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Abstract In this paper we present the first variational spatial-temporal decom-
position algorithm for computation of the optical flow of a dynamic sequence. We
consider several applications, such as the extraction of temporal motion patterns
of different scales and motion detection in dynamic sequences under varying illu-
mination conditions, such as they appear for instance in psychological flickering
experiments. In order to take into account variable illumination conditions we re-
view the derivation, and modify, the optical flow equation. Concerning the numer-
ical implementation, we propose a relaxation approach for the adapted model such
that the resulting optimality condition is an integro-differential equation, which
is numerically solved by a fixed point iteration. For comparison purposes we use
the standard time dependent optical flow algorithm from Weickert-Schnörr, which
in contrast to our method, constitutes in solving a spatial-temporal differential
equation.

Analysing the motion in a dynamic sequence is of interest in many fields of
applications, like human computer interaction, medical imaging, psychology, to
mention but a few.

In this paper we study the extraction of motion in dynamic sequences by means
of the optical flow, which is the apparent motion of objects, surfaces, and edges
in a dynamic visual scene caused by the relative motion between an observer and
the scene.
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There have been proposed several computational approaches for optical flow
computations in the literature. In this paper we emphasize on variational methods.
In this research area the first method is due to Horn & Schunck (Horn and Schunck,
1981). The method analyses two consecutive frames of the dynamic sequences.
Several alternatives and generalizations have been proposed in the literature which
are based on the paradigm of analysing two consecutive frames. Due to the huge
amount of literature in this field we cannot provide a complete list of references
and thus it is omitted at this point.

Relevant for this work is that we consider a dynamic sequence where all avail-
able frames are taken into account at once in the optical flow computations. We
also formulate the variational optical flow problem in an infinite dimensional func-
tion space setting. Spatial-temporal optical flow methods in an infinite dimensional
framework as the basis of numerical algorithms were previously studied by Weick-
ert & Schnörr (Weickert and Schnörr, 2001a,b), (Borzi et al, 2002), (Wang et al,
2008) and (Andreev et al, 2015). The Weickert & Schnörr algorithm serves as a
reference method for comparison with our algorithm. However, we mention that
our prime objective is different than in (Weickert and Schnörr, 2001a,b), and con-
sists in determining only selected flow components (instead of the whole flow as
in (Weickert and Schnörr, 2001a,b)), and thus the comparison can never be fair.

In this paper we emphasize on the decomposition of the optical flow into several
components. Here, we are implementing similar ideas as have been used before for
variational image denoising (Vese and Osher, 2004; Aubert and Aujol, 2005; Aujol
et al, 2005; Aujol and Chambolle, 2005; Aujol et al, 2006; Aujol and Kang, 2006;
Duval et al, 2010). Image decomposition has been carried over to optical flow
decomposition (Kohlberger et al, 2003; Yuan et al, 2007, 2008, 2009; Abhau et al,
2009). The context of the present paper, however, is different, because here we
aim for extracting temporal patterns. We emphasize that the proposed method is
one of very few variational optical flow algorithms in a space-time regime. Within
this class this algorithm it is the only spatial-temporal decomposition algorithm.
Variational modelling of patterns, which has been initialized with the seminal
book of Y. Meyer (Meyer, 2001). In the context of total variation regularization,
reconstructions of patterns was studied in (Vese and Osher, 2003) for the first time.
There, it has been shown that dual norms are capable of characterizing patterns,
which has been utilized in many of the denoising papers mentioned above. As
already mentioned above, we use these ideas in order to extract temporal patterns.

A further aspect of this paper concerns comments on the well-posedness and
the modeling of optical flow equations in a space-time regime. In particular, we
present two different kind of modeling, based on a free surface formulation in
space-time, and a presmoothing approach, respectively. Both of these approaches
are formulated in an time-continuous setting. A paradigm of test problems are
flickering experiments, where in a dynamic sequence there is an abrupt illumination
change at a certain time frame. In our experiments, the perturbation concerns, for
test cases, a whole image frame and can be determined a-priori, which does not
need to be the case in general. This is useful for evaluating our experimental results
in a controlled environment. In the context of registration illumination changes
have been taken into account by (Miller and Younes, 2001) assuming smooth
images. Recently, in (Berkels et al, 2015) they consider non-smooth images and
transitions - this field is now denoted by Metamorphosis. (Miller and Younes, 2001;
Berkels et al, 2015) have implemented models of mass conservation equations, as we
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did for optical flow computations in (Andreev et al, 2015). Nevertheless, the model
we are choosing is based on a optical flow equation. In our example we assume
illumination changes, which influence the mean intensities of the frames. As we
show below such variations appear mathematically in any image sequence due to
aggregations of characteristics. Therefore, we propose to constrain the space-time
domain locally. This will result in local flow fields, which determine the optical
flow.

For the numerical realization, we propose a relaxation approach, which con-
sists in solving the optical flow minimization problem without taking into account
brightness illumination changes.

The outline of this paper is as follows: In Section 1 we review the optical
flow equation. In Section 3 and 4 we introduce the new model on spatial-temporal
optical flow decomposition. We formulate it as a minimization problem and obtain
the optimality conditions for a minimizer. In Section 5 we make calculations, which
help to understand the decomposition algorithm from an analytical point of view.
In Section 6 we derive a fixed point algorithm for numerical minimization of the
energy functional. Finally in Section 8 and Section 9 we present experiments,
results and a discussion of them.

1 Registration and optical flow

The problem of aligning dynamic sequences f(·, t) can be formulated as the oper-
ator equation, of finding a flow Ψ of diffeomorphisms,

Ψ(t) : Ω → Ω , ∀t ∈ [0, T ] ,

such that

f(Ψ(x, t), t) = f(x, 0) , ∀t ∈ [0, T ] . (1)

For natural images, in general, it is not possible to solve equation (1) subject
to the constraint that Ψ is a diffeomorphism for every t, because of occlusions,
illumination changes, noise, and information gain/loss in the movie over time.
Thus the optical flow and image registration community typically do not consider
this constraint, in contrast to the shape registration community (see for instance
(Bauer et al, 2014; Jain et al, 2013)).

Differentiation of (1) with respect to t for a fixed x gives

∇f(Ψ(x, t), t) · ∂tΨ(x, t) + ∂tf(Ψ(x, t), t) = 0 ,

∀t ∈ [T lx, T
u
x ] .

(2)

This equation only holds locally in time for points Ψ(x, t). For fixed t > 0, Ψ(., t)
is not a diffeomorphism on Ω, and therefore it does not cover the whole domain
Ω. This is one of the reasons, while a least-squares approach is preferable against
the optical flow equation (OFE) over all Ω (the characteristic equations starting
from time t = 0 do not cover Ω completely:

∇f(x, t) · u(x, t) + ∂tf(x, t) = 0 ,

∀x ∈ Ω and t ∈ [0, T ] ,
(3)
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where u = ∂tΨ . That is, the problem is relaxed to calculate a minimizer of the
functional

S(u) =

∫
Ω

(∇f(x, t) · u(x, t) + ∂tf(x, t))2 dx→ min , (4)

subject to some constraints.

Remark 1 We summarize the statements above and support it by some additional
arguments: The optical flow equation is a realization of the brightness constancy
assumption in a domain covered by the characteristics. This means that (3) is
not well-motivated on subsets of Ω which are not met by a characteristic curve
in space and time starting from t = 0. The situation is less relevant if the optical
flow equation is considered for just two consecutive frames, which is the standard
optical flow approach in the literature, because through the re-initialization at
each pair of frame always a characteristic originates at some point Ω.

Let us assume that the domain Ω is completely covered by points on character-
istic curves at a certain time t (meaning that Ψ(t) is a diffeomorphism), then this
would mean that flow and image sequence are trivial, as can be seen as follows:
Constant brightness and full coverage by characteristics at some time T means that
optical flow equation and the scalar transport equation, describing preservation of
intensity,

∂tf +∇ · (fu) = 0 in Ω × [0, T ] , (5)

hold, respectively (see (Andreev et al, 2015)). Then, the optical flow equation
provides that

f∇ · u = 0 in Ω × [0, T ] . (6)

This means that either f = 0 or u is divergence free. The solution of this equation
is given by u ≡ 0, which is the one with minimal energy R(u), if R(u) ≥ 0 and
R(u) = 0 iff u = 0. Thus the solution is trivial.

The optical flow equation is linear, and satisfies the constant brightness as-
sumption along the characteristics. The basic philosophy of this paper is to re-
consider the optical flow equation in subdomains of the space-time domain where
the characteristic equation is valid. In the subdomains we consider the standard
optical flow equation. Thus methodological we can deal for instance with sudden
intensity changes, which might appear locally or globally. Such changes could be for
instance occlusions, illumination changes, flickering. Aside from theoretical chal-
lenges on this problem the numerical solution is challenging. Below, we discuss two
options (by exclusion of singularities of the characteristics and by pre-smoothing
of the data) of reformulating the optical flow equation in a space-time regime for
consistent registration, which are the basis of numerical realization. Hard - and
soft- flickering examples are considered as test examples for the different cases. We
emphasize that in the crass flickering experiment, of course, we could determine
the flickering frames a-priori. However, we want to do a blind implementation,
without this pre-processing. Flickering experiments are a perfect test-scenario in
a controlled environment.
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2 The optical flow equation in case of illumination disturbances

In this section we present simple examples showing that the optical flow equation
(3) is only locally coherent with the nonlinear registration equation (1). Moreover,
we compare in a simple example the effect of sudden illumination changes and
pre-smoothing of the data variants, which is a common technique in optical flow
problems in spatial domain. Here, however, it is in spatial-temporal domain.

Example 1 In flickering experiments probands are exposed to a movie, consisting
of slightly changing frames containing a significant disturbance, which could be a
whole frame, or a series of frames. In general, the probands do not get conscious of
the perturbation but are able to better focus on small variations in the remaining
movie.

Hard flickering experiment: We motivate the consequences on deformation
mappings and optical flow computations by some toy example: Let the movie
sequence {

f(x, t) = χ[ 1
2
,1](t)χ[ 1

2
,1](x) : t ∈ [0, 1]

}
,

be given, where χ is a characteristic function. Several deformations can be consid-
ered. The most intuitive one is:

Ψ(x, t) = x , ∀t ∈ [0, 1], x ∈ [0, 0.5) ,

Ψ(x, t) =

{
x ∀t ∈ [0, 0.5), x ∈ [0.5, 1) ,
x ∀t ∈ (0.5, 1], x ∈ [0.5, 1) ,

(7)

The deformation paths locally satisfy the nonlinear optical flow equation (2). In
this case u = ψt = 0 almost everywhere.

A different deformation satisfying (2) is

Ψ(x, t) := Ψ

(
x

1− t , 0
)

:=
x

1− t ,

t ∈ [0, 1/2], x ∈ [0, 1− t] ,
Ψ(x, t) := x , t ∈ (1/2, 1] ,

u = Ψt =
x

(1− t)2 .

(8)

Both deformations Ψ are injective for all t ∈ [0, 1] and along each path they are
even differentiable almost everywhere. Because the range of Ψ is not the complete
Ω × [0, 1], paths can be added artificially.

For this example we propose the following formulation of the optical flow equation:
Let

D =
{

(x, t) ∈ [0, 1]2 : f is discontinuous at (x, t)
}

= [0.5, 1]× {0.5} ∪ {0.5} × [0.5, 1] .

denote the discontinuity set of f . Then, the proposed formulation of optical flow
equation (3) is

∂xf(x, t)u(x, t) + ∂tf(x, t) = 0 , ∀(x, t) /∈ D , (9)

with u(x, t) = ∂tΨ(x, t).
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In the following we assume that discontinuities of f only appear in t-direction
at S = {t0, t1, · · · , tn}. Therefore, the discontinuity set of f is given by

D = {(x, t) : t ∈ S and x ∈ Ω} .

As a consequence, variational optical flow methods consist in minimization of
functionals

u→
∫
Ω×[0,T ]\S

(∂xf(x, t)u(x, t) + ∂tf(x, t))2dxdt+ αR(u) ,

where we assume that R is strictly convex and R(u) = 0 if and only if u ≡ 0. To
be consistent with the evaluation of ∂tf , it has to be computed with an up-wind
scheme:

∂tf ≈

{
fn+1
i −fn

i

∆t if
∣∣fn+1
i − fni

∣∣ < ∣∣fni − fn−1
i

∣∣ ,
fn
i −f

n−1
i

∆t else

where
fni ≈ f(xi, tn) .

where xi denotes the spatial information of the generic pixel i at time level tn.
With this scheme it is inherent that we get the intuitive deformation Ψ(x, t) = x
(cf. (7)). That is u = 0.

In the following we analyse the appearance of singularities of the optical flow
and the characteristics.

Example 2 A soft flickering example: In contrast to hard flickering, soft flicker-
ing interpolates between frames and perturbations. The flow behaves significantly
different, as we see below.

We consider the one dimensional optical flow problem, to solve for u in

∂xf(x, t)u(x, t) + ∂tf(x, t) = 0 in (0, 1)× (0, 1) (10)

for the specific test data

f(x, t) = f̃(x)g(t) for (x, t) ∈ (0, 1)× (0, 1) . (11)

f denotes a dynamic sequence with brightness variation over time and ∂xf(x, t),
∂tf(x, t) are its partial derivatives over space and time, respectively.

We take specifically:

f̃(x) = x(1− x) and g(t) = 1− t . (12)

This is a sort of soft flickering experiment with a smooth transition of appearance.
The resulting function f and the level lines are plotted in Figure 1, 2.

In this case we have ∂xf̃(x) = 1− 2x, and thus

u(x, t) =
x(1− x)

1− 2x

1

1− t ,

The optical flow u indicates that the transport of intensities is from left to
right on the left side of 1/2 and opposite on the other, which is an effect of the
loss of intensities at x = 1/2. We observe that u(0.5, t), u(x, 1) are singularities of
the characteristics.
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Fig. 1: f(x, t) = (x(1− x)(1− t)) from (12).

Fig. 2: Level lines Ψ of f . u approximates Ψt.

Moreover, we have∫ t

0

u(x, τ) dτ = −x(1− x)

1− 2x
log(1− t) .

Thus ∥∥∥∥(x, t)→
∫ t

0

u(x, τ) dτ

∥∥∥∥2
L2((0,1)2)

=

∫ 1

0

x2(1− x)2

(1− 2x)2
dx

∫ 1

0

log2(1− t) dt

=

∫ 1

0

x2(1− x)2

(1− 2x)2
dx

∫ 1

0

log2(t) dt

=2

∫ 1

0

x2(1− x)2

(1− 2x)2
dx

=∞ ,

which implies that

(x, t)→
∫ t

0

u(x, τ) dτ /∈ L2((0, 1)2) .
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Now, we calculate the actual deformations Ψ from the non-linear optical flow
equation (2), which is

Ψt(x, t) =
Ψ(x, t)(1− Ψ(x, t))

1− 2Ψ(x, t)

1

1− t . (13)

We also have the initial condition

Ψ(x, 0) = x , ∀x ∈ (0, 1) . (14)

We make a separation of variables ansatz to solve the ordinary differential equation
(ODE) (13), (14): Let

ρ(y) :=

∫ y

x

1− 2s

s(1− s) ds

= log(y(1− y))− log(x(1− x)) ,

and take into account that∫ t

0

1

1− t dt = − log(1− t) .

The separation of variables ansatz allows to determine the solution of the ODE as
the solution of the equation

ρ(Ψ(x, t)) = − log(1− t) .

Thus we get the solution of the characteristics of the registration problem:

Ψ(x, t) =
1

2
±
√

1

4
− x(1− x)

1− t for t ≤ 4

(
x− 1

2

)2

,

where the branch of Ψ with + is active if x > 1/2 and the other branch holds for
x < 1/2. Moreover, we have

uN (x, t) := ∂tΨ(x, t) = ∓ x(1− x)√
1− t− 4x(1− x)

1

(1− t)3/2
.

This shows that the flow has a singularity (endpoint) at t = 1− 4x(1− x).
In Figure 3 there are shown u and uN . Essentially this makes transparent the

time interval in which the optical flow equation is valid. For a short time interval
it very well aligns with the registration problem. Also this argument shows that
different aspects have to be considered for standard (quasi-static) optical flow and
time-continuous optical flow. For analysis of two consecutive frames this is not
relevant.

Example 3 We consider again a simple example (11) but with

f̃(x) =

(
x− 1

2

)2

and g(t) = 1− t .

Then

u(x, t) =

(
x− 1

2

)2
2x− 1

1

1− t .

Again, u(x, 1) is singular. Note, however that∫ t

0

u(x, τ) dτ = −1

4
(x2 − x) log(1− t) ∈ L2((0, 1)2) .



On a spatial-temporal decomposition of the optical flow 9

0.1 0.2 0.3 0.4

−10

10

20
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Fig. 3: Linear versus non-linear optical flow: u and uN at t = 1/4. Note that uN is
only defined in the interval [0, 1/4], which is plotted, while u is defined for [0, 1/2).

Fig. 4: Level lines Ψ of f . u approximates Ψt.

Example 4 If instead of interpolating x→ x(1− x) and x→ 0 as in Example (2),
one interpolates x→ x(1− x) and x→ 2x(1− x). That is

f(x, t) = x(1− x)(1 + t) .

In Figure 4 are reported the level lines of f . Then the singularity of u at time 1
of the previous example is not present, and

u(x, t) =

(
x− 1

2

)2
2x− 1

1

1 + t
.

We emphasize here that brightness constancy does not hold globally - there is
obviously a global illumination change over time. Intensity values can be registered
over time for every spatial point except at x = 1/2. The characteristics of (2) are
well-defined for limited time-spans, depending on the location distance to x = 1/2.
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This shows that on the sets {(x, t) : x > 1/2, t < 1} and {(x, t) : x < 1/2, t < 1} the
optical flow equation holds. We clarify that the characteristics have a singularity
at x = 1/2.

The bottom line of these examples is that illumination changes, such as flick-
ering, may result in singularities of the characteristics of the registration problem
or the optical flow field. Singularities in the space variable might also appear, but
they are neglected here. The potential appearance of the singularity in time mo-
tivates us to consider regularization terms for optical flow computations, which
allow for singularities over time, such as negative Sobolev norms or G-norms.

3 Optical flow decomposition: basic setup and formalism

In this paper we derive an optical flow model that allows to decompose the flow
field into spatial and temporal components.

The standard optical flow (Horn and Schunck, 1981) is a vector field

u =

(
u1
u2

)
: Ω × (0, 1)→ R

2 ,

connecting an image sequence

f : Ω × (0, 1)→ R .

We always assume that the image sequence is scaled to the time-interval (0, 1) and
Ω = (0, 1).

In this paper we consider the optical flow field

u(x, t) = u(1)(x, t) + u(2)(x, t)

as a compound of two flow field components

u(1)(x, t) =

(
u
(1)
1 (x, t)

u
(1)
2 (x, t)

)
, u(2)(x, t) =

(
u
(2)
1 (x, t)

u
(2)
2 (x, t)

)
.

Because there is a series of indices and variables it is appropriate to specify the
notation at this point:
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x = (x1, x2) Euclidean space

∂k = ∂
∂xk

Differentiation with respect to
spatial variable xk

∂t = ∂
∂t Differentiation with respect to

time

∇ = (∂1, ∂2)T Gradient in space

∇3 = (∂1, ∂2, ∂t)
T Gradient in space and time

∇· = ∂1 + ∂2 Divergence in space

∇3· = ∂1 + ∂2 + ∂t Divergence in space and time

∆ = ∂21 + ∂22 2-dimensional Laplace

n normal vector to Ω

f input sequence

f(·, t) movie frame

u(i) optical flow module, i = 1, 2

u = u(1) + u(2) optical flow module, i = 1, 2

u
(i)
j j-th optical flow component of

the i-th module

ψ(i) satisfying variation of deformation,

∂tψ
(i)(x, t) = u(i)(x, t) i = 1, 2

ψ = ψ(1) + ψ(2) total variation of deformation

Ψ (i)(x, t) = x + ψ(i)(x, t) deformation

Ψ = Ψ (1) + Ψ (2) total deformation

4 Variational methods for decomposition of the optical flow

In the setting of Section 4, the OFE-equation (3) contains four unknown (real

valued) functions u
(i)
j , i, j = 1, 2, and thus is highly underdetermined.

To overcome the lack of equations, the problem is formulated as a constrained
optimization problem:
Determine, for some fixed α > 0,

argmin
(
R(1)(u(1)) + αR(2)(u(2))

)
(15)

subject to (3). Here R(i), i = 1, 2 are convex functionals, such that R(1) + αR(2)

is strictly convex. Instead of solving the constrained optimization problem, we use
a soft variant and minimize the unconstrained regularization functional:

F(u(1),u(2)) := E(u(1),u(2)) +
2∑
i=1

α(i)R(i)(u(i)) ,

E(u(1),u(2)) :=∫
Ω×(0,1)

(∇f · (u(1) + u(2)) + ∂tf)2dxdt .

(16)

Here

α ≈ α(2)

α(1)
.
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In the following we design the regularizers R(i). Moreover, for the sake of
simplicity of presentation, we omit the space and time arguments of the functions

u
(i)
j and f , whenever it simplifies the formulas.

– For R(1) we use a common spatial-temporal regularization functional for opti-
cal flow regularization (see for instance (Weickert and Schnörr, 2001b)):

R(1)(u(1))

:=

∫
Ω×(0,1)

ψ

(∣∣∣∇3u
(1)
1

∣∣∣2 +
∣∣∣∇3u

(1)
2

∣∣∣2)dxdτ ,
(17)

where ψ : R+
0 → R

+
0 is a monotonically increasing, differentiable function. For

the choice of ψ we follow (Weickert and Schnörr, 2001b):

ψ(r2) = εr2 + (1− ε)λ2
√

1 +
r2

λ2
(18)

with 0 < ε � 1 and λ > 0. This function is convex in r and there exist
constants c1, c2 > 0 with c1r

2 ≤ ψ(r2) ≤ c2r2 for all r ∈ R.
– R(2) is designed to penalize for variations of the second component in time.

Motivated by Y. Meyer’s book (Meyer, 2001), we introduce a regularization
term, which is non-local in time. Moreover, this term is designed to be able
to handle flickering experiments. In (Meyer, 2001) it was pointed out that the
G-norm can be used to extract oscillations in images and the same feature
was also exploited to extract patterns in the optical flow (Abhau et al, 2009).
However, in all these works, spatial patterns were extracted. Here we emphasize
on temporal patterns.
It is a challenge to compute the G-norm efficiently, and therefore workarounds
have been proposed. For instance (Vese and Osher, 2003) proposed as an al-
ternative at the G-norm the following realization for the H−1 norm: For a
generalized function u : Ω → R, they defined

‖u‖2H−1 = −
∫
Ω

u(x)∆−1u(x)dx .

Here, we use an analogous workaround as in (Vese and Osher, 2003) for a
realization for the temporal H−1-norm, and introduce the regularization func-
tional:

R(2)(u(2)) :=

∫
Ω×(0,1)

∣∣∣∣∫ t

0

u(2)(x, τ)dτ

∣∣∣∣2 dxdt

=
2∑
j=1

∫
Ω×(0,1)

(∫ t

0

u
(2)
j (x, τ)dτ

)2

dxdt .

(19)

To see the analogy with the ‖·‖H−1 -norm from (Vese and Osher, 2003) define
the second primitive:

U2
j (t) := −

∫ 1

t

∫ t̂

0

u
(2)
j (x, τ) dτdt̂ ,
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which corresponds to the inverse Laplacian in temporal domain. Then, from
integration by parts it follows that

−
∫ 1

0

U2
j (t)u

(2)
j (t) dt =

∫ 1

0

∫ t

0

u
(2)
j (τ)dτ

∫ t

0

u
(2)
j (τ)dτ dt .

and therefore

R(2)(u(2)) =

∫
Ω×(0,1)

U
(2)
j (x, t)u

(2)
j (x, t)dxdt

=
2∑
j=1

∫
Ω

∥∥∥u(2)j (x, ·)
∥∥∥2
H−1

.

(20)

Even more, note that R(2) penalizes the deformation, which is approximating
the anti-derivative of the flow u, with respect to time.

4.1 Energy functional and minimization

In this section we determine the optimality conditions for minimizers of F in-
troduced in (16). Necessary conditions for a minimizer are that the directional
derivatives vanish for all 2-dimensional vector valued functions h(i), i = 1, 2. This
means that

lim
s→0

F(u(1) + sh(1),u(2))−F(u(1),u(2))

s
= 0 ,

lim
s→0

F(u(1),u(2) + sh(2))−F(u(1),u(2))

s
= 0

for all vector valued functions h(i) : Ω × (0, 1)→ R
2. Because

F(u(1),u(2)) = E(u(1),u(2)) +
2∑
i=1

α(i)R(i)(u(i)) ,

it suffices to determine the directional derivatives of F , E and R(i), separately.
The derivative of E is the weighted sum of the single components.

– The directional derivative of R(1) at u(1) in direction h(1) is determined as
follows: Let us abbreviate for simplicity of presentation

ψ := ψ

(∣∣∣∇3u
(1)
1

∣∣∣2 +
∣∣∣∇3u

(1)
2

∣∣∣2) ,

ψ′ := ψ′
(∣∣∣∇3u

(1)
1

∣∣∣2 +
∣∣∣∇3u

(1)
2

∣∣∣2) ,
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then the directional derivative of R(1) in direction h(1) at u(1) is given by

∂u(1)R(1)(u(1))h(1)

= lim
s→0

R(1)(u(1) + sh(1))−R(1)(u(1))

s

= lim
s→0

1

s

∫
Ω×(0,1)

ψ

(∣∣∣∇3(u
(1)
1 + sh

(1)
1 )
∣∣∣2

+
∣∣∣∇3(u

(1)
2 + sh

(1)
2 )
∣∣∣2)− ψ dxdt

=− 2

∫
Ω×(0,1)

∇3 ·
(
ψ′∇3u

(1)
1

)
h
(1)
1

+∇3 ·
(
ψ′∇3u

(1)
2

)
h
(1)
2 dxdt .

(21)

where integration by parts is used in the final step of the above derivation.
– The directional derivative of E in direction h(1) is given by

∂u(1)E(u(1),u(2))h(1)

= lim
s→0

E(u(1) + sh(1),u(2))− E(u(1),u(2))

s

=2

∫
Ω×(0,1)

(∇f · (u(1) + u(2)) + ∂tf)(∇f · h(1)) dxdt

=2

∫
Ω×(0,1)

∇f(∇f · (u(1) + u(2)) + ∂tf) · h(1) dxdt .

(22)

– The derivative of E in the direction h(2) is analogously derived:

∂u(2)E(u(1),u(2))h(2)

= lim
s→0

E(u(1),u(2) + sh(2))− E(u(1),u(2))

s

=2

∫
Ω×(0,1)

∇f(∇f · (u(1) + u(2)) + ∂tf) · h(2) dxdt .

(23)

– The directional derivative of R(2) is derived as follows:

∂u(2)R(2)(u(2))h(2)

= lim
s→0

R(2)(u(2) + sh(2))−R(2)(u(2))

s

= lim
s→0

1

s

∫
Ω×(0,1)

(∣∣∣∣∫ t

0

u(2) + sh(2)dτ

∣∣∣∣2
−
∣∣∣∣∫ t

0

u(2)dτ

∣∣∣∣2
)

dxdt

=2
2∑
j=1

∫
Ω×(0,1)

∫ t

0

u
(2)
j dτ

∫ t

0

h
(2)
j dτ dxdt .

(24)
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Now, we denote by

U
(2)
j (x, t) := −

∫ 1

t

∫ τ

0

u
(2)
j (x, τ̃) dτ̃dτ

for j = 1, 2

(25)

the second primitive of the optical flow components.
From the definition (25) it follows that

U
(2)
j (x, 1) = 0 for x ∈ Ω ,

∂tU
(2)
j (x, 0) =

∫ 0

0

u
(2)
j (x, τ) dτ = 0

for x ∈ Ω , j = 1, 2 .

(26)

Moreover, it follows by integration by parts of the last line of (24) with respect to
t that

∂u(2)R(2)(u(2))h(2) =

− 2
2∑
j=1

∫
Ω×(0,1)

U
(2)
j (x, t)h

(2)
j (x, t)dxdt .

(27)

The directional derivatives of F in directions h(1) and h(2) are given by(
∂u(1)E(u(1),u(2)) + α(1)∂u(1)R(1)(u(1))

)
h(1) ,(

∂u(2)E(u(1),u(2)) + α(2)∂u(2)R(2)(u(2))
)

h(2) ,

respectively.
If u(1),u(2) are the modules of a minimizer of F , then for all vector valued

functions h(1), h(2)

0 =
(
∂u(1)E(u(1),u(2)) + α(1)∂u(1)R(1)(u(1))

)
h(1) ,

0 =
(
∂u(2)E(u(1),u(2)) + α(2)∂u(2)R(2)(u(2))

)
h(2) .

Now, because of (21) and (22) it follows that the minimizer u(i), i = 1, 2 has to
satisfy for every j = 1, 2,

∂jf(∇f · (u(1) + u(2)) + ∂tf)

− α(1)∇3 ·
(
ψ′∇3u

(1)
j

)
= 0 in Ω × (0, 1) ,

∂u
(1)
j

∂n
= 0 in ∂Ω × (0, 1) ,

∂u
(1)
j

∂t
= 0 in Ω × {0, 1} .

(28)

Because (27) holds for all h
(2)
j , it follows from (23) and (27) that for every j = 1, 2,

∂jf(∇f · (u(1) + u(2)) + ∂tf)

− α(2)U
(2)
j = 0 in Ω × (0, 1) .

(29)

Thus the optimality conditions for a minimizer, derived by applying the funda-
mental lemma of calculus of variations, are (28) and (29).
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5 Optical flow decomposition in 1D

In order to make transparent the features of our decomposition we study exem-
plary the one dimensional case. From regularization theory (see e.g. (Scherzer
et al, 2009)) we know that the minimizers (u(1)(α(1), α(2)), u(2)(α(1), α(2))), for
(α(1), α(2)) → 0, are converging to a solution of the optical flow equation which

minimizes R(1) + αR(2) if α = limα(1),α(2)→0
α(2)

α(1) > 0. Such a solution is called

(R(1), αR(2)) minimizing solution. Note that by the 1D simplification the modules
u(i), i = 1, 2 are single valued functions.

We calculate the decomposition for the one dimensional optical flow equation
(10), for the specific test data (11).The regularized solutions approximate these
(R(1), αR(2)) minimizing solution, and thus these calculations can be viewed rep-
resentative for the properties of the regularization method. For these particular
data the optical flow equation simplifies to

∂xf̃(x)g(t)u(x, t) + f̃(x)∂tg(t) = 0 .

And therefore

u(x, t) = − f̃(x)

∂xf̃(x)

∂tg(t)

g(t)
= − ∂t(log g)(t)

∂x(log f̃)(x)
. (30)

We introduce the anti-derivative of ∂t(log g), and assume that it is expandable
into a Fourier sin-series:

G(t) =

∫ t

0

∂t(log g)(τ) dτ =
∞∑
n=1

Gn sin(nπt) . (31)

Moreover, we assume that 1

∂x(log f̃)(x)
can be expanded in a cos-series:

1

∂x(log f̃)(x)
=
∞∑
m=0

Fm cos(mπx) . (32)

Then

− G(t)

∂x(log f̃)(x)
=

∫ t

0

u(x, τ)dτ

=

∫ t

0

u(1)(x, τ)dτ +

∫ t

0

u(2)(x, τ)dτ

=: U (1)(x, t) + U (2)(x, t) .

(33)

Inserting (33) in the definition of R,

R(u(1), u(2)) :=

∫
(0,1)×(0,1)

(u(1)x )2 + (u
(1)
t )2

+ α

(∫ t

0

u(2)(x, τ)dτ

)2

dxdt ,

we remove the u(2) dependency. In addition, we express the functional R as a
functional of the primitive of u(1) with respect to time (for the sake of simplicity
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we keep the notation R):

R(U (1)) :=

∫
(0,1)×(0,1)

(U
(1)
xt (x, t))2 + (U

(1)
tt (x, t))2

+ α

(
G(t)

∂x(log f̃)(x)
+ U (1)(x, t)

)2

dxdt ,

where we enforce the boundary conditions:

– The first one is due to the choice of U (1) as a time integration from 0 to t of
the function u(1):

U (1)(x, 0) =

∫ t

0

u(1)(x, τ) dτ

∣∣∣∣
t=0

= 0 .

– The second one is an assumption made to simplify the computations:

U (1)(x, 1) =

∫ 1

0

u(1)(x, τ) dτ = 0 .

In fact, the assumption seems reasonable because of the choice of G, when
the series

∑∞
n=0Gn is absolutely convergent, which implies that G(1) = 0.

In this case U (1)(x, 1) + U (2)(x, 1) = 0, which is guaranteed by U (1)(x, 1) =
U (2)(x, 1) = 0.

By this substitution we reduce the constraint optimization problem to an uncon-
strained optimization problem for U (1). The optimality condition shows then that
U (1) has to satisfy the partial differential equation

U
(1)
ttxx + U

(1)
tttt + α

(
G(t)

∂x(log f̃)(x)
+ U (1)

)
= 0 in (0, 1)× (0, 1) ,

together with the boundary conditions:

U
(1)
tt = U (1) = 0 on (0, 1)× {0, 1} ,

∂nU
(1)
tt = 0 on {0, 1} × (0, 1) .

(34)

Now, we substitute

W := U
(1)
tt , (35)

and we get the following system of equations

Wxx +Wtt = −α
(

G(t)

∂x(log f̃)(x)
+ U (1)

)
in (0, 1)× (0, 1) ,

∂nW = 0 on {0, 1} × (0, 1) ,

W = 0 on (0, 1)× {0, 1} ,

(36)

and
U

(1)
tt = W in (0, 1)× (0, 1) ,

U (1) = 0 on (0, 1)× {0, 1} .
(37)
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That is

U (1)(x, t) =

∫ t

0

∫ τ

0

W (x, τ̂)dτ̂dτ

− t
∫ 1

0

∫ τ

0

W (x, τ̂)dτ̂dτ .

W can be expanded as follows:

W (x, t) =
∞∑

m,n=0

Wmn cos(mπx) sin(nπt) ,

and we expand U (1) in an analogous manner:

U (1)(x, t) =
∞∑

m,n=0

U (1)
mn cos(mπx) sin(nπt) ,

such that (35) implies that

Wmn = −n2π2U (1)
mn for all m,n ∈ N0 . (38)

Because of (30) the function U (1) is a product of functions in space and time,
respectively, and thus it follows that

U (1)(x, t) =
∞∑
m=0

U (1,x)
m cos(mπx)

∞∑
n=1

U (1,x)
n sin(nπt) ,

or in other words:
U (1)
mn = U (1,x)

m U (1,t)
n .

Consequently also
Wmn = W (x)

m W (t)
n ,

which satisfies, because of (36),

W (x)
m W (t)

n (m2 + n2)π2

= α
(
U (1,x)
m U (1,t)

n + FmGn
)
,

for all m,n ∈ N0 .

(39)

(39) and (38) imply that

U (1,x)
m U (1,t)

n = − α

α+ π4(m2 + n2)n2
FmGn ,

for all m,n ∈ N0 .
(40)

Now, consider a specific test example:

g(t) = exp

{
sin(n0πt)

n0π

}
with n0 ∈ N .

Then, from (30) it follows that

u(x, t) = − cos(n0πt)

∂x(log f̃)(x)
,
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and correspondingly we have

G(t) =

∫ t

0

∂t(log g)(τ) dτ =
sin(n0πt)

n0π
.

In this case it follows from (40) that

U (1,x)
m = − α

α+ π4(m2 + n2
0)n2

0

Gn0

U
(1,t)
n0

Fm .

Moreover, from (40) it follows with m = 0:

U
(1,t)
n0

Gn0

= − α

α+ π4n4
0

F0

U
(1,x)
0

.

Using the last two equalities, we get

U (1,x)
m =

α+ π4n4
0

α+ π4(m2 + n2
0)n2

0

U
(1,x)
0

F0
Fm .

The last equality means that the Fourier coefficients of U (1,x) are decreased by a

factor O
(

α+π4n4
0

α+π4(m2+n2
0)n

2
0

)
relative to Fm.

From this equality we also see that spatial components belonging to Fourier-
cos coefficients with large m are more pronounced in the u(2) component. Note

that for small m relative to n0 the factor
α+π4n4

0

α+π4(m2+n2
0)n

2
0
∼ 1, and thus these

components appear almost exclusively in u(1).
These considerations indicate that for assigning a flow component to u(1),u(2),

respectively, one has to apply a certain threshold to the single components. This
observation is central to perform an appropriate visualization, which is imple-
mented below.

6 Numerics

In this section we discuss the numerical minimization of the energy functional F
defined in (16). Our approach is based on solving the optimality conditions for the

minimizer u
(i)
j , i, j = 1, 2 from (28), (29) with a fixed point iteration.

We have stated above that, in general, the optical flow equation can never be
well-defined on the whole domain Ω× (0, 1). In order to have a consistent approx-
imation of (1), the optical flow equation (3) has to be considered on constrained
sets, such as (9). Because we want to apply optical flow computations blindly,
without estimating singularities of f and singularities of characteristics first, we
apply standard optical flow inversion and evaluate the outcome numerically. The
numerical examples actually show that flickering predominantly appears in the
u(2) component, and thus can be used as a guess for the singularity sets.

For the purpose of numerical realization of the fixed point iteration we call the

iterates of the fixed point iteration u
(i)
j (x, t; k), U

(2)
j (x, t; k), for k = 1, 2, . . . ,K,

where K denotes the maximal number of iterations. We summarize all iterates of
the components of flow functions u

(i)
j in a tensor of size M ×N × T ×K. In this

section we use the notation as reported in table 1.
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f = f(r, s, t) ∈ RM×N×T Input sequence

u(i) = u(i)(r, s, t; k) ∈ RM×N×T×K×2 artificial optical flow module

u(i) = u(i)(r, s, t) = u(i)(r, s, t;K) formal relation between
∈ RM×N×T×2 artificial and optical flow module

u
(i)
j = u

(i)
j (r, s, t; k) ∈ RM×N×T×K component of artificial optical flow module

u
(i)
j = u

(i)
j (r, s, t) = u

(i)
j (r, s, t;K) formal relation between

∈ RM×N×T components of artificial and optical flow module
∂h
k Finite difference approximation in direction xk

∂h
t Finite difference approximation in direction t

Table 1: Discrete Notation

For every tensor H = (H(r, s, t)) ∈ RM×N×T (representing a complete movie) we
define the discrete gradient

∇h3H(r, s, t) = (∂h1H(r, s, t), ∂h2H(r, s, t), ∂ht H(r, s, t))T ,

for (r, s, t) ∈ RM×N×T ,

where

∂h1H(r, s, t) =
H(r + 1, s, t)−H(r − 1, s, t)

2∆x

if 1 < r < M

∂h2H(r, s, t) =
H(r, s+ 1, t)−H(r, s− 1, t)

2∆y

if 1 < s < N

∂ht H(r, s, t) =
H(r, s, t+ 1)−H(r, s, t)

∆t

if 1 < t < T

(41)

where ∆x = 1
M−1 , ∆y = 1

N−1 and ∆t = 1
T−1 . Moreover, we define the discrete

divergence, which is the adjoint of the discrete gradient: Let (H1, H2, H3)T (r, s, t),
then

∇h3 · (H1, H2, H3)T (r, s, t) = ∂h1H1(r, s, t) + ∂h2H2(r, s, t)

+ ∂h∗t H3(r, s, t) ,
(42)

where

∂h∗t H3(r, s, t) =
H(r, s, t+ 1)−H(r, s, t)

∆t
. (43)

The implementation used for ∇h3 · (H1, H2, H3)T (r, s, t) is similarly to (Weickert
and Schnörr, 2001b). The realization of the fixed point iteration reads as follows:

– k = 0: we initialize two flow components u(1)(·; 0), u(2)(·; 0) ∈ RM×N×K×2.
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– k → k + 1: let us denote ψ′(k) = ψ′(|∇h3u
(1)
1 (·; k)|2 + |∇h3u

(2)
1 (·; k)|2), and let

∆τ be the step size in t direction, then

u
(1)
1 (·; k + 1)− u(1)1 (·; k)

∆τ

=∇h3 ·
(
ψ′(k)∇h3u

(1)
1 (·; k)

)
− ∂h1 f

α(1)

(
∂h1 f

(
u
(1)
1 (·; k + 1) + u

(2)
1 (·; k)

)
+ ∂h2 f

(
u
(1)
2 (·; k) + u

(2)
2 (·; k)

)
+ ∂ht f

)
,

(44)

u
(1)
2 (·; k + 1)− u(1)2 (·; k)

∆τ

=∇h3 · (ψ′(k)∇h3u
(1)
2 (·; k))

− ∂h2 f

α(1)

(
∂h1 f

(
u
(1)
1 (·; k + 1) + u

(2)
1 (·; k)

)
+ ∂h2 f

(
u
(1)
2 (·; k + 1) + u

(2)
2 (·; k)

)
+ ∂ht f

)
,

(45)

u
(2)
1 (·; k + 1)− u(2)1 (·; k)

∆τ

=− ∂h1 f

α(2)

(
∂h1 f

(
u
(1)
1 (·; k + 1) + u

(2)
1 (·; k + 1)

)
+ ∂h2 f

(
u
(1)
2 (·; k + 1) + u

(2)
2 (·; k)

)
+ ∂ht f

)
+ U

(2)
1 (·; k) ,

(46)

and

u
(2)
2 (·; k + 1)− u(2)2 (·; k)

∆τ

=− ∂h2 f

α(2)

(
∂h1 f

(
u
(1)
1 (·; k + 1) + u

(2)
1 (·; k + 1)

)
+ ∂h2 f

(
u
(1)
2 (·; k + 1) + u

(2)
2 (·; k + 1)

)
+ ∂ht f

)
+ U

(2)
2 (·; k) ,

(47)

where (compare with (25))

U
(2)
j (r, s, t; k) = −

1∑
τ=t

τ∑
τ̃=0

u
(2)
j (r, s, τ̃ ; k) , j = 1, 2 .

The system (44),(45),(46),(47) can be solved efficiently using the special struc-
ture of the matrix equation similarly to (Weickert and Schnörr, 2001a,b).
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The iterations are stopped when the Euclidean norm of the relative error

|u(i)j (·, k)− u(i)j (·, k + 1)|

|u(i)j (·, k)|
, j = 1, 2

drops below the precision tolerance value tol = 0.01 for at least one of the compo-
nent of u(1) and one of u(2). The typical number of iterations is below 100, but if
we relax the accuracy requirement the process stops much earlier.

7 Reformulation of optical flow computation as a denoising problem

The following outline is taken from (Abhau et al, 2009). The matrix A0 :=
∇f(∇f)T has rank one, is symmetric and positive semi-definite with non-trivial
kernel. The kernel consists of all vector valued functions, which are orthogonal
to ∇f . Moreover, let A be an approximation with full rank - see (Bruhn , 2006;
Weickert et al, 2006) for details of constructing reasonable approximations.

Defining

f̂ =

(
f̂1
f̂2

)
:= −∂tf

∇f
|∇f | , (48)

and noting that (
1

|∇f |A0

)2

=
1

|∇f |2A0A0

=
1

|∇f |2∇f
(

(∇f)T∇f
)

(∇f)T

= ∇f(∇f)T = A0 .

Thus
1

|∇f |2A
2
0 = A0 ,

or in other words

A
1/2
0 =

1

|∇f |A0 .

Thus it follows that∥∥∥A1/2
0 · u− f̂

∥∥∥2
L2(Ω;R2)

=

∫
Ω

[(A
1/2
0 · u)1 − f̂1]2 + [(A

1/2
0 · u)2 − f̂2]2dx

=

∫
Ω

[
(∂1f)2u1 + ∂1f∂2fu2

|∇f | +
∂1f∂tf

|∇f |

]2
+

+

[
∂1f∂2fu1 + (∂2f)2u2

|∇f | +
∂2f∂tf

|∇f |

]2
dx

=

∫
Ω

(∂1f)2 + (∂2f)2

|∇f |2
(∂1fu1 + ∂2fu2 + ∂tf)2dx

= ‖∇f · u + ∂tf‖2L2(Ω) ,

(49)
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Fig. 5: Color wheel

Then, by using the notation

f̃ = A−
1
2 f̂ , (50)

we find that, taking into account that A is symmetric and that A0 ≈ A, that

‖∇f · u + ∂tf‖2L2(Ω)

=
∥∥∥A1/2

0 · u−A1/2A−1/2f̂
∥∥∥2
L2(Ω;R2)

≈
∫
Ω

(u−A−1/2f̂)TA1/2TA1/2(u−A−1/2f̂) dx

=:
∥∥∥u− f̃

∥∥∥2
A
.

(51)

This relation shows that the optical flow least squares functional S defined in (4)
can be approximated, and in fact replaced, by the squared norm of the weighted
L2-space induced by A. The bottom line of these calculations are that optical flow
computations can be viewed as a least squares denoising problem. This analogy will
be used to evaluate the numerical experiments below. It shows, in particular, how
the algorithms processes data, with significant perturbations, such as flickering.

8 Experiments

In this section we present numerical experiments to demonstrate the potential of
the proposed optical flow decomposition model. In the first two experiments we
use for visualization of the computed flow fields the standard flow color coding
(Baker et al, 2011). The flow vectors are represented in color space via the color
wheel illustrated in Figure 5. For the third and fourth experiments we use a black
and white visualization technique. Moreover, a black color is assigned to pixels
where no flow is present and a gray-shade color elsewhere. The shade is chosen
proportional to the flow magnitude.
In order to compare frequencies of the sequences used for testing, it is necessary to
have the same scaling over space and time. For this reason, all the intensity values,
the domain Ω, and the time are scaled in the range [0, 1]. The used parameters
are reported for each experiment except for ∆x,∆y,∆t defined as in Section 6. In
this work we consider the following four dynamic image sequences:
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Fig. 6: Top: Optical flow decomposition u = u(1) + u(2) between the 15th and the
16th frame with α(2) >> α(1) parameter setting composed of α(1) = 10−5, α(2) =
1000, ∆τ = 10−4, precision tolerance tol = 0.05. The optical flow computation
shows that the whole ball is rotating, while standard optical flow methods calculate
the local optical flow representing a local movement.
Bottom: the optical flow calculated with Weickert-Schnörr between the 15th and
the 16th frame α(1) = 10−5, ∆τ = 10−4, precision tolerance tol = 0.05. One sees
in this frame only the local movement of the stains on the sphere.

– The first tests are performed with the video sequence from (McCane et al,
2001) (available at
http://of-eval.sourceforge.net/) which consists of forty-six frames show-
ing a rotating sphere with some overlaid patterns. We performed two experi-
ments:
– We study the behaviour of the optical flow model when α(1) >> α(2) and
α(2) >> α(1). In this case the complete flow u(1) + u(2) of the decom-
position method recovers a global uniform movement. Figure 6 shows the
reconstruction for α(2) >> α(1).

http://of-eval.sourceforge.net/
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Fig. 7: u(2) at different frequencies of rotations: original frequency, 4 and 8× faster.
α(1) = 1, α(2) = 1

4 , ∆τ = 10−4 and precision tolerance tol = 0.05. The intensity of

u(2) increases when the frequency of rotation is increased. At the same time u(1)

stays always very small.

– The analytical results from Section 5 in 1D show that the intensity of the
u(2) component increases monotonically with repetitiveness over time. We
verify this hypothesis numerically in higher dimensions. We simulate in par-
ticular two, four and eight times the original motion frequency. In order to
do so, we duplicate the sequence periodically, however consider it to be in
the same time interval (0, 1). The flow visualized in Figure 7 is the one be-
tween the 16th and the 17th frame of every sequence. Since the sampling of
the sequences is different, we decide to choose a precise configuration of the
sphere in order to ensure the comparability of the results. The optical flow
shown in Figure 7 is the one relative to the above described configuration
for different sampling of the original sequence. We study the behaviour of
the sphere at different motion frequencies with the same parameter setting
α(1) = 1, α(2) = 1

4 , ∆τ = 10−4, precision tolerance tol = 0.05. This con-
firms the results of the 1D example that high frequencies are dominantly
visible in u(2) (cf. Figures 7). Because the movement is periodic, u(2) is the
dominant part, and u(1) is always very small, such that it disappears after
thresholding.
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Fig. 8: The dynamic sequence consists of the smooth (translation like) motion of
a cube and an oscillating background. The oscillation has a periodicity of four
frames and takes place along the diagonal direction from the bottom left to the
top right, moving at a rate of 5% of the frame size in each frame. The proposed
model decomposes the motion, obtaining the global movement of the cube in u(1)

(top) and the background movement solely in u(2) (bottom).

– The second experiment concerns the decomposition of the motion in a dynamic
image sequence showing a projection of a cube moving over an oscillating back-
ground. The movie consists of sixty frames and can be viewed on the web-page
http://www.csc.univie.ac.at/index.php?page=visualattention. The back-
ground is oscillating in diagonal direction, from the bottom left to the top right,
with a periodicity of four frames. In each frame the oscillation has a rate of 5%
of the frame size. The flow visualized in 8 is the one between the twentieth and
the twenty-first frame of the sequence. Applying the proposed method with a
parameter setting α(1) = 103, α(2) = 103, ∆τ = 10−5, and precision tolerance
tol = 0.001, we notice that the background movement appears almost solely
in u(2) and the global movement of the cube appears in u(1). In Figure 8 we
represent only flow vectors with magnitude larger than 0.05 and omit in u(2)

the part in common with u(1) for better visibility. This is exactly the behaviour
expected from the analytical example 5, showing the ability of the model to
divide patterns relative to frequencies.

– The third experiment is relative to the decomposition of the flow in a dynamic
image sequence showing a real scene. The original movie consists of thirty-two
frames and can be viewed together with the decomposition result on the web-
page
http://www.csc.univie.ac.at/index.php?page=visualattention. The move-
ment present in the movie can be decomposed in a smooth and an oscillating
part. The smooth part represents the movement of a Ferris wheel and people
walking. The oscillating one is composed of lights blinking and the reflection of
the wheel on the glass. The flow visualized in Figure 9 is the one between the
fourth and the fifth frame of the sequence with a parameter setting α(1) = 1,
α(2) = 1

4 , ∆τ = 10−4, and precision tolerance tol = 0.05. In order to improve
the visibility we represent only flow vectors with magnitude larger than 0.18
and omit in u(2) the part in common with u(1). We notice that the smooth
movement appears in u(1), while the oscillating movement solely appears in

http://www.csc.univie.ac.at/index.php?page=visualattention
http://www.csc.univie.ac.at/index.php?page=visualattention
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Fig. 9: The movement in the dynamic sequence is composed of a smooth (oscil-
lating) motion u(1) of a Ferris wheel and people walking in the foreground (top).
Moreover, the second component u(2) consists of blinking lights and the reflections
of the wheel on glass (middle). The third image (bottom) is a reference frame.

u(2). On the one hand, it is worth noting that u(1) is not able to capture the
information about the blinking lights and the reflection of the wheel. This is
due to the fact that the movement is not smooth and R(1) ignores therefore
this information. On the other hand, R(2) is designed for detecting oscillat-
ing pattern, so u(2) captures the movements ignored by u(1). The evidence
presented above suggests that the proposed model allows the use of the data
in a dynamic sequence in a better way, thanks to the detection of oscillating
patterns. Let us concentrate on neighborhood of the blinking regions. Out-
side the region the flow should be the 0 and the deformation is the identity
over the whole time interval. The blinking region determine characteristics of
the deformation which are interrupted and with appropriate time scaling they
appear like local soft-flickering. Therefore we expect to see them in the u(2)

component.
– The fourth example is a flickering experiment. In a standard flickering exper-

iment, the difference in human attention is investigated by inclusion of blank
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images in a repetitive image sequence. Although, in general, these blank im-
ages are not deliberately recognized, they change the awareness of the test
persons. The proposed optical flow decomposition, as we show in this sec-
tion, is able to detect moving regions, which humans can also recognize. At
the same time, standard optical flow models fail. Motivated by the work of
J. K. O’Regan (O’Regan, 2007), we have tested the decomposition model on
flicker data from http://nivea.psycho.univ-paris5.fr. In practice, as re-
ported by J. K. O’Regan: “Change blindness is a phenomenon in which a very
large change in a picture will not be seen by a viewer, if the change is accom-
panied by a visual disturbance that prevents attention from going to the change
location”. In the sequence used in our test, each frame containing the visual
information is alternated with a blank frame, as visual disturbance, so that the
user experiences the change blindness effect.
Flickering does not seem to be a prime application for quantitative optical
flow computations. We have shown in (Abhau et al, 2009) that quasi-
static optical flow computations can be viewed as a high-dimensional
denoising problem, with a least-squares fit-to-data term, which de-
pends on a metric induced by the image data. The same formulation
can be generalized to dynamic data and reads as in Section 7. In
view of this, the Weickert-Schnörr algorithm (Weickert and Schnörr,
2001b) behaves like a diffusion filter, which smooths rough details
of the flow. In a simplified setting of a time series at a single point,
it behaves like cubic spline fitting of time (see (Hanke et al, 2001)).
The proposed optical flow algorithm, as well as the Weickert-Schnörr
algorithm therefore are capable of recovery an approximative flow
field. The goal of the following example is to show that the compu-
tated flow can provide qualitatively correct information.
Below we make several different flickering experiments:
– For this experiment we scale all input frames (that are two in this case) to

a range between [−1/2, 1/2] such that the mean intensity is zero.
From these images we generate a sequence of four frames, consisting of
Frame 1, a blank image, Frame 2 and again an identical blank image. This
sequence is then aligned periodically to a movie. We call it the 1111 movie.
We emphasize that we interpret the movie as a linear interpolation between
the frames.
The first numerical experiments attempt to evaluate the effect of the inten-
sity of the inserted blank frame on the optical flow components u(1) and
u(2).
If Frame 1 and 3 are identical, the flow is also periodic with a period u(·, t1),
u(·, t2), −u(·, t1) = u(·, t3), −u(·, t2) = u(·, t4), where ti are the times
associated with each frame. For such a flow, the penalization functional for
u(2) is vanishing. This, however, is not the case if Frame 1 and Frame 3 are
not identical.
The regularization functional R2 does not penalize periodic patterns. How-
ever, for the flickering, the proposed difference approximations ∆tf of ∂f
result in high residuals of the optical flow equation. The error can be min-
imized if we take a blank sheet with mean values of the image, which is
flickered. The results are displayed for different intensity sheets in Figure
10. However, from Example 2 we can expect to see a singularity for every

http://nivea.psycho.univ-paris5.fr
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Fig. 10: u(2) component of the flow for the seventh frame of the 1111 sequence
using a white (top), a gray (middle) and a black frame (bottom), respectively. We
visualize the flow field, which exceeds a threshold of 0.23 for all the experiments.
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Fig. 11: The two frames of the flickering sequence containing information. In the
top image a blue box is superimposed. It indicates the area of special interest that
will be analyzed in Figure 12.

Fig. 12: Difference between the two frames before and after the inclusion of a blank
frame. On the original image these are the pixels with row index from 300 to 550
and column index from 1 to 350.

blank frame. This appears for the white and black separating sheets, but
not for the gray, mean value, sheet, where there becomes visible the actual
difference between the two input frames (cf. Table 2). This observation is
interesting from an analytical point of view because the theoretical results
predict that in the limiting case the flow should be just the identity.

– We consider now hard flickering. We simulate this by a periodic sequence
consisting of periods of 3, 5, 8× of Input Frame 1, a blank frame, 3, 5, 8×
of Input Frames 2, respectively.We call these sequences (3, 5, 8)1(3, 5, 8) se-
quences. Theoretically, in the continuous formulation, for hard flickering,
the Weickert-Schnörr algorithm and our algorithm, respectively, should re-
sult in u ≡ u1 ≡ 0 (cf. Example 1). We would like to understand whether
this trend is observable numerically, and in fact this is reflected in Table 3.
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Fig. 13: Flow field u(2) relative to the 1111 flickering experiment using a quiver
visualization. The accumulation of the arrows are on the position of the highest
intensity of difference image in Figure 12. It is actually not the mirrors of the
house in the lake, because, in black and white, the house gets completely resolved
in the lake. Note that the whole region of the mirror is shifted in the lake, and the
strongest intensity changes are visualized.

– We also test and compare Horn-Schunck, Weickert-Schnörr and the pro-
posed algorithm. In Horn-Schunck we use the parameter setting α = 10
and 200 iterations. In Figure 14 we visualize the flow field, between the
blank frame and the slightly changed frame, which exceeds a threshold of
3.9, leading to an obscure result. The Weickert-Schnörr algorithm is tested

Fig. 14: Result with Horn-Schunck
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Frame Max u(1) Max u(2) Residual
1111 Sequence

White disturbing frame
1 0.0799 0.2976 7.6957*103

2 0.0036 0.0138 9.3658*103

3 0.0805 0.3004 7.6127*103

4 0.0037 0.0140 9.4129*103

5 0.0797 0.2976 7.6963*103

6 0.0036 0.0138 9.3658*103

7 0.0805 0.3 7.6140*103

Gray disturbing frame
1 0.0698 0.2542 7.8762*103

2 0.0465 0.1682 9.1070*103

3 0.0703 0.2566 7.7908*103

4 0.0472 0.1707 9.1631*103

5 0.0697 0.2541 7.8766*103

6 0.0465 0.1682 9.1070*103

7 0.0704 0.2563 7.7916*103

Black disturbing frame
1 0.0910 0.3460 7.3570*103

2 1.5336*10−4 0.0022 9.1808*103

3 0.0916 0.3494 7.2643*103

4 3.0519*10−4 0.0021 9.2388*103

5 0.0908 0.3460 7.3578*103

6 4.5800*10−4 0.0016 9.1808*103

7 0.0917 0.3486 7.2660*103

Table 2: Comparison for disturbing frames of different intensity in the flicker
experiment. In our experiment, the second, forth, sixth frame is blank, such that

the gradient vanishes. In this case the optical flow residual is just
‖f(ti+1)−f(ti)‖

∆t
,

for i = 2, 4, 6, and therefore is identical for i = 2, 6 because the same frames are
used for evaluation of the residual. In table are reported the maximum values in
magnitude for the flow fields u(1) u(2) and the corresponding residual value

with the parameter setting α(1) = 10, ∆τ = 10−4 and precision tolerance
tol = 0.05. The results obtained by applying Weickert-Schnörr and u(1) are
not visualized, since these components are rather small in magnitude. This
behaviour is coherent with the motivation of the Weickert-Schnörr method
to produce an optical flow that is less sensitive to variations over space and
time. In this flickering example all the objects are varying over space and
time, and the average is the zero flow.
For the proposed model we set α(1) = 1, α(2) = 1

4 , ∆τ = 10−4, precision
tolerance tol = 0.05, and for visualization we omit all vectors with mag-
nitude lower than 0.23 (see Figure 10(middle)). Additionally, we show in
Figure 8 one of the frame of the 1111 sequence with superimposed a blue
box. The area highlighted is the one in which we have a change of inten-
sity(cf. Figure 12). Finally we show in Figure 13 the flow field calculated
using a quiver plot. We emphasize that u(1) component is not able to notice
the movement, instead u(2) detects the change.

We remark, that the correct model of the optical flow equation for data including
flickering would require to detect the flicker first and then to solve constrained
optimization problems within the time frames. If we solve the optical flow equation
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Frame Max u(1) Max u(2) Residual
313 Sequence

1 1.2906*10−4 7.2556*10−4 0
2 8.5145*10−5 7.2556*10−4 0
3 0.1115 0.4257 9.9360*103

4 0.0735 0.2804 1.2390*104

5 1.5736*10−4 6.0860*10−4 0
6 4.3081*10−5 3.3210*10−4 0
7 2.4397*10−8 1.6296*10−8 0

515 Sequence
1 1.6484*10−4 9.0007*10−4 0
2 1.6436*10−4 9.0007*10−4 0
3 1.6435*10−4 9.0007*10−4 0
4 1.6435*10−4 8.9067*10−4 0
5 0.0737 0.2842 3.4946*103

6 0.0488 0.1867 4.4600*103

7 1.2419*10−4 9.4929*10−4 0
8 9.8785*10−5 7.5451*10−4 0
9 6.9547*10−5 5.3135*10−4 0
10 3.6616*10−5 2.7981*10−4 0
11 1.1833*10−8 7.7489*10−9 0

818 Sequence
1 1.9430*10−4 0.0011 0
2 1.9557*10−4 0.0011 0
3 1.9559*10−4 0.0011 0
4 1.9559*10−4 0.0011 0
5 1.9559*10−4 0.0011 0
6 1.9555*10−4 0.0011 0
7 1.8093*10−4 0.0011 0
8 0.0492 0.1923 1.347*103

9 0.0325 0.1259 1.7421*103

10 1.6484*10−4 0.0013 0
11 1.4696*10−4 0.0011 0
12 1.2710*10−4 9.8107*10−4 0
13 1.0539*10−4 8.1402*10−4 0
14 8.1821*10−5 8.8379*10−4 0
15 5.6395*10−5 4.3603*10−4 0
16 3.5540*10−5 2.7423*10−4 0
17 5.6939*10−9 3.7172*10−9 0

Table 3: Table of comparison for sequences composed of three, five or eight times
Frame 1, a gray disturbing frame and three, five or eight times Frame 2.

blindly, then the dominant part of the flow at the blank images is u(2). As predicted
in Section 5 the flow is never separated completely between u(1) and u(2), but
the dominant part assigns the flow to be the result of a singularity of the image
or a singularity of the characteristics. Our numerical experiments show however
that it suffices to solve the optical flow equation and detect the flicker by the
second flow component. This is what is called relaxation. We have also remarked
above that the optical flow (in our case the u(1)- component) is a smooth field
and u(1) and u(2) only give a tendency. The numerical results for flickering with
different arrangement of frames can be viewed to show the effect of course to fine
discretization in time.



34 Aniello Raffaele Patrone, Otmar Scherzer

8.1 Additional Information

In the following, we show the capacity of our model to extract more and different
information compared to standard optical flow algorithms. The current literature
focuses on average angular and endpoint error(Baker et al, 2011) in order to com-
pare optical flow algorithms. Our proposed model extracts information relative to
oscillating patterns, that is usually neglected by standard algorithms. Therefore
the focus of our model differs from standard literature.
Such difference can be shown through a quantitative comparison of models. For
this purpose, we use well-known test sequences from the Middlebury database
http://vision.middlebury.edu/flow/, and evaluate the residual of the optical
flow constraint. We compare the residual of our method with the one of the Horn-
Schunck method (Horn and Schunck, 1981), with the following parameter settings:

– We emphasize that the Horn-Schunck method does not use time information,
and therefore we calculate for every pair of successive frames and stack the
series of flow images into a movie. For calculating the flow for one pair we
use the regularization parameter α = 400 and 50 iterations for every pair of
frames.

– For the proposed method α(1) = 400, α(2) = 10, ∆τ = 10−4 and tolerance
value tol = 0.03. In this case the whole image sequence is used at once.

The dimension of the parameters α(1) , α(2) is chosen larger than 1 in order
to avoid over-fits to the data. For every pair of successive images f1 and f2 we
visualize the squared residual∫

Ω

(
∇f1 · u +

f2 − f1
∆t

)2

dx ,

both for Horn-Schunck and the proposed method. Note that for the comparison we
omit space dependency of the movie. We notice from Figure 15 that the squared
residual is larger in every frame for Horn-Schunck than for our decomposition
model, meaning that the proposed method is capable to extract more flow infor-
mation.

In order to understand how much information our method is capable to extract
from an entire dynamic sequence, we also calculate the residual squared over space
and time: E(u(1),u(2)) and compare it with the squared residual over space and
time of the Weickert-Schnörr method (Weickert and Schnörr, 2001b,a). We use
the parameter settings α(1) = 100 (α = α(1) in Weickert-Schnörr) and α(2) = 1

4 ,

∆τ = 10−4 and tolerance tol = 0.01, in order to have a good comparison of the
two methods. Again the residual is smaller for the proposed method as shown in
table 4.

9 Conclusion

We present a new optical flow model for decomposing the flow in spatial and
temporal components of different scales. A main ingredient of our work is a new
formulation of the optical flow equation, which is assumed to hold on connected
domains of characteristics of the nonlinear equation. In the future it is essential to
get a better understanding of the optical flow equation in case of singularities of
the image data and singular points of the characteristics of the nonlinear equation.

http://vision.middlebury.edu/flow/
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Fig. 15: Residuals for Hamburg taxi (up) and Minicooper sequence (down) from
Middlebury database. Residuals for Horn-Schunck are plotted in red, the proposed
method is plotted in blue.
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Weickert-Schnörr Proposed model
Hamburg Taxi 1374.9 1021
RubberWhale 4459.7 3046.8
Hydrangea 8533.3 7647.2
DogDance 9995.4 8217.6
Walking 8077.5 5944.3

Table 4: Comparison of squared residuals over space and time E between Weickert-
Schnörr and the proposed method.
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