case where the data
are the absolute value (Section 6), the indicator function (Section 7), or a quadratic
polynomial (Section 8), respectively.



2. Notation Let Q C R? be a bounded, connected domain with Lipschitzian
boundary. Moreover, let u° :  — R belonging to L?(Q).
For i € N we define the following functional:

FiLA(Q) — RU {+o0},

u— Fi(u) = = /Q(u —u®)?dx + TV}, (u) @1)

where
TV}, (u)

=su w(V)ed dr - oo m*(RY i _ (2_2)
= p{/Q (V)'ddx: ¢ € C(Q,Sy (R)%H(VMHLWSAZ},

where
H(V~)’“_ZUHLoo = sup{‘(V~)k_lv(m)‘l2 cxeQ},

and ’(V-)iqﬁ‘lz denotes the Frobenius-norm of (V-)'@.
The minimizer of (2.1) is denoted by v} . The minimizer of (1.2) is denoted by

COVYE
Because

TV, (u) = ATV (u), (2.3)

we see that minimization of the functional F* from (2.1) is standard L? — TV-
minimization with regularization parameter \;. L? — TV-minimization has been
studied widely in the literature. In the one-dimensional d = 1 setting it is used
for regression (see e.g. [11, 7]) - analytical solutions have been calculated for instance
in [6]. In image processing, for d > 2, L? — TV-regularization it is called the Rudin-
Osher-Fatemi model [16]. Regularization with derivatives of higher order bounded
variation has been studied for instance in [17, 19, 14, 15, 18]. The function spaces
of functions of bounded Hessian, and more general convex functional of functions of
bounded Hessian have been introduced and considered in [8, 9].

3. Fenchel duality and applications

In the following let H be a Hilbert-space. In this case it is common to identify
‘H with its dualspace and to identify the dual pairing (u*,u) on H* and H with the
inner product on . For instance when X = L?(Q), (u*,u) = [, u*u dz.

We start by defining the *-number, which is a generalization of the dualnorm of
a Banach-space, to convex, positively homogeneous functionals.
DEFINITION 3.1. A proper, convex functional T : H — R U {400} is positively
homogenuous, if there exists some | = 1,2... such that T : H — R U {+o0} is
l-homogeneous, which means that

Tw) =A\'T(w), VAER.

DEFINITION 3.2 (The *-number). Let R : H — RU {+o0} be a positively homo-
geneous and convex functional . For u* € H define

||u*H*R :=sup{(u*,u):u€H,R(u) <1} .
3



Moreover define
B = {u* EH:u]l. » < 1}

as the dualball with respect to the x-number.
EXAMPLE 3.1. From (2.3) it follows that

* 1 *
1™l vy, = = M1l 7oy - (3.1)

Note that according to our definition
TV: =TV, Vi e N.
LEMMA 3.3.
(see [18, Lemma 4.6]). Let R be positively homogeneous and set
P:={peH:R(p) =0}.

From the assumptions that R is positively homogeneous and convez, it follows that P
is a linear subspace of H. Denote by

PLi={u"€H: (u',p)=0,peP} .

Then ||u*||, r = +o0 for all u* ¢ PL.
DEFINITION 3.4. Assume thati=1,2,.... Let H = L*(Q), R = TVé\i, and let Pt be
the set of polynomials of order i — 1. Then

H = {u6L2(Q):/u(x)mjdx:0, |j|:0,1,...,¢—1,jeNg}:79“. (3.2)
Q

REMARK 3.2. Because C°(Q) is dense in L*(2), and § is assumed to be bounded,
it follows that

H = {uGCgo(Q):/u(x)xjdx:Q j:071,...7i—1,j€Ng}.
Q

The following lemma is a direct consequence of Lemma 3.3 and the above defini-
tion:
LEMMA 3.5.
o TV, i=1,2: Forall u* ¢ H', ”U*”*Tv; = +00.
y . * 2 * ‘ —
o TGV-functional: For all u* & H?, ||u ||*’TGVA1’A2 = +o00.

The definitions of the ||-||, Tvi_-norms are similar as in Meyer’s book [12], see also
[1]). The difference is that there Q = R? is considered, and the elements of the space
L?(RY) satisfy natural boundary conditions at co. Since we consider bounded domains
Q) we restrict attention to the subspaces H® rather than to L?, as in Meyer’s book.

Another possibility, instead of factorizing out polynomials, is to consider boundary
conditions on the bounded domain €2, which has been realized in [2].
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The Fenchel dual of a proper functional S : H — R U {400} is defined as
S H —=RU{+o00}.
u* = 8" = sup {(u*,u) —S(u)} .
uEH
The following results can be found in [10], see also [18]:
REMARK 3.3.
o Let T be 1-homogeneous, then the Fenchel dual function is a characteristic
function of a convex set C*. That is,

T(0) = xe-(u7) = {
In particular, for T 1-homogeneous,

C =B . (3.4)

o Let S, R be convex and proper functionals defined on H. Denote by 4 a
minimizer of the functional u — S(u) + R(u) and denote by 4* a minimizer
of the functional u* — S*(u*) + R*(—u*). Then the extremality conditions
hold:

0 foru*eC*,

+o0o  else . (3.3)

€ 0S(u) and — 4" € OR(u). (3.5)

ExamPLE 3.4.
1. The dual functional of

S:L*Q) =R,
1 3.6
uw— = [ (u—u®)dz, (3.6)
2 Ja
s given by
S*:L*(Q) - R,
(3.7

1
u*%f/u*Qder/u*u‘sdx.
2 Jo Q

In the case of the quadratic functional the extremality condition (3.5) for a
minimizer shows:

W =1 —u’. (3.8)
2. Let
R =TV, : L*(Q) — RU {+oc},

which is 1-homogeneous. Then

@)= s { [ wtude- v 0 = 00,

ueL2(Q) (2.3) A TVE
where the characteristic function is 0 on the closed unit ball C* = B;'TV’. and
+oo else.
3. Let

R = TGV>\17)\2 :L2(Q) —RU {+OO},

which is 1-homogeneous too. Thus R*(u*) = XBigy, | -
TUAL A2
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4. Regularization Methods with 1-Homogeneous Regularizers In the
following we derive some properties of regularization functionals with S from (3.6)
and 1-homogeneous regularizers R. We denote by

u— E(u) :=8u)+ R(u) .
REMARK 4.1. From (3.4) we know that

R* :XB% .

Then the extremality condition (3.8) guarantees that 0* = 4 — u’

Fenchel-duality theory we see that

%Lkﬁ*ﬁde+R@)
= inf {S(u) + R(u)}

=—inf{S"(u") + R*(—u")}

€ B and from

== 8 (@) =y (<) 1)
———
=0
L. N2 80 s
= — Q§(u—u) +u’(t—u’)dx.
(3.7)

In summary we have shown that

H’&’*”*,R S 17
R(a)z—/ (a—u5)2+u5(a—u5) dz :-/ (@ —u’)ade .
Q Q

e (4.2) applied to L* — TV-minimization, shows that vy , the minimizer of F'
(see (2.1)), satisfies

(4.2)

|5 LTV <1 and TVﬁ\i (v,) = — /Q(vﬁv - u‘;)vﬁ'\i dz . (4.3)

||v§\* crvi < 1 amplies that vy € H', because according to Lemma 3.3
) X;

Hvﬁ\* . TV would be +00 otherwise. This, in particular, means that if u® €
’ X;

H', then also ’Ug\i eH.
o (4.2) applied to TGV, x,-minimization, shows that ux, x,, the minimizer of
(1.3), satisfies

||u§1-,>\2H*,TGVA1,A2 <1 and TGV)\h)\z (u)\17>\2) - /Q(uAl,)\Q - ué)U‘)\h)\z dw .
(4.4)
< 1 implies that u} ,, € H*> (Lemma 3.3). Since

Now Hu*
A1 A2 *7TGV>\1,>\2

UN, A, = Ui ho — u®, uS € H? implies that also uy, r, € H%, hence by as-

)

suming that u® € H? we can equivalently minimize G over H? instead of

L3(9).
LEMMA 4.1. If u satisfies (4.2) then u minimizes E.
In particular



o u minimizes F' iff — [(u—u’)udz = TV} (u) and u — u® in B
g
e and u minimizes the TGV-functional iff — [,(u—u’)udx = TGV, x,(u) and
5 .
u—u’ in B?GVAIAZ'

Proof. We prove the lemma by contradiction: Assume that w satisfies the as-
sumptions of the lemma but is not a minimizer of £. Then there exists some v # u

such that v minimizes £ and £(v) < £(u). From (4.4) it then follows that

R(v) = f/ﬂ(v —u)vd .

Therefore, from the assumption that u satisfies (4.2), we see that

N | =
S
—~

v—u®) dz — [ (v—u)vda
) do = [ (o =utyod
(v— u5)2 dx + R(v)

(u— u6)2 dx + R(u)

A\
= N = N =
ST~~~

U*U62 X — U*’UJ&’UJ X
()" o [ (0= upua

such that

1 9 1 9
—= —= . 4.
2/vclsc< 2/uclac (4.5)

The dual functional of a convex, 1-homogeneous function R, is the characteristic
function of Bj (cf. Remark 4.1). The Fenchel-duality theorem (see e.g. [10]) states,
that v* := v — u’ minimizes the functional w* — S*(w*) over B, where S* is as in
(3.7), such that we have now

S*(w— ) = /Q (;(U — W) (- ué)u5> do

<S*(u—u’) = /Q (;(u —u®)? 4 (u— ué)ué) de .

The inequality above simplifies to

1 1
f/v2dx§f/u2dx,
2 Ja 2 Ja

such that we obtain a contradiction to (4.5). Hence the assumption that v # u is a
minimizer of £ was wrong. O
LEMMA 4.2. Assume that R is 1-homogeneous functional on H. Then tummn = 0

minimizes € if and only if ||u‘§||* = <1
Proof.
e 0 minimizes £ = ||u5||*R < 1: If upmin = 0, then u},, = —u® and the

*
min

extremality conditions from Remark 4.1 state that u

that [|luf;, ||, z < 1 and consequently |[u[|, , <1.
7

€ B%. This means



. ||u5||*R <1 = Uy = 0: We prove this implication by contradiction.

Assume therefore that Hu‘SH R <1 and that uy;, Z 0 minimizes £. This, in
particular, means that R(umm) < +00. Then from (4.2) it follows that

*/ umin(umin - U(S) dr = 7z(umin) 2 HU(SH* RR(umin) .
a ;
Rearranging the terms and division by R(umin) shows that
U
mln dlL’ + min
/ R umm R umln
= Hu *R

=sup wodr: R(p) <13 .
U |

Since, by assumption, 0 # umin € L%(9), we also have

T —dr > 0.
/Rumln o

This, together with (4.6), shows that

5 Umin 5
dr : R(¢) <1 d
sup{/ﬂu odx (¢) < } \/ LR umm)u T
3 ey
> [[u’]],

=sup{/ﬂu5¢dx:7e(¢) §1} |

hence we obtain a contradiction to the assumption i, # 0.
0
EXAMPLE 4.2. '
1. Let R = TV}, then from Lemma 4.2 it follows that vﬁ\i = 0 if and only if
] <1
*, TW
2. TGVx - “minimization: Choose R = TGV, x,, then from Lemma 4.2 it
s
follows that uy, », =0 if and only if Hu H*7TGVA1,A2 <1.
These results are similar with those in [12], where TV -minimization of functions on
Q = R? have been considered.

5. Extremal Properties and Solutions of 1D-TGV In the following we
consider the case d =1 and Q = (—1,1). We derive some characteristic properties of
the minimizers uy, x, of the TGV, x,-functional Gy, »,, defined in (1.2).

Below, by some basic considerations, it is possible to identify sets of parameters
X = (A1, A2) for which uy, », equals some vy, i=1,2.

For d = 1, the dual-norm |||, TV, =12, ||u Il TGV, ry? respectively, can be

easily calculated via integration: To see this, let

o[u](@) == u*(x),

ol u](z) = /I W (1) dt o)



LEMMA 5.1. Let Q = (—1,1). Then for alli=1,2,..

U= {p e CX(-1,1): 0/ [p](1) =0, =1,2,...,i— 1}
=H' NC®(-1,1).
Moreover,

Wi=H". (5.3)
Proof. Let u* € H' N C(—1,1), then

1
/ waldr =0, Vj=0,1,...i—1.
—1

For fixed i we prove by an inductive argument that for u* € H* N C>(—1,1) also
u* € Ul
e Let j = 1: Then u* € H* implies that

oI [u'](1) = o fu)(1) = /1 wdz = /1 wlde = 0.

—1 —1

e Let 2 < j <i—1 and assume that o*[u*](1) = 0 for k =0,1,...,j — 1. Then

1 1
oI [u](1) = / oI [u]da = —/ oI =2[ue da + o9~ u(1) .
-1 -1
The right hand side vanishes because u* € H'NC°(—1,1) and the induction
assumption.
The reverse direction can be performed with an analogous induction argument.
(5.3) follows from Remark 3.2 and the fact that H* is closed in L?(—1,1). O
Using this lemma we are able to derive a characterization of the TV-seminorm
via o%: For all u € L?(—1,1) we have the identity:

1
—sup{ [ wst oo e cx-10. ol <1

1
/ g’ da : ¢ € C(~1,1),¢7 (1) = 0,5 =0,1,...,0i — 1,]|¢ . < 1}

{
{

Sup{/l wpdr:p € W NCE(-1,1), ||o' )] < 1}
{

1
S Sup [1 updx : ¢ € 7’{11ﬁC’fo(fl,l),Hcri((,zS)HLoo < 1} .

Using (5.3), ¥¢ = H*, and the fact that u — | [u] ||LOC is lower semi-continuous with
respect to the L?-norm, it follows that

TV, (u) = ATV (u)

1 . ) 5.4
_sup{/1u¢da::qi)G’HZ,Hol(gb)HLw S)\i} . (5.4)
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From [15, Theorem 5.1] we then get an equivalent characterization of TVé\i:

1
i@ =swp{ [ wvdesw e n ol <1} (55)
-1
In an analogous way, we can rewrite the TGV, ,-functional
TG:\/Y,\I’)\2 ('LL)

1
—sup{ [ uof'de 6 € CHLD. IS e <ol <
—1

(5.6)
1
_sup{/ updx: ¢ € H2,||o" [B]]| o < A1, ||0% [@]]] e < Ag} :
-1
LEMMA 5.2. Letd=1 and Q = (—1,1).
o ForucH? andi=1,2, we have
TGV)\lJQ (u) < TV;l (u)
e Foru* € H? and i = 1,2, we have
[Ju” « TV, < Hal[u*] Loo ’Hu*”*,TVﬁw_ < lu” |*,TGVA1,A2 : (5.7)
As a consequence
B"FTGVALA2 C B*Tvil mB*Tvig . (5.8)
On the other hand, if u* satisfies
[|o* (u*) Lo SAiy 0 =1,2, then u® € Brgy, | - (5.9)
Moreover,
TGV, (u) = sup{/ wpdx :ap € H? - o “ TGVa, < 1} . (5.10)
o :
Proof. First, we note that for every p € H?
/ppdx:O, Vp e PL. (5.11)
Q

e From (5.6) it follows that
TGV,\h)\z (u)

1
—Sup{/1u¢dx : ¢ € HQ& ||0—1 |:¢:|||LOO S Al, H0-2 [d)H‘Loo S )\2}

1
<sup{/1u¢d:r c e H?, HO’2 [¢]HL°° < )\2}

=TV3, (u), Yu € H? .
10



Moreover, from (5.5) and (5.11) it follows for all u € H? that

1
sup{/ updr : ¢ € HE, |01[¢]HL00§)\1}
1
:sup{/ updz : ¢ € H' NP, 01[¢]HLOQS)\1}
1
1
:sup{/ updx : ¢ € H?, |01[¢]HLOQS)\1}

=TV}, (u), YueH?.
Thus
TGV 2, (u) <TV) (v),  VYueH?.

e Because TV@\I_ and TGV, , are lower semi-continuous on L*(—1,1) it follows
that

{ueH : TVg(u) <1}
={ueCx(-1,1)NH : TV} (u) <1}

4 (5.12)
C{u e CP(—1,1)NHI : TGV, »,(u) <1}
={ueH :TGVy, »(u) <1},  Vi=12
Therefore, from (5.11) it follows that
Il v
_sup{/ wudr:u € H ,TVf\i(u) < 1}
Q
:sup{/ u*udx:ue’HQ,TVf\i(u)gl}, Vu* e H? .
Q
This, together with (5.12) implies that
||u*||*7TV§ = sup {/ uw u de :u € H? ,TVé\i(u) < 1}
i Q
(5.13)

< sup{/ uw u dr i u € H2, TGV, 1y, (v) < 1}
Q
= ||u*H*,TGV>\1,>\2 ’ vu* € Hz .

The definition of the *-number shows that
1
HU*H*,Tvg = sup {/ wudr:u € H TV (u) = 1} .
~1
For all u € H’ satisfying TV (u) = 1 we have

1
1=TVi(u) :sup{/luqb* dr : ¢* € H', ||Ui(¢*)||[,oo < 1}

! ¢* * }
= ——dx : v .
S“p{/luo—w)um reoery

11



Choosing ¢* = u* then gives

1
/ wu* da < [0’ (u®) Vu € H' with TV (u) = 1.
-1

e

This shows that

Yu* e HE.

el ey < o)) e -

e To prove (5.9) we use the definition of the *-norm:
HU*H*,TGVALA2
1
—sup{/ wrudr :u € HQ,TGV)\17>\2(U) < 1} ,
—1

TGV)\l,/\z (u>

=sup {/ ug" dz: p € CZ(—1,1), |9 || poe < A1, ][0 || < /\2} )
Q

The function ¢ = o%[u*] satisfies
i U* — ¢//7
ii and by assumption

'l = [lo" (@) oo < A1, 10l e = [0 ()] oo < A

If TGV, a,(u) <1, it then follows that
1
/ wu® dr < TGV, a,(u) <1.
~1

Taking the supremum with respect to u then shows that [|u*||, tqy, s 1.
? 1
On the other hand according to (5.13) u* € B%GW1 », implies that

max {Jl* | avy e llavg, b <1
1 2

Because

Hu ”*,TVf\i - /\71 HJ [’LL ]HLOO’ u € TGV
it then follows that

lof [l < Ai V" € Biay,, Vi = 1,2,

e As a consequence
TGV,\I,)\2 (u)
=sup {/ ug’ dr 1 ¢ € C2(Q), |9l e < A1, 10" )l < >\2}
Q
=sup {/Quz/)dx s € H? ||1/}H*7TGVALA2 < 1} )

12



O
LEMMA 5.3. For

Ao > [loe?o3t]]] (5.14)
we have v} = ux, x, and TGVy, z,(v},) = TV;l(vil). On the other hand, if
Az [lo? [oi]]] (5.15)

then v§2 =Ux, n, and TGV, », (viz) = TV?\2 (viz).
Proof. We only prove the first assertion. The proof of the second assertion is
analogous, and therefore omitted.
We summarize two properties of v}\lz
e By assumption HU2[U§:]HL«> < Ag.
e Since v} minimizes (2.1) it follows from [15] that oy [v}*] < A;.
From (5.9) it then follows that

vxe € Bigv,, ,, - (5.16)

Because v}\l is the minimizer of the TV-functional F! it follows from Lemma 4.1 and

(5.4) that

1
5
—/ (vi\1 —u )vi\1 dx

—1

=TV}, (v},) (5.17)

|L°° < )‘1} :

1
=sup {/ vy, v dr vt € H' NCX(-1,1), ||01(U*)
—1

o 1x *
Moreover, since vy € BTGVMM’ we have

1
0=TGVj}, 5, (vi) = sup {/ vyude — TGVM,,\Q(u)} )

wer2(-1,1) (/-1
and in particular for the test function u = —vj ,
1 1
[k el do= = [ ool de <TGV, (-0d) = TGV (0h,)
—1 -1

This, together with Lemma 5.2 and (5.17) shows that

1
—/ (vi, — v}, dz < TGV, 5, (v},) < TV}, (v},) = — /(vil —u)vy, dz, (5.18)

-1

and therefore in particular
1
—/ (vy, — wvy, dz=TGVy, z,(v,) - (5.19)
~1
Applying Lemma 4.1 with (5.16) and (5.19) shows that v} also minimizes the

TGV, a,-regularization (1.3). O
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DEFINITION 5.4. We define

A= {0, 2) 1< o (03)

and 1 < H02 (v3)

1

1=} -

I

COROLLARY 5.5. Let (A1, \2) € [H01 (u‘S)HLoo +oo) X [H02 (u‘S)HLOo ,—i—oo), then
Ux, 2, = 0.
Proof. Because of (3.1) and (5.7) we have

Mz o @) o 2 ]|, gy and Az 2 [Jo* (@) 2 [J0”

* TV *TV2

Therefore, from Example 4.2 and Lemma 4.2 it follows that v§2 = v}\l =0.

Using Lemma 5.3 it follows that v3 = v} = ux, x,, and therefore the assertion.
]

LEMMA 5.6. Let uy, ,, be the minimizer of u* — S*(u*) + TGV} \,(—u*).
1. Then, on each connected component of

B:= {x: |01[u§\17>\2](x)| < A\ and |02[u§1’)\2](:c)| < )\2} ,

Uxy 2. (Z) | B 18 a polynomial of mazimal degree 1.
2. If there exists an interval A such that either lal[uj{hh](x)’ =\ forallz e A
[

or ’0 uf\w\z](m)’ =)o for all x € A, then uy, », = u® on A.

3. Jump Condition: If there exists xg € (—1,1) and € > 0 such that

o'ux, z,)(zo) = A1 and

lotfui, 2, l(@)| <A1, Vo€ (zo — €m0+ €)\ {zo}
then there exist constants c1, and di < do such that
d _
Uny n (I) _ ar—+dy e (IEO €7£C()) ) (521)
cix+dy x€ (xo,20+¢€).

If instead of the first condition in (5.20), o'[u}, 5,/(x0) = —A1 holds, then
Uxy 2, Satisfies (5.21), but dp < dy.
4. Bending Condition: If there exists xo € (—1,1) and some € > 0 such that

0—2 [uil,)\g](xo) = >\2 )

o (5.22)
|o?[u}, 2, )(2)] < A2, Vo € (zo — €m0+ €)\ {zo} ,
then
azx+d x € (xg—€x0)
U T) = 5.23
X2 () {czx +dy x € (x9,20 + €) ( )

is continuous at xg, and co < c1, where the later condition we refer to negative
bending.
If instead of the first condition in (5.22), az[uj{h/\z](xo) = —M\g holds, then
the function is positively bending, i.e., ¢; < ca.

14



(3) (4)

(1)
UNy, o

Ui, Ao negative bending
/ A / \
Ul[uil,)\g] Gl[u}‘\h)\z] az[ujl’)\z]

Fic. 5.1. Illustration of Lemma 5.7 and 5.6

Proof. Recall that if w* ¢ H?, then w* ¢ B’T‘GVM N hence in the following, we re-

strict our attention to w* € H?. The Kuhn-Tucker condition —uy, y, € OR* (uf\h)\z)

guarantees that:
1
R*(v*) — R (uj, a,) —|—/ Un 2, (V5 —uy, ) de >0, Yot e H? .

—1

In particular, for w* € B%GVM N, e have
1
/1 un e (W —ul, ) dz>0. (5.24)

Item (1): Let (a,b) be an open interval such that

|o"[ui, 2, )(x)] < Ai, foralli=1,2and x € (a,b) .

Moreover, let ¢ € C2°(—1,1) with supp(¢) C (a,b) such that also

oi[u}, (%) + ¢(27i)(:c)’ <\, foralli=1,2 and = € (a,b) .
Then,
w* =y, .y, 0" € B’?‘[‘Gv)\l)ﬂ
and therefore, it follows from (5.24) that
b
~ [ #unade <0, Vo€ CR(-1,1) with supp() € (@.D).
Hence, uy, », is a polynomial of order one in the interval (a, b).

Item (2):
15



e i) Assume that
Ul[u}‘\l’h](w) =X\, Vz€(a,b).
Then,
u () = un, s (7) = U3, 0, (@) = ('3, 0,])) (@) =0, Vo € (a,b),

and therefore u’(z) = ux, »,(z) in (a,b).
ii) Assume that

0% [uX, 2] (@) = X2, Vz € (a,b).
From this it follows that

0= (o%[u}, ,])" (@)
= (o'[u}, 2,)) (@)

= Ury Az (LL') - ué(m> , Vx € (a7 b) )

and therefore u’(x) = uy, a, () in (a,b).
Item (4): Item 4 is based on the Assumption that there exists € > 0 and zo € (—1,1)
such that

Jz[uf\h)\z](:ro) = A9 and 02[u§\17A2](x0 Ty) <A, Vye(0e).

Then, from Item 1 it follows that uy, », is piecewise affine linear in (zg — €,z + €).
To be precise, there exist coefficients c¢q, dy, ca, d2 such that

| az+di Vze(zmo—ex0),
U)\17>\2(x) - { CQI+d2 Vo € (anmO +€) ) (525)
We prove the assertion of Item 4 in two steps.
1. Firstly we show that the coefficients of the piecewise polynomial satisfy ¢; >
Co.
2. Secondly we show that uy, », is continuous at xg, such that we can conclude
that it is bending at .
a) To prove the first item, ¢; > ¢z, we use some w* € Brav,, ., (see Figure 5.2)

satisfying
olfw*](z) =0, (5.26)
otlw (@) = o'[u}, \,) (@), Vo g (w0 —ez0+e),
ot lw (@) < o'[u}, 5] (@), V€ (z0— € 0),
ollw*](z) > o' [ux, \,)(x), Vo € (z0,20 +¢), 5m
z0 5.27
pim= [ @)= s, 0, de
xo—&-oe
[ @ - o) de

16



A1

‘ot [w?]
N

\ Ul[“f\l,AQ]

F1G. 5.2. The figure shows the construction of w* satisfying (5.27) and (5.28).

and

o?w*](z) < 02[u§\17)\2](x) , Vz e (xg—ex0+e€)\{xo},

20 2 (5.28)
0 < o”[u}, 2,](w0) — o [w*](z0) < Az

With such a function w* it follows from (5.24) that

1
0 S/ (VW (w* —ujhAZ) dx

-1

xo+e€
T / u&17>\2 (Ul[w*} - Ul [u§\17/\2]) dzx
T

0—€

= Y (] - o gy ) do

0—€

xo+e€
+ 02/ (o' w*] — Ul[uimg]) dx

0

= p(c2 — 1),

which shows that ¢; < ¢g since p > 0.
b) To prove the continuity of uy, x, we use a function w* € B:ﬁrGVAl N which

satisfies:
o?[w)(z) = o®[u}, \,](2), Vo & (zo— e a0 +¢)
(5.29a)
o’ [w*](z) # o®[u}, \,)(x), fora. ax € (g — €20 +¢)
(5.29D)
olfw* —u*)(xzg) =a #0, (5.29¢)
xo To+e
/ ) (Jl[w*] — Ul[ujhh]) dr = —/ (Ul[w*] — 01[u§17A2]) dx .
’ i (5.294)

Such a function is represented in Figure 5.3. With such a function w* it

17



Fic. 5.3. w* satisfying (5.29).

follows from (5.24), (5.25), and integration by parts, that

1
* *
0§/ U, g (w _“Al,Az) dz
-1

:0'1 [w* — u;l’/\Q](l‘o) (—01.’170 —d1 + coxg + dg)

e (5.30)
o [ @)= g, 0, de

0—€

$0+€

—cz/ (o "] — o', ) e
xo

Choosing w* such that o'[@* — u} ,,](x0) = —a, but otherwise satisfying

the same properties as w*, that are (5.29a) and (5.29b), then we obtain

1
0< / Urg Ao (711* —u’f\h/\2) dx

-1
= 0'1[122* — U;h)\z](dfo) (761$0 — dl + CoX —+ dg)

w (5.31)
o [ @) - g, 0, de

0—€

Jote 1
— 02/ (c'[w*] -0 [uﬁ\h&])dx .
xr

0

Combining (5.31) and (5.30) finally shows

a (—611'0 - d1 + Coxo + d2) S 0
S a (761500 — dl —+ CoX( + d2) y
such that we conclude that —cix9 — di + coxg + do = 0, which shows that

Uz, ,\, IS continuous at xg.
Item (3): Assume that uy, x, is as in (5.23). In the case where

crl[u;w\z](xo) = \; and

o ul, a () <A, Yy € (20— €m0 +€), \ {zo}
18



we select some w* € H? such that

uil)\g (x) = w*(m) ’ V‘T ¢ (xo — €, Zo + 6) )

uy, 2, (7) <w*(x), Vo€ (vo— € x0), (5.32)
uy, z, (T) > w*(x), Vo€ (vg,x0+¢), (5.33)
and
o fux, x,)(@0) = o' [w](xo) - (5.34)
Defining
X0 1 ro+e€ L
a = /mo_ea [w* —u}, ,]dv (534)—/% o [w* —uj, y,]dv,
(5.24) can be rewritten as
1
0 Z/luh,,\2 (w* — u”’j\hkz) dx
= — (120 + dy)otw* — u*](z0) — c1a
+ (cawo + do) ot [w* — u*)(x0) + c2a
=a(ca — 1) .
Now replacing conditions (5.32),(5.33), by
uy, \, (T) > w*(z), Vo€ (vg—¢€ 1),
uy, z, (T) <w(z), Vo€ (vg,20+¢),
and again using (5.24) we also obtain a(c; — ¢2) < 0. Thus ¢; = cs.
(jumping down when Ul[ujh ) = +A1). Using the same arguments as in previous

items, we can also show that d; > dy. O

LEMMA 5.7. Let ux, », be the minimizer of u — S(u) + TGV, », (w).

1. If there exists xg € (—1,1), such that ux, x, s as in (5.21) (jumping up

dy < ds), then o [u;m (20) = A1

2. If there exists xy € (—1,1), such that ux, x, is as in (5.23) and ca < 1

(negative bending), then o |:u§\17A2j| (0) = Aa.

3. If there exists an interval A such that uy, x,(r) = u’(x) for x € A, then one

of the two statements holds
(a) ‘O’l [uf\h)\z} (x)} =\ forx € A, or

(b) ‘02 [uf\h)q} (x)) =2 and o' [uf\h)\z} () =0 forz € A.

Proof. Recall that if uy, y, is different from w9, then wuy, y, is a polynomial

(piecewise). Set I := (xg — €, 20 + €).
19



1. Now assume that uy, », is as in (5.21) and o! [uf\l’AJ () < Ay for x € 1.
Then we can find w* € Bf A1 N B3 A2 such that

w*(z) = ui, ., (2) for x € (—1,1)\ I,
ol [w*] (zo) > o [uAl )\2] (z0),
o [w*] (x) = 0® [u}, ] (x) forx e (-1,1)\ I.

The last condition implies that

xo+e
/ z (uy, n, —w*)dz =0
x

0—€
such that
1 x0 xo+e€
/ Un, A, (U}, , — W' )dz = dl/ (uih/\z — w*) dx + dz/ (U§\17/\2 - W*) du
—1 xro—€ Zo
= (dy — dy) (01 [w*] (x¢) — o' [u;‘\lm] (xo)) >0.
>0 >0

Now this, together with (4.4), would give

1 1
*
TGV)\lw\z (u>\17)\2) = _/ u)\17)\2u§1,)\2dx < _/ Uy, 2 W dx )
—1 1

which contradicts the definition of TGV}, x, as the supremum of such inte-
grals. Hence o! [uf\hh} must be maximal at xq.

2. Set I := (zg — €, z9 + €) and assume that uy, », is as in (5.23) and
o? [uf\h)\z} (x) < Ag for & € I. Then we can find w* € Brav,, ,, such that

w*(z) = uj, », () forz € (=1,1)\ I
[ $0) 2 [u)\l >\2]
ol [w*] () = [uAl x] (@ forx e (-1,1)\ I.
The last condition and the continuity of uy, x, at xo imply that
zo+e€ To+€
/ A <u§1">‘2 N ’LU*) dz = _/ ul/\l,)\zo—l [u;17A2 - w*] dx
To—€ To—€
o x0+e
= —cl/ ot [u3, , — w*] da — 02/ ot [uX, x, — w*] dx
Tog—E€ €
such that
1
* * 2 * *
/_1 UXi, A2 (UAI,)\z —w )dm = (02 - Cl) (U [U)\l,)\z —w ] (.’L’o)) >0.
<0 <0

Now this, together with (4.4), would give

1 1
* *
TGV)\l,AQ (u)\u)\z) = 7\/ u)\17>\2u>\1,>\2dx < 7/ Uxy AW dx ’
—1 -1

which contradicts the definition of TGV}, , as a supremum. Hence
ol [uf\l))\J must be maximal at z.
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A2

TV -solutions

1
Uxy, g = Uy, A
\v/ v v s =0

[l vz

NS

Ao = HUiT”*,TVﬁ s

v TV 2-solutions

2
Uy, Ag = Uy,

A= (o35l vy u?]

A
« TV} 1

Fic. 6.1.

v This (A1, A2)-diagram shows regions where G-minimizers are different or equal to
F*-minimizers. In the region with the horizontal lines we have ux, x, = GV that is, the TGV, x,-

minimizer equals the TV?-minimizer. In the green region where (A1,A2) € A, TGV, x,-minimizers
are different from TV, TV? minimizers, respectively.

3. The proof is analog to (1),(2).

6. Example 1

In the following we calculate the specific minimizers of TV, TV?
and TGV, »,-minimization for the test data,

uw’ i (-1,1) = R

1 (6.1)
In this case we have
1
1
Ml ey, = 0%l ey = o 0l = [ e =

and

Ao [ — [[6] ae = |02 = [0 [O)] = 5 = = [ju?

2 *TV3, — *TV2 — Lo — 12 3 * TVE *

6.1. TV-minimizer

Using the same methods as in [15], we find that for given
data (6.1), the minimizer of the TV-functional F! is given by

V2 -5 ol £ V2h
vy, =} () V21 < |z] <1 —+/2)\
V2N 1-V2x <z <1

21



(see Figure 6.3 (right)).

The function v}\l and its dual v}\”l‘ satisfy the following properties:

L TV (v3,) =2 —4v2),

2 ok = o (03] (3) = Ar. and
3 okl s = [o? o] ©)] = X0 (1 - 22N

Hence, from Lemma 5.3 it follows that, as long as

2
a2 ok g = 2 (1- VM), (62

3
the TV!-minimizer is also the TGV, »,-minimizer and
MTVi(v),) =TV}, (v),) = TGV, (03,) = M (2 — 4v/2\) .

6.2. TV -minimizers For u® from (6.1) the minimizer of F2 is given by
) +
2 s
vy, = 1-— )\2 U
: ( [ul.. rve ) ’

f*(x) = max {f(x),0} .
Using Lemma 5.3 it follows that for

1
« TV <1 )‘2> H“(SH*,TW (6-3)

Tl vz

where

A= o]

the TV2-minimizer, i.e., the minimizer of F2, is also a minimizer of the TGV, .-
functional G. In Figure 6.1 we illustrate the (A1, A2)-region where the minimizers of
G are equal to minimizers of F 2,

6.3. TGV, ,-minimizer

Firstly, we calculate the set A (cf. Definition 5.4) for which the TGVy, »,-
minimizer is different from the TV'-minimizers, respectively. For this particular data
u? this means that for

1 2 2
)\2 ¢ AQ = [12 - §>\1’ (1 - g\/ 2)\1) )\1:| 5

the minimizer of the TGV}, »,-functional G equals a minimizer of a TV -functional
Fi, for some i = 1, 2.
Let now Ay € Ag, which is the only case for which we can expect that the
TGV, a,-minimizer is different to TV*-minimizers.
We introduce the two-parametric set of functions W, consisting of all functions
of the form,
dlz|+c(l—d)— 3 2] < e
w(z,e,d) == ¢ ul c<|z|<1l—c, (6.4)
dlz|+ce(d—1)—d+3 |z|>1-c¢

where ¢ € [0, 1] and d € [0,1]. Note that
22



0 c W(',C, d)

Fic. 6.2. Hlustration of the function w(-,c,d).

e w(x,c,d) is continuous,
e w(x,0,1)=w (m, %, 1) =u’(z) and w (33, %,0) =0,
o w(x,c,0) =0} (x)for Ay = 12,
o w(z,3,d) =03, (x) for \y = (1 —d) ’|u5H*7TV%.
Assuming that wy, x, = w(-, r; 2es A2y, 0, ) minimizes G, Lemma 5.7 provides

necessary criteria for optimality of the parameters cy, x, and dy, x,, which are derived
in the following. Then, in Theorem 6.1 below, we prove that wj, », in fact minimizes
g.
Assuming that wy, x, is a minimizer of G it follows from Lemma 5.7 that:
e For (A1, A2), such that dy, x, > 0, wx, x, bends at x = 0. In Remark 6.1, we
calculate the coefficients such that dx, », = 0. Lemma 5.7 item 2 states that
then wy , = wxx, — u® satisfies

o? (w3, ,] (0) ==Xz (6.5)

e Lemma 5.7 item 3a states that since wy, x,(z) = ud(z),
T € (=14 ¢x;.00, —Cr,0e); We have

A= ot [w, ] ()] = ot [wh, ] (1= cain)]| - (6.6)

(Item 3b cannot occur in this case, because al[wj‘\l,/\z](—l +cxpn,) # 0, for

any dx, », # 1)
Using a Computer Algebra system, we solve (6.5)-(6.6) and obtain

3(A\1— A2)

Cxi1, M\ = 2A1 5

At

REMARK 6.1. We want to see what happens for the special case when (A1, A2) € OA,
that is we consider the two sets of parameters:

{3l pva) M € O[], o) }
{3 Naora)} -
o In the case Ao = A1 (1 + % 2)\1) (this is the case where ||v}:||* e =1, see
TV3,

Lemma 5.3), (6.7) gives dx, , = 0 and cx, x, = V2A1. One can see that then
Wy, , 5 either piecewise constant or equal to u® on (=14 cx; ays —Cayne) U
(Cay. a0y L —€xy 0y). We see that for this particular choice of (A1, A2) we have
Wry Ny = v}\l, hence wy, x, also minimizes F'.
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e For \; = %)\2 (this is the case where vaf;” = )\, see Lemma 5.3), we

*,TV%

have ¢, x, = % and dy, x, = <1 — ’\2) We see that wy, », = v3

HU‘SH*,TVf 2°
THEOREM 6.1. For (A1, A2) € A and cx, x,, day x, Satisfying (6.7), ua, xy = Way Asg-

In order to prove the theorem in a compact way, we need the following remark:
REMARK 6.2. In the next two items, we only rewrite wy, x, as a linear combination of
minimazers of F*, where we have to replace \; by a different parameter p; depending
on Al, )\2.

o For given u; € [O, g *,Tv}} , U2 € [O, g *,Tv*%} set
) H2 2
AN =— and Ay = —1—— =12 o <,u1 — \/2u13) .
[ ol g | e 3

(6.8)

Comparing the coefficients of the piecewise terms of wx, x,, we see that for
(A1, X2) € A we can write

M2

Wry Ay = vl 402 (6.9)
T

M1 M2

e On the other hand, for (A1, 2) € A given, we calculate py, ps by

2 A2 9 (A — Ag)?

M2:2*7m7 /i1=§ 22

and express wx, x, by (6.9).
Proof. Using the triangle-inequality and the estimate TGV, »,(u) < \MTV'(u),
we obtain

TGV)\h/\z <w>\1,>\2> (S) TGV/\L)\z <| rrz ) + TGV/\l)Q ( Mz)
* TV2

<X\

(6.10)

67TV1 ( )+>\2TV1 ( M) .
[|u ||>.<TV1

Due to the definition of TGV, x, and the choice of the parameters A;, A2, we have
that w3 ,, = wx ., — u’ € Brav,, ,,» such that

1
—/ w,\l’)\2(w)\17)\2 - ’Ll,é) dx S TGVA17A2(U))\1’)\2) . (611)
-1

In order to simplify the left side, we calculate

1 1
5 231 é
_/ Ullh (w>\17)\2 —u )d.]? = _||’LL5|| / Ulltl (Ulltl —u )dl‘
—1 *7TV} —1
1
= § - 'ulTVl (Ulll«l)
| *,TV%
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1
/U (Wry Ay — u‘s)dx

1
H2 5 (1 s
1-— / u’ (v, —u’) dx
[[u?]l, TV2> ||U6H*,TV§ -1 ( " )

1 1
2 1 5 1/ 1 5
1-— x| (v, —u’) de — = v, —u’) dx
( ||u6||* TV2> 0 TV /_1 | | ( 238 ) 2 1 ( 238 )

0’1[’[):](1):0

0 1
2 ]
G Tv2>| e (R R R

)
TV2 2 )% [l H*’TV12

202[1)1*](0) 2Hv 2
2 V? (Uzz) :

51 ”* Tv2 2
In total we obtain

(6.8)

1
—/ w)\h,\2 (’w>\1,)\2 —ué) dl‘

-1

H1 1
= AN TV + TV (vi,) -
HU5||*,T\/§ Y ( ) 1 ( + )
T v

Comparing with (6.10) and (6.11) we have

TGV)\l,)\z (wA17A2) = - /w/\11)\2 (wA17A2 - ué) )

which together with Lemma 5.7 implies that wy, », is a minimizer of G. O
7. Example 2 Consider now as second test-data

JORES (7.)

where 1,3 is the indicator function of the interval [a,b]. Then

11
272

1
6” *TVZ — g "

=7 |

[ «TVE = 7 |

First we calculate minimizers of F, as defined in (2.1), in order to obtain the sets
(A1, A2), where, according to Lemma 5.3, the TGV, x,-minimizers are equal to some
TV'-minimizers.

7.1. F'-minimizers From [15], we know that v} := (1 — W) u® min-
TV

imizes F! with the test data u°. Furthermore, we have

1x
HUAI

o

*,TV%
T, v

=)
*,TV% 1
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/
\/ A v A \V/ At
A2

FiG. 6.3. ux, x, for fized A1 and changing \2. In this particular case we have X2 € Ao and
):2,)\2 Z Ao with A2 < o < X2, such that Un, Ry = v/l\l and ux, A, = v§2,

Applying Lemma 5.3, we conclude that vil minimizes G as long as

s
U 2
A H H*,Tv1 _ A . (7.2)

Ao > [[ua, — | [l oy 2

*,TV%
7.2. F?-minimizers There are 3 different types of solutions (see [15] and
Figure 7.1):
1. For Ay € [0, 5 (vV2V3 — V/3)) 03, is bending four times and uy, = u® in a
||v,2\"2‘||*,TV% ||LOC = g(A\2), where g(\2) is a

rational of polynomials of higher order in A3, not written explicitly here.
2. For Ay € (55(V2V3—V3), 5) v§2 is bending at 21 = £6A;—1, and ”3\2 =ud

region near x = 0. = Ha vy

; : 2+ _ 1 1448 X576 Xo?
in a region near 0. Moreover ||v>\2||*’TV% =18 (118 )°
1 1 2 i 2 — (3 _ 1 _
3. For Ay € (g.3) 03, is bendm% once and ?Q(ﬂg) = (3 —12x2) (3 — |2]).
» . _ 103
Additionally we can calculate ||v)\2 LTV = 16 + 52

The expressions Hv§2 — u5|| are used to calculate the set A, the set of pa-

*,TV%
rameters, where the G-minimizer might be different to the 7! or F2-minimizer.

We write the solutions in the form
u® () for |z| < a1
kilz|+di for zp < |z| < @2 (7.3)
ko |z|+do for xo <|z| <1

2 _
'U)\2—

keeping in mind that x; can be 0 (third case), or z3 can be larger then one (third and

second case). v} is bending at x;, such that o2[v}*] is extremal at xo (hence £Xs).
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Z1 12

T =4 N

FIG. 7.1. Three different types of F? minimizers viz: They can bend once (3), twice (2) or

four times (1).

Thus, the coefficients d;, k; are determined by the following equations:
o? [v3] (z1) = A2, o [ V] (1) =0 cases 1,2,3
o? [v3] (z2) = = A9, o' [03"] (22) =0 case 1.

7.3. G-minimizers We consider the same approach as for the previous exam-
ple. Hence, first we calculate the set A as in Definition 5.4, which is illustrated as the
green (solid) set in Figure 7.3. We have:

o8 = { (s ekl ae) + 2 € [0, o]}

U {(Uviﬁ £ TV1 7)‘2) A2 € [0’ *,va}} :

Next we set up a general ansatz function wy, », of piecewise affine functions, that is
bending, once, twice or four times and jumping at z = £0.5. Setting w}, ,, = wx, x,—

u%, we find the coefficients (of the piecewise affine functions) by solving a number of

non-linear equations coming from the conditions - ‘Ul[wf\l )\2](x)’ = A; whenever

the ansatz function jumps and ‘UQ[wj\hM](gc)‘ = Ao, 0t [w}, 5,](x) = 0, whenever the
ansatz function bends. We omit the explicit formulas and further calculations.

Then for (A1, A\2) € A given, we found that the minimizers of G can be written in
a compact form:
THEOREM 7.1. Let (A1,A2) € A and uq, po be such that

M2
Ny = —Hik2 A — |
Tl rv: Tl ol vy
Then for v’ as in (7.1)
1 M1 2
Uade = Vi F | ks (7.4)
*, 1

minimize G.
Proof. Lemma 4.1 states that uy, », is a minimizer if
1
TGV)\17>\2(U)\17)\2) = —f71 u>\1,)\2(U)\17)\2 — u5) dx (see (4.4)) and u/\l Ao S BTGVM g
Using (7.4) we can estimate TGV, x,(ux, x,) by

TGVM,M (uh,)\z) < TGVM,)\z (v;lLl) + Huéﬁ“ . TGVM,M (UZQ)
*, TV7]
1 1 H1 2 2
< TV)\l (vm) + Huan Vi TV)\2 (Uuz) :
*, 1
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Since v, = (1 - Iuélltl) u?®, we have

*,TV]

* M1 2%
Uiae = T 51— Vs -
v ||U6||*,TV} "

Note that from the choice of the parameters p1, o we have

)\1 :)\1”“’11,)\2 *,TV%\1
B | R S O o S B
=|lo vu1+\|u5”*,TV}vH2 u] Loo
TSIy S
R I =l
_ e
B ||u6||*,TV} M Hvu2||*’TV}\1
and also
)\2 - A2 ||u§\1,)\2||*,TV§2
SNSRI ¥ R
B ||U6H*,TV§ lo* [V, — u ]HL”
11
2

* *
such that uy, ,, € Bray,  ,, and

-1

Moreover, we can write

1
/ UX; Ao (u>\1-,>\2 — ’Ufs) dx

—1

1 1
:/ ’U}Ll (U)\l’)\Q —u‘s) dx + L/ UiZ (’U,)\h)\2 —u‘s) dx.

-1 Hu6||*,TV} -1
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1
_/ UXi, A2 (u)\h)\z - U5) dr < TGV)\L)\Q (uz\h)\z) .

(7.5)



Since v}, = (1 - ’“) u’, and v’ (z) € {—3,1} we obtain

[u? H*,TV%

- (1 - erw> (~o'tuind (~3) + o' luind () ~ ol
o'l ] 0+ o) (5))

Now by the choice of the parameter A\; we have Ul[u§17A2] (—%) = +)\; and
o'[u}, ,) (3) = —A1 such that the equation above simplifies to

1
—/ ’Upltl (11,)\17)\2 — Ué) dr = )\1 2 (1 ,LL1> — )\1TV1 (U}“) )

1 1wl vt

. . 1 .
Next it remains to calculate f_l vfu (u;mk2 — u5) dz. Since

) 1 H1 2 ) H1 2 s
Ung g — U =0, ———V, —u’ = ———— (v —u
i T Ty T Ty )
we have
1 5 " 1
2 _ 2 (2 5
/ Uy (Ung 2, —u’) dz = ]| / Vias (U, — ") da
—1 *,TV% —1
H1 2(,2
= - 2TV (vy,,)
[Ju?| %, TV} r
where we used TVZ(v?2,) = —p2 f_ll w2, (032 — ) dz, the optimality condition for

F2-minimizers as in (4.3). Hence in total, using the connections between \; and u;,
we obtain

1
—/ Ung ng (Urgne — u‘s) dz = AlTV}(vil) + )\QJLTV%(UEQ) .
1 |u H*,Tv}

A Comparison with (7.5) shows that TGV, x, (ux; x,) = — f_11 U, ny (Un, 2, —ud) do,
hence according to Lemma 4.1 uy, ), minimizes G. O

8. Example III Finally we consider v’ = 22 — % but only sketch the different
minimizers of F; and G in order to show that in general, minimizers of G cannot be

. - . . . 5 1 _ F) _
written as a sum of F;- minimizers. We have Hu H*,va = 153 = 0.833, |u H*,TV% =
2\/§

=== ~ 0.12.
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U™y UNy, Ao
)\1\ -\ A1

/
’ K ) —_ZL ’
o?[u, »,]

FIG. 7.2. ux, x, for fired \1 and changing X2. In this particular case we have (A1, 5\2) € A and

()\1,):2), (A1, A2) € A with A2 < X2 < X2, such that Uy, Xy = U}\l and ux, x, = Uiz.

8.1. Fl-minimizers. Since w9 is continuous, also the F;-minimizer is contin-

uous. From the characterization of F; minimizers we know that v}\l is either equal
to ud in an interval (#c1,+co) or constant u’(ci),u’(cy) in the other intervals. In

Figure 8.1 (left), we ilustrate v} for different values of A;.

8.2. F?-minimizers. In this case, we have to consider two different types of
minimizers.

e )\ large: (that is A ~ Hu‘s TV
ing at * = 0. Such solutions are constructed by considering the ansatz
functions w(z, k) := k (|z| — 1). The parameter k is determined such that
|o? [w(-, k) — u®] (0)] = A2 (the ansatz function w is bending at # = 0, hence
the 02 of the dual minimizer has to be extremal, hence equal to ). This
ansatz function works until for some Ay = A2, we have u°(0) = w(0, k).

e Then for Ay < \g, we use a different ansatz function w that satisfies: w(z) =
u®(z) for z € (—c,c) and some ¢ > 0 and w(z) is affine linear in (—1, —¢) U
(¢,1) and continuous at @ = +¢. The coefficients are determined such that
w € H? and |o? [w — u’] ()] = Ao

We illustrated both types of solutions in Figure 8.1 (right).

), v§2 is piecewise constant and bend-

8.3. G-minimizers. For (A, A2) € A as in Definition 5.4, we set up an ansatz
function that satisfies the following:
e w is continuous,
w(z) = w(-x),
w(x) = ud(z) for x € (cz,c3) and 0 < g < 3 < 1,
either w is bending at = = 0, or w(z) = u’(x) for x € [0,¢1) with ¢1 < ca,
w is piecewise affine linear else.
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A2

F wnn =0
”uéH*,TVf
TGV = TV-solution
Urp,xe = ’U}q
TGV = TV?-solution
9,
5 Un, 2, = U3,
~
S
Ity | AN
G
S
; A
—
Ao = ||’”2\TH*,TVE 1\
5 A X A1
([ [l v
A= HU?\:”*,Tvll

F1G. 7.3. Solid green region: A, here ux, x, # vg\ Gray region: ux, x, = ’Uf\_, vertical lines:
i =1, horizontal lines: i = 2.

S LANDANGS

F1G. 8.1. minimizers of F1 (left), G (middle), F2 (right), for different parameters.

We illustrate minimizers for different choices of (A1, A2) in Figure 8.1.

9. Conclusion The main motivation of this work has been to show that to-
tal generalized variation regularization can be analyzed with the functional analytical
framework of the *x-norm, which has been established in the ingenious book [12] for the
Rudin-Osher-Fatemi functional [16]. Calculating minimizers of some one-dimensional
examples analytically reveals the complicated interplay of the two regularization pa-
rameter in TGV minimization.
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