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Abstract

The truncated basis of adaptively refined multi-level spline spaces was introduced by Gi-
annelli et al. (2012, 2013). It possesses a number of advantages, including the partition of
unity property, decreased support of the basis functions, preservation of coefficients and
strong stability, that may make it highly useful for geometric modeling and numerical
simulation. We generalize this construction to hierarchies of spaces that are spanned by
generating systems that potentially possess linear dependencies. This generalization re-
quires a modified framework, since the existing approach relied on the linear independence
of the functions generating the spaces in the hierarchy. Many results, such as the preser-
vation of coefficients, can be extended to the more general setting. As applications of the
modified framework, we introduce a hierarchy of hierarchical B-splines, which enables us
to perform local refinement in the presence of features, and we also extend the adaptive
multi-level framework to spaces spanned by Zwart-Powell (ZP) elements, which are special
box splines defined on the criss-cross grid. In the latter case we show how to identify the
linear dependencies that are present in the truncated hierarchical generating system and
use this result to perform adaptive surface fitting with multi-level ZP elements.

Keywords: multi-level spline space, generating system, preservation of coefficients,
Zwart-Powell element

1. Introduction

The study of adaptively refined multi-level spline spaces, such as hierarchical B-splines,
has a long history in Computer Aided Geometric Design (Forsey and Bartels, 1988; Greiner
and Hormann, 1997; Kraft, 1997; Pulli and Lounsbery, 1997). Recently, the investigation of
such spaces has gained significant momentum, partially due to their importance for isogeo-
metric analysis (IgA) (see Hughes et al., 2005; Cottrell et al., 2009), where generalizations
of tensor-product splines are needed in order to enable localized mesh refinement. Besides
the use of T-splines (Dörfel et al., 2010; Li et al., 2012) and of the recently introduced
Locally Refined (LR) splines of Dokken et al. (2013), approaches that rely on hierarchical
techniques have been employed successfully to address the issue of local refinement in IgA
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(e.g. Vuong et al., 2011; Kuru et al., 2013; Bornemann and Cirak, 2013; Schillinger et al.,
2012).

So far, the construction and analysis of adaptively refined multi-level spline spaces has
been restricted almost entirely to spaces spanned by basis functions, which – by the very
definition of this notion – possess the property of linear independence. The aim of the
present paper is to provide the generalization to spaces obtained as the span of certain
generating systems that are potentially linearly dependent.

More precisely, we extend the framework of truncated hierarchical bases (Giannelli
et al., 2012, 2013) to the case of generating systems. Since the existing approach relies
heavily on the property of linear independence, we need to formulate a modified frame-
work (including a different notation) for this generalization. We show that many of the
advantageous properties of truncated hierarchical bases can be extended to the new setting.
These include the preservation of coefficients, the nested nature of refinement via domain
enlargement, and the partition of unity property.

We also consider two applications of the generalized setting. First, we introduce a hier-
archy of hierarchical B-splines that enables us to perform local refinement in the presence
of features (local modifications). Second, we consider the adaptive multi-level framework
to spaces spanned by Zwart-Powell (ZP) elements, which are special box splines defined
on the criss-cross grid (see Wang, 2001; de Boor et al., 1993).

This highly interesting class of functions was studied extensively in approximation
theory (Lyche et al. (2008), Foucher and Sablonnière (2008); see also Prautzsch and Boehm
(2002) for additional information on box splines). ZP elements achieve C1 smoothness with
piecewise quadratic functions and possess a single non-trivial linear dependency relation.
We show how to analyze the linear dependencies that are inherited by the generating
system that spans the adaptively refined multi-level space. The capabilities of the new
construction for adaptively refined multi-level ZP elements are demonstrated by using
them for surface fitting, where elimination of these linear dependencies is essential.

The remainder of the paper consists of six parts. First we present the generalized hier-
archical construction in Section 2. The third section discusses the property of preservation
of coefficients and its consequences. Section 4 derives our results concerning refinement via
space and/or domain enlargement. It also presents the first application of the generalized
setting to define hierarchies of hierarchical B-splines, which allow to perform adaptive re-
finement in the presence of features. After briefly discussing the case of generating systems
with the property of local linear independence in Section 5, we show how to identify and
eliminate the linear dependencies that are inherited by a truncated hierarchical generating
system for a certain class of generating systems (which includes hierarchical ZP elements).
Based on these results, we present an application to surface fitting using adaptively refined
hierarchical ZP elements. Finally we conclude the paper and identify topics for future
research.
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2. The generalized hierarchical construction

This section shows how to generalize the construction of truncated hierarchical splines
to the case of generating systems, where linear dependencies may or may not be present.
We start with some preliminary remarks concerning the notation and establish the selection
procedure that leads to the hierarchical construction. Further we explain the truncation
mechanism and introduce the notation of the truncated hierarchical generating system.

2.1. Preliminaries

Throughout this paper we consider spaces V of functions defined on an open set Ω ⊂ RD

that are spanned by finite1 generating systems G. The generating systems are represented
by column vectors

G = (γ1, . . . , γn)T ,

where the positive integer n denotes the number of functions in G. We will use row vectors
c to collect the coefficients of functions in

V = span G = {c G : c ∈ RD}.

We assume that all functions γi are non-negative and different from the null function.
Generating systems that form a partition of unity,

1 G = 1,

with 1 = (1, . . . , 1), will be said to be normalized.

Example 1. As an example of a generating system with a linear dependency relation we
consider translates of Zwart-Powell (ZP) element, a C1 piecewise quadratic box spline. It
is defined over a four directional criss-cross grid and it is obtained by applying convolutions
to the characteristic function of the unit square in four directions in R2: (1, 0), (0, 1), (1, 1)
and (−1, 1). Its support has the shape of an octagon as shown in Figure 1. Hence, the
function can be associated with the central point of its support. The translates with respect
to the integer grid Z2 form a generating system with one linear dependency relation. It is
known that removing one function restores linear independence. For further information
we refer to the monographs of de Boor et al. (1993) and Wang (2001).

We will denote the ZP element in the original position by ϕ(x). The associated point is
(1/2, 1/2), i.e., the center of its support. The support and the associated point are depicted
in Figure 1(a). The function itself is shown in Figure 1(b).

The translates of ϕ are
ϕi(·) := ϕ(· − i), i ∈ Z2.

1Even though we consider finite generating systems, the following theory can also be applied to locally
finite systems (see Davydov et al., 1997) for the definition of this notion.

3



1

10

x

y

(a) (b)

Figure 1: (a) The support of the Zwart-Powell element ϕ with associated point shown as black circle and
(b) the graph of the function ϕ.

Given an open set Ω, we consider only those translates that do not vanish on Ω and collect
their indices in a set I. These translates then form a finite generating system

G = (ϕi)i∈I . (1)

Obviously, we can introduce a suitable numbering and obtain a column vector of the
form (10). The linear dependency relation of ZP elements will be discussed later in Exam-
ple 22.

Note that the support of each element of the generating system G is always a subset of
Ω, since Ω is the domain of all functions that we consider. Those parts of the octagonal
(untrimmed, i.e., not restricted to Ω) supports of the translates that are not contained in
Ω will simply be ignored. ♦

We define a relation between generating systems.

Definition 2. The generating system G is said to be coarser than the generating system
Ĝ (and, conversely, Ĝ is finer than G),

G ≺ Ĝ,

if there exists a non-negative matrix S (i.e., a matrix with non-negative entries) such that

G = S Ĝ. (2)

Since the generating systems G, Ĝ and the matrix S are non-negative, the relation
implies the following simple observation: Consider the row (sij)j in the matrix S that

contains the coefficients of γi with respect to Ĝ,

γi = (cij)j=1,...,n̂ Ĝ, (3)
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where n̂ is the dimension of Ĝ. Then cij 6= 0 implies supp γi ⊆ supp γ̂j, where Ĝ =

(γ̂1, . . . , γ̂n̂)T . Thus, each function γi of G has a representation with respect to Ĝ that
involves only functions with support contained in supp γi. Since the systems are not
assumed to be linearly independent, several representations with this property may exist.

We summarize several simple properties of the relation ≺.

Lemma 3. 1. If G ≺ Ĝ then span G ⊆ span Ĝ.

2. The relation ≺ is reflexive, transitive and weakly antisymmetric in the sense that
G ≺ Ĝ and Ĝ ≺ G imply that span G = span Ĝ.

3. If the elements of G form a subset of the elements of Ĝ, then G ≺ Ĝ.

To show that ≺ is not antisymmetric consider two generating systems G = (f) and
Ĝ = (λf), where λ > 1 and f is an arbitrary function; these two systems are different but
related in both directions.

2.2. Hierarchical generating systems

Hierarchical generating systems are defined with the help of a domain hierarchy and a
hierarchy of generating systems. The domain hierarchy is simply a decreasing sequence of
N + 1 subsets Ω` ⊂ RD,

Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN+1 = ∅, (4)

where we added the final domain ΩN+1 = ∅ in order to simplify the notation later on.
The domains define the complementary hierarchy

∆` = Ω \ Ω`+1 (5)

satisfying
∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆N = Ω.

The elements of this hierarchy will be denoted as rings, because, conceptually, ∆` consist
of Ω with the ‘hole’ defined by Ω`+1 (even though it need not be ring-shaped).

The hierarchy of generating systems is a sequence of N + 1 generating systems G` =
(γ`i )i=1....,n` that is monotonically increasing with respect to relation ≺,

G0 ≺ G1 ≺ · · · ≺ GN . (6)

Denoting their spans with V ` = span G`, we obtain a nested sequence of spaces,

V 0 ⊆ V 1 ⊆ · · · ⊆ V N .

Without loss of generality we will assume that each domain Ω` is the union of supports
of a certain subset of the functions in G`+1. Considering domain hierarchies without this
property does not lead to additional hierarchical generating systems.

In order to prepare the construction of the hierarchical generating systems, we first
assume their ordering according to the chosen domain hierarchy. More precisely, such
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ordering allows for splitting the vectors G` into three sub-vectors G`
A, G`

B, G`
C with dimen-

sions n`A, n`B, n`C , respectively. The sub-vectors are defined as follows:

G` = (γ`i )i=1,...,n` =




G`
A

G`
B

G`
C


 =




(γ`i )i=1,...,n`
A

(γ`i )i=n`
A+1,...,n`

A+n`
B

(γ`i )i=n`
A+n`

B+1,...,n`
A+n`

B+n`
C


 (7)

such that

i ≤ n`A ⇔ supp γ`i * Ω`,

i > n`A + n`B ⇔ supp γ`i ⊆ Ω`+1, and

n` = n`A + n`B + n`C .

(8)

If the support of a function γ`i possesses a non-empty intersection with the ring ∆`−1, then
it belongs to G`

A. If it possesses a non-empty intersection with ∆`, but not with ∆`−1, then
it belongs to G`

B. All other functions are elements of G`
C . The partition of G` is shown in

Figure 2. Note that some of these sub-vectors may not be present (void) at certain levels.
In particular, G0

A is void, since the supports of all functions are contained in Ω = Ω0, and
GN
C are void since ΩN+1 = ∅.

Ω

Ωℓ

Ωℓ+1

Figure 2: Partition of G` into G`
A (red), G`

B (blue) and G`
C (yellow).

Since the generating systems form an increasing sequence (6), there exist matrices S`+1

with non-negative entries, which relate them in terms of Definition 2,

G` = S`+1G`+1, ` = 0, . . . , N − 1. (9)

These equations will be called the refinement relations. The matrices are denoted by S
because of their relation to subdivision methods (e.g., for box splines).

Example 4. Subdivision for box splines is already known and has been well studied
(de Boor et al., 1993; Prautzsch and Boehm, 2002). We will consider the refinement relation
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Figure 3: Subdivision of (a) ZP element into twelve finer functions, denoted with black and blue dots; the
supports depicted in (b-f) correspond to functions denoted with blue dots in (a).

for ZP elements, where a coarse function is a linear combination of twelve functions defined
on a finer grid (the supports of some of these finer functions are depicted in Figure 3).

We will consider a nested sequence of domains in R2 and a nested sequence of generating
systems of ZP elements on the grids obtained by refinement steps that split each elementary
square into four smaller ones (note that there are two systems of elementary squares on
the criss-cross grid). The ZP elements on a grid after ` refinement steps are

ϕ`i(x) = ϕ(2` x− i).

According to the choice of the domain hierarchy we obtain finite index sets I`, such that
the functions ϕ`i do not vanish on Ω for i ∈ I`. We then define the generating systems

G` = (ϕ`i)i∈I` . (10)

The coefficients in the refinement relation between a coarse and twelve finer functions are
shown in Figure 4. Note that not all finer functions need to be present at the next level,
since some of them might vanish on the domain Ω. ♦

Taking (7) into account, we obtain 9 sub-matrices,

G` =




G`
A

G`
B

G`
C


 =




S`+1
AA S`+1

AB S`+1
AC

S`+1
BA S`+1

BB S`+1
BC

0 S`+1
CB S`+1

CC







G`+1
A

G`+1
B

G`+1
C


 = S`+1G`+1. (11)

Note that S`+1
CA = 0 (the null matrix), since the functions in G`+1

A cannot contribute to the
values of functions in G`

C , cf. Eq. (3).
The following result follows directly from the last row in (11):
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Figure 4: The coefficients corresponding to the twelve finer functions in the refinement relation.

Lemma 5. We may express G`
C with respect to all Gk

B, k ≥ `+ 1,

G`
C =

N−1∑

k=`+1

( k−1∏

p=`+1

SpCC

)
SkCBG

k
B.

We are now ready to describe the selection mechanism of the hierarchy, which general-
izes the definition in Vuong et al. (2011) to generating systems.

Definition 6. The vector of functions

K = (G`
B)`=0,...,N

is called the hierarchical generating system. Its span is called the hierarchical space.

Example 7. We consider the hierarchical generating system with respect to generating
systems (10) for ` = 0, 1. The domain hierarchy is depicted in Figure 5. The selected
functions from level 0 and level 1 are denoted by circles that are placed at the associated
points. Note that some of these points are not contained in Ω, since we use the center
point of the untrimmed supports (not restricted to Ω). ♦

2.3. Truncated hierarchical generating systems

In this section we generalize the construction of truncated hierarchical B-splines of
Giannelli et al. (2012, 2013) to the case of generating systems. We consider the same
setting as in the previous section.

The truncation of a function f ∈ V ` with respect to the next generating system G`+1

is based on the following simple observation: The values of f on the ring ∆` are fully
determined by its coefficients with respect to G`+1

A ,

f = c`+1
A G`+1

A + c`+1
B G`+1

B + c`+1
C G`+1

C

[on ∆`]
= c`+1

A G`+1
A .

The right-hand side of this equation represents the truncation with respect to generating
system G`+1 and domain Ω`+1. It is obtained by removing the contributions of all functions
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(a) (b)

Figure 5: Hierarchical generating system of ZP elements with two levels; selected functions from (a) level
0 and (b) level 1.

γ`+1
i that are selected (i.e., included into the hierarchical generating system K), while leav-

ing the values of f on ∆` unchanged. More precisely, we omit the contributions of functions
from G`+1

B that have been selected directly. Moreover, we also omit the contributions of
the functions from G`+1

C that have been selected indirectly, as they can be represented by
functions that are selected at higher levels, see Lemma 5.

Repeatedly applying truncation to the functions G`
B that were selected for the hierar-

chical generating system K gives

G`
B

[on ∆`]
= S`+1

BAG
`+1
A

[on ∆`+1]
= S`+1

BA S
`+2
AA G

`+2
A

[on ∆`+2]
= . . .

[on ∆N ]
= S`+1

BA

( N∏

k=`+2

SkAA

)
GN
A , (12)

where we used the refinement equations (11). Finally we obtain the functions

T ` = S`+1
BA

( N∏

k=`+2

SkAA

)
GN
A , ` = 0, . . . , N − 1. (13)

Additionally, we define
TN = GN

B .

Definition 8. The vector
T = (T `)`=0,...,N

is called the truncated hierarchical generating system.

Any function τ ∈ T ` is obtained by repeatedly truncating a function β ∈ G`
B. We say

that β is the mother of τ and τ is the child of β. Any function τ ∈ T ` is derived from
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its corresponding mother β ∈ G`
B by subtracting the contributions of functions in finer

generating system whose children are included in the truncated hierarchical generating
system. Consequently, the support of β − τ is contained in Ω`+1 and

β
[on ∆`]

= τ.

Written in vector notation,

G`
B

[on ∆`]
= T `. (14)

Also note that according to (12), the restriction of T ` to ∆p for p > ` can be expressed as

T `
[on ∆p]

= S`+1
BA

( p∏

p=`+2

SpAA

)
Gp
A. (15)

Example 9. According to refinement relation described in Example 4 we can truncate
the ZP element with respect to higher levels. Figure 6 shows truncation of a function
in G` with respect to level ` + 1. The boundary of Ω`+1 is depicted by the dashed line.
Figure 6(b) shows how the support of a function after truncation becomes smaller. A
similar observation was made by Giannelli et al. (2012) for the case of truncated hierarchical
B-splines. ♦

(a) (b) (c)

Figure 6: Truncation of a ZP element in G` with respect to level `+1; the support (a) before and (b) after
truncation. The dashed line is the boundary of Ω`+1, circles denote the selected functions from G`+1 and
dots denote the non-selected ones. (c) The truncated ZP element.

3. Preservation of coefficients

The preservation of coefficients is a useful property of truncated hierarchical generating
systems. It has already been described in Giannelli et al. (2013) for the case of bases G`,
but its proof relied heavily on their linear independence. Here we generalize it to the case
of generating systems. We observe that it requires an additional compatibility condition
(17) between the representations of a function at different levels.
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Theorem 10 (Preservation of coefficients). Consider a function f that possesses repre-
sentations of the form

f
[on ∆`]

= c`AG
`
A + c`BG

`
B, ` = 0, . . . , N, (16)

where the coefficients of the different levels satisfy the compatibility conditions

c`+1
A = c`AS

`+1
AA + c`BS

`+1
BA , ` = 0, . . . , N − 1. (17)

Then f ∈ span T and

f =
N∑

`=0

c`BT
` = (c0

B, c
1
B, . . . , c

N
B ) T (18)

on the entire domain Ω.

The coefficient corresponding to τ ∈ T is the same as coefficient that is associated to
its mother β ∈ G`

B in the representation (16) of f on ∆` with respect to G`. Thus, the
truncated hierarchical generating system preserves the coefficients of mother functions.

Proof. We start with the representation of f at the finest level,

f = cNAG
N
A + cNBG

N
B ,

on ∆N = Ω, where GN
C is not present. Repeatedly using (17) we replace the coefficients c`A

until we arrive at level ` = 0,

f = cN−1
A SNAAG

N
A + cN−1

B SNBAG
N
A + cNBG

N
B

= cN−2
A SN−1

AA SNAAG
N
A + cN−2

B SN−1
BA SNAAG

N
A + cN−1

B SNBAG
N
A + cNBG

N
B = . . .

=
N−1∑

`=0

c`B

(
S`+1
BA

( N∏

k=`+2

SkAA

)
GN
A

)
+ cNBG

N
B .

Note that the last step does not produce a term involving c0
A, since G0

A is not present.
The theorem then follows directly from the definition of truncated hierarchical generating
system.

Example 11. Due to Theorem 10, the functions in the truncated hierarchical generating
system from Example 7 (ZP elements) can be associated with the same (Greville-type)
points in the domain. Indeed, we can represent the two coordinate functions, x and y,
in all levels by simply choosing the coefficient of each function equal to the coordinates
of the associated center point of its support. These coefficients satisfy the compatibility
conditions and they are therefore inherited by the truncated hierarchical generating system
for any choice of the domain hierarchy. It should be noted that the representations of the
coordinate functions are not unique, as ZP elements are not linearly independent. However
these Greville-type points are the only ones that give linear precision. ♦
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The following result describes the relation between the hierarchical generating system
K and the truncated hierarchical generating system T .

Corollary 12. The hierarchical generating system K is coarser than the truncated hierar-
chical generating system T , i.e., K ≺ T . Both generating systems span the same space,
span K = span T . The matrix relating them is upper triangular and its diagonal elements
are all equal to 1.

Note that T does not actually span a finer space that K. Still, T is “finer” than K in
the sense of relation ≺.

Proof. Repeatedly using refinement relations (9) allows to derive a similar relation between
any two hierarchical generating systems,

G` = P `,kGk, ` = 0, . . . , N ; k = `, . . . , N,

where

P `,k =
k∏

i=`+1

Si and in particular P `,` = I.

The matrices P `,k have all non-negative entries. They also possess a block structure of 3×3
matrices analogous to (11), and the blocks will be denoted in a similar way. (However, no
blocks vanish in general.) These equations imply

G`
B

[on ∆k]
= P `,k

BAG
k
A + P `,k

BB G
k
B, k = `, . . . , N.

In addition, relation (8) gives

G`
B

[on ∆k]
= 0, k = 0, . . . , `− 1.

The coefficients of G`
B at different levels also satisfy the compatibility condition (17).

Consequently, we can use Theorem 10 to derive the relation



G0
B

G1
B

...

GN−2
B

GN−1
B

GN
B




=




I P 0,1
BB P 0,2

BB · · · P 0,N−1
BB P 0,N

BB

0 I P 1,2
BB · · · P 1,N−1

BB P 1,N
BB

...
...

. . .
...

...

0 0 · · · I PN−2,N
BB PN−2,N

BB

0 0 · · · 0 I PN−1,N
BB

0 0 · · · 0 0 I







T 0

T 1

...

TN−2

TN−1

TN




between K and T , where 0 and I represent null-matrices and identity matrices of the
appropriate dimensions. The matrix appearing in this relation is non-negative, thusK ≺ T .
Moreover, the matrix is invertible, as it is upper triangular and the diagonal entries are all
1, therefore span K = span T .
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As another consequence of the preservation of coefficients, we are able to show that the
functions in T sum up to one:

Corollary 13. For normalized generating systems G` the truncated hierarchical generating
system T forms a convex partition of unity, provided that the refinement matrices satisfy
the compatibility conditions

1`+1 = 1` S`+1, ` = 0, . . . , N − 1.

1k denotes the row vector of dimension nk with all elements equal to 1.

Proof. This can be derived using Theorem 10 and considering the representation of the
function

1 = 1`G` [on ∆`]
= 1`AG

`
A + 1`BG

`
B

at different levels, where 1`A and 1`B are row vectors consisting entirely of ones and of dimen-
sions n`A and n`B, respectively. Moreover, the functions in T are non-negative, since they are
linear combinations of non-negative functions with non-negative coefficients, cf. (13).

Example 14. Figure 7 shows the sum of functions in the hierarchical generating system
and the truncated hierarchical generating system constructed with respect to the domain
hierarchy in Example 7. Observe that the sum for hierarchical generating system is not
equal to 1, since the functions do not form partition of unity. ♦

(a) (b)

Figure 7: Sums of functions in (a) the hierarchical generating system and in (b) the truncated hierarchical
generating system from Example 7.

4. Refinement

We consider two strategies for refining the hierarchical space.

• The first approach consists of enlarging each domain Ω` in the domain hierarchy to
Ω̂` ⊇ Ω` (except for Ω̂0 = Ω0 = Ω that remains unchanged).
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• The second possibility is to replace each generating system G` by a new system Ĝ`

which is finer with respect to the relation ≺. E.g., in the case of tensor-product
B-splines, this can be achieved by knot insertion or degree elevation.

Both methods lead to finer hierarchical spaces. First, we consider the enlargement of the
domain hierarchy.

Proposition 15. Consider two nested domain hierarchies

Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN+1 = ∅
Ω = Ω̂0 ⊇ Ω̂1 ⊇ · · · ⊇ Ω̂N+1 = ∅



 with Ω` ⊆ Ω̂`, ` = 1, . . . , N (19)

and the hierarchical generating systems defined on them. The second hierarchical generating
system is finer than the first one, K ≺ K̂.

Proof. Enlarging the domain hierarchy changes the definitions of sub-vectors G`
A, G`

B and
G`
C of G`. We denote the sub-vectors with respect to the enlarged domain hierarchy by Ĝ`

A,
Ĝ`
B and Ĝ`

C . Some of the functions from G`
A may belong to Ĝ`

B or even to Ĝ`
C , and some of

the functions in G`
B may belong to Ĝ`

C . The relation between the two sets of sub-vectors
can be expressed by a permutation matrix Q` with 9 sub-matrices Q`

AA, Q
`
AB etc.,

G` =




G`
A

G`
B

G`
C


 = Q`Ĝ` =




Q`
AA Q`

AB Q`
AC

0 Q`
BB Q`

BC

0 0 Q`
CC







Ĝ`
A

Ĝ`
B

Ĝ`
C


 . (20)

Note that Q`
BA, Q`

CA and Q`
CB are zero matrices, since functions in G`

B can not be expressed
with respect to Ĝ`

A and functions in G`
C can not be expressed with respect to Ĝ`

B and Ĝ`
C .

We now express each sub-vector G`
B as a non-negative linear combination of the sub-

vectors Ĝk
B, k = 0, . . . , N . By (20) G`

B can be written as

G`
B = Q`

BBĜ
`
B +Q`

BCĜ
`
C . (21)

Using Lemma 5 we replace Ĝ`
C in the above equation by

Ĝ`
C =

N∑

k=`+1

( k−1∏

s=`+1

ŜsCC

)
ŜkCBĜ

k
B,

where Ŝk denotes the matrix relating the enlarged generating systems Ĝk and Ĝk+1. Thus
we can write G`

B as a linear combination of Ĝk
B with non-negative coefficients for k =

`, . . . , N − 1. The matrix connecting K and K̂ has therefore non-negative entries.

Example 16. Consider the domain hierarchy in Example 7, Ω ⊇ Ω1 ⊇ Ω2 = ∅. By
enlarging the domains Ω1 ⊂ Ω̂1 and Ω2 ⊂ Ω̂2 we obtain a finer hierarchical generating
system. Figure 8 shows the new domain hierarchy and the selected functions from level 0,
1 and 2. They are represented by circles. Notice that adding a domain is just a special
case of domain enlargement. ♦
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(a) (b) (c)

Figure 8: Domain hierarchy for hierarchical generating system with enlarged domains Ω̂1 and Ω̂2 according
to Example 7; the selected functions from level 0, 1 and 2 (from left to right) are represented by circles.

Second, we consider the possibility of enlarging the generating systems in terms of
Definition 2. The proof of the Proposition 15 can be extended to cover this situation as
well. Indeed, the refinement relations between G` and Ĝ` can be written in the same form
as in (20). The matrices Q` in this case, however, are no longer just permutation matrices.

Proposition 17. Consider two sequences of generating systems

G0 ≺ G1 ≺ · · · ≺ GN

Ĝ0 ≺ Ĝ1 ≺ · · · ≺ ĜN



 with G` ≺ Ĝ`, ` = 1, . . . , N, (22)

and the hierarchical generating systems defined by them. The second hierarchical generating
system is finer than the first one, K ≺ K̂.

Note that both propositions also imply that

span T = span K ⊆ span K̂ = span T̂ . (23)

Example 18. We consider the nested spaces spanned by the generating systems G` that
consist of ZP elements from Example 4. In addition, for each generating system G`,
we consider the Bernstein-Bézier basis Ĝ` of C0 quadratic splines on the triangulation
defined by the ZP elements of that level. It consists of one function for each vertex and
one (additional) function for each edge of the triangulation (this corresponds to the six
quadratic Bernstein polynomials for each triangle.) When replacing G` with Ĝ` we enlarge
the hierarchical space defined by the (truncated) hierarchical generating system K and T .

♦

The combination of both refinement strategies leads to the General Enlargement The-
orem (GET):
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Theorem 19 (General Enlargement Theorem (GET)). Consider two sequences of hier-
archical domains (19), two sequences of generating systems (22) and the hierarchical gen-
erating systems defined by them. Then the second hierarchical generating system is finer
than the first one.

The proof follows directly from the previous two propositions. Several remarks on this
result are in order.

• As a special case, GET covers the case of adding another level to the hierarchy. In
particular, one may consider two hierarchies with

∅ = ΩN ⊆ Ω̂N 6= ∅.

This also proves that the generating systems which are generated by an inductive
definition (as used, e.g., in Giannelli et al. (2012)) form an increasingly finer sequence.

• GET makes it possible to define a hierarchy of hierarchies as follows. Consider a
sequence of (truncated) hierarchical generating systems Gk = Kk (or Gk = T k),
k = 0, . . . ,M , such that each of them is generated by a hierarchy of domains ωk,`

and a hierarchy of generating systems gk,`, ` = 0, . . . , N . We assume that these
hierarchies are all nested,

ωk,` ⊆ ωk,`+1, gk,` ≺ gk,`+1, ` = 0, . . . , N − 1. (24)

Now, if we consider another global domain hierarchy (4), then we can define a hierar-
chy of hierarchical spaces. This allows for adaptive refinement in the presence of local
features, e.g., surfaces with sharp edges and local C0 continuity. See Example 20.

• GET can be extended to truncated hierarchical generating systems, but this requires
an additional condition concerning the compatibility of the refinement relations,

S`+1Q`+1 = Q`Ŝ`+1 for ` = 0, . . . , N − 1. (25)

Due to space limitations we do not discuss further details. Note that the spaces are
nested even without this assumption.

Example 20. We consider a hierarchical generating system, constructed with respect to
nested sequence of two hierarchical B-spline bases K0 ≺ K1. Their hierarchical meshes and
selected functions are depicted in Figure 9(a) for K0 and in Figure 9(b) for K1. We define
a surface as a linear combination of basis functions in K0 with coefficients in R3. We build
a hierarchy of hierarchical spaces to allow for adaptive refinement in a selected region, see
Figure 9.

The hierarchical B-spline basis K0 is obtained from quadratic B-spline bases g0,0 ≺ g0,1

and domains ω0,0 ⊇ ω0,1. Note that g0,1 has a double knot in the middle, which results in
a surface with a local sharp feature. More precisely, the smoothness of the surface in this
region decreases to C0.
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In order to perform adaptive refinement of this particular surface, we find a finer hi-
erarchical generating system by performing space enlargement while leaving the domains
unchanged. In particular, we obtain g0,0 ≺ g1,0 and g0,1 ≺ g1,1 by knot insertion. By
Theorem 19 we get a nested sequence of hierarchical generating systems K0 ≺ K1.

Moreover, we choose a domain hierarchy Ω ⊇ Ω1, where Ω = ω0,0 = ω1,0. The do-
main Ω1 is shown in Figure 9 in blue. We construct a hierarchical generating system K
with respect to the domain hierarchy Ω ⊇ Ω1 and nested sequence K0 ≺ K1. In this
special configuration K0 and K1 are even locally linearly independent. Thus, K is linearly
independent.

Figures 9(c) and 9(d) show the selected functions from K0 and K1 with respect to
the domains Ω and Ω1. Figures 9(e) and 9(f) show the surface before and after local
modification. Note that the smoothness of the surface stays the same after modification
and the local feature does not extend globally. ♦

5. Linear independence

Clearly, linear independence is a highly desirable property of a generating system, since
it is essential for various applications. This section describes how to guarantee it with the
help of local linear independence. This approach goes back to the work of Kraft (1997).

Recall that a generating system G is said to be locally linearly independent, if for any
open subset U ⊆ Ω all the functions γi from G that do not vanish on U are linearly
independent on U ,

∀j = 0, . . . , n :

(
0|U =

n∑

i=0

ciγi|U ∧ γj|U 6≡ 0|U ⇒ cj = 0

)
. (26)

This property allows to conclude linear independence of the hierarchical generating systems
and truncated hierarchical generating systems that are derived from domain hierarchies and
hierarchies of generating systems.

Proposition 21. If the generating systems G` are locally linearly independent, then both
the hierarchical generating system K and the truncated hierarchical generating system T
are linearly independent.

The first proof of this result for hierarchical generating systems is due to Kraft (1997).
For the proof in the case for truncated hierarchical generating systems see Giannelli et al.
(2012).

Local linear independence is a stronger requirement than linear independence. For
instance, while it is known that B-splines are locally linearly independent, the general
construction of the hierarchical B-spline basis introduces local dependencies. Even the
truncation does not guarantee the absence of local linear dependencies. However, we
can maintain the local linear independence of hierarchical B-splines, provided that the
underlying spaces and hierarchical domains satisfy further assumptions. For instance, the
hierarchical B-splines in Example 20 are locally linearly independent. We plan to perform
a more detailed investigation of this issue in the future.
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(a) K0 (b) K1

(c) selected functions from K0 (d) selected functions from K1

(e) surface from span K0 (f) surface from span K

Figure 9: Hierarchy of hierarchical spaces defined with respect to hierarchical generating systems K0 ≺ K1

and hierarchical domains Ω ⊇ Ω1. The hierarchical meshes for K0 and K1 are shown in (a) and (b),
respectively. The boundary of domain Ω1 is denoted with a blue line in (c) and (d). The surface is shown
(e) before and (f) after a local modification.
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6. Controlling the linear dependencies

The results of the previous section do not apply to generating systems with linear
dependencies. For ZP elements it is known that omitting one function from the generating
system restores linear independence. In this section we will show how to extend this
observation to the hierarchical setting. More precisely, we formulate assumptions that
will allow us to characterize the linear dependencies that are present in the truncated
hierarchical generating system. These assumptions are satisfied by ZP elements.

Each generating system G defines a linear mapping from Rn to span G,

c 7→ cG, c ∈ Rn.

The kernel of this mapping is the space of all linear dependency relations in G. We denote
this space by L(G). We show how to find a basis for L(T ).

We consider a hierarchy of generating systems that possess exactly one linear depen-
dency relation each, i.e., dimL(G`) = 1. For each generating system G` there exists a
non-trivial row vector z` = (z`1, . . . , z

`
n`), such that z`G` = 0. Moreover, we assume that

the linear dependency relation involves all functions, i.e., that all elements of this vector
are non-zero.

Applying the refinement relation (9) to the linear dependency relation of G` produces
a representation of the function f = 0 with respect to G`+1. We make the following
simplifying assumption:

(A1) Applying the refinement relation (9) to the linear dependency relation of G` gives
the trivial representation of f = 0, i.e.,

z`S`+1 = O`+1,

where S`+1 is the matrix relating G` and G`+1 in terms of relation ≺ and O`+1 is a
row null vector of dimension n`+1.

Example 22. The generating system of ZP elements possesses one linear dependency
relation. The null function can be represented as a linear combination with coefficients
in a “chessboard pattern” of alternating coefficients +1 and −1 as shown in Figure 10.
Note that this linear dependency relation involves all functions in the generating system.
Moreover, this relation satisfies assumption (A1). ♦

Recall that the definition of the truncated hierarchical generating system is based on
the hierarchy of domains (4). These define the rings (5). For each generating system G`

we define a connectivity graph as follows:

• All elements of G`
A and G`

B are vertices of C`.

• Two different vertices γ`i and γ`j are connected by an edge whenever

supp γ`i ∩ supp γ`j ∩∆` 6= ∅.
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−1 −1
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−1 −1

+1

+1 +1

+1

Figure 10: Linear dependency relation in a generating system of ZP elements (the “chessboard pattern”).
The picture shows the corresponding coefficients. The functions are represented by dots at the associated
points.

We denote the vertex sets of the connected components of the connectivity graph by C`
k,

k = 1, . . . ,M `, where M ` denotes the number of connected components of level `.
We define G`-connected components of the ring ∆`,

∆`
k =

⋃

j=0,...,n`

γ`j∈C`
k

supp γ`j ∩∆`. (27)

Note that each ∆`
k is not necessarily a connected set in RD. If j > n`A for all j such that

γ`j ∈ C`
k, then both ∆`

k and C`
k will be called orphans of level `. Thus, all functions from

G`
A vanish (are equal to 0) on an orphan ∆`

k.
We assume a special ordering of the vectors G` as follows: We order the functions in

the sub-vector G`
A with respect to connected components C`

k for k = 1, . . . ,M `. Similarly
we order the sub-vector G`

B. More precisely, after the ordering we can write G`
A and G`

B

as
G`
A = (G`

A,k)k=1,...,M` , G`
B = (G`

B,k)k=1,...,M` .

Note that some sub-vectors may be void (not present). For instance, G`
A,k is not present

whenever C`
k is an orphan. When considering a linear combination c`G`, where c` is the

row vector of coefficients, the sub-vectors of coefficients corresponding to G`
A,k and G`

B,k will

be denoted by c`A,k and c`B,k, respectively. In particular, this also applies to the coefficients

of the global linear dependency relations with coefficients z`.

Example 23. We consider the hierarchical B-spline basis, defined with respect to the
univariate cubic B-splines over uniform knot vectors. The hierarchy of bases is obtained
by dyadic knot insertion and the domain hierarchy is shown in Figure 11(a). Although
connectivity graphs in case of B-splines are irrelevant, since the hierarchical generating
system is linearly independent, the example gives the idea how the connectivity graphs are
generated.

Figure 11(d) shows the connected components of the connectivity graphs. The functions
in G`

B are represented by shaded circles.
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First, we consider the level 0. Since G0
A is empty, the connectivity graph at level 0

contains only functions from G0
B. Therefore, every connected component is an orphan. In

this particular example, the connectivity graph consists of two components C0
1 and C0

2 . We
obtain two G0-connected components ∆0

1 and ∆0
2, see Figure 11(b).

Second, we consider level 1. The connectivity graph consists of three connected com-
ponents. Note that C1

2 contains only functions from G1
B and is therefore an orphan. We

obtain three G1-connected components of ∆1 and one of them is an orphan. Note that ∆1
1

is not a connected set in R.
The connectivity graph at level 2 (not shown) has only one connected component, since

∆2 = Ω. It is not an orphan since all functions in G2
A are present. ♦

In addition to the assumption (A1) about the linear dependency relations, we will also
need an assumption concerning the rings ∆`.

(A2) Each connected component ∆`
k of the ring ∆` admits only linear dependency relations

that are instances of the global linear dependency relation in G`. More precisely, if

c`A,kG
`
A,k + c`B,kG

`
B,k

[on ∆`
k]

= 0 (28)

then there exists a scalar %, such that

c`A,k = % z`A,k, c`B,k = % z`B,k,

where z`A,k and z`B,k are sub-vectors of the vector z`, corresponding to G`
A,k and G`

B,k.

This assumption, which is satisfied by ZP elements, generalizes the notion of local linear
independence to generating systems with linear dependencies and will be referred to as
generalized local linear independence.

A linear dependency relation in T will be represented by a row vector w. Its sub-vector
with respect to T ` will be denoted by u`,

0 = w T = (u0, . . . , uN) T =
N∑

`=0

u` T `.

Moreover, each u` consists of sub-vectors u`k, one for each G`-connected component of the
ring ∆`.

Due to the ordering of G`
B and truncation process (12), T ` consists of M ` sub-vectors

T `k such that

T `
[on ∆`

k]
= T `k .

Note that some of the vectors T `k may be void.
Let K and L be indices, such that CL

K is an orphan. We define a linear dependency
relation associated with it,

wLK = (u0
1, . . . , u

0
M0 , . . . , uN1 , . . . , u

N
MN ),
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Figure 11: An example of connectivity graphs for univariate cubic hierarchical B-splines with the domain
hierarchy, shown in (a). The graphs of levels 0 and 1 are shown in (d); the functions in G0

B and G1
B are

represented by shaded circles. The corresponding G0- and G1-connected components are shown in (b) and
(c).

where

u`k =





z`B,k if ` = L and k = K,

0 otherwise,
(29)

for ` = 0, . . . , N and k = 1, . . . ,M `.

Lemma 24. The vector wLK represents a linear dependency relation of T .
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Proof. We consider the representation of f = 0 on the ring ∆` with respect to G` defined
by

0
[on ∆`

k]
= O`

A,kG
`
A,k +O`

B,kG
`
B,k (30)

for each connected component C`
k, k = 1, . . . ,M `, k 6= K, ` = 0, . . . , N , ` 6= L, and

0
[on ∆L

K ]
= zLB,K G

L
B,K

for the orphan CL
K . Note that representing 0 on the orphan ∆L

K involves only functions
from GL

B. Using assumption (A1) we can verify that the compatibility condition (17) is
satisfied. The lemma now follows from Theorem 10.

Theorem 25. The set of linear dependencies

{wLK : L = 0, . . . , N, K = 0, . . . ,M `, CL
K is an orphan} (31)

is a basis for the space L(T ) of linear dependency relations in T .

Proof. According to the previous lemma, each wLK is a linear dependency relation in T . Due
to GL-connectivity, the non-zero entries of wLK have mutually different indices. Therefore,
the vectors wLK are linearly independent.

We show that these linear dependencies span the entire linear space L(T ). Suppose
w = (v0, . . . , vN) is a linear dependency relation in T ,

0 = w T = (v0, . . . , vN) T =
N∑

`=0

v` T `. (32)

We show that w can be expressed as a linear combination of wLK . We use induction with
respect to level ` to express w on each ring ∆`. Starting with the lowest level ` = 0 we
restrict equation (32) to each connected component ∆0

k. Using equation (14) we obtain

0
[on ∆0

k]
= w T [on ∆0

k]
= v0

k T
0
k

[on ∆0
k]

= v0
kG

0
B,k.

Since G0 satisfies assumption (A2), there exists %0
k, such that

v0
k = %0

k z
0
B,k = %0

k u
0
k. (33)

We now consider ` ≥ 1. Using equation (13) we obtain

0 = w T [on ∆`]
= v0 T 0 + · · ·+ v` T `

[on ∆`]
=

`−1∑

p=0

vp Sp+1
BA

( ∏̀

r=p+2

SrAA

)
G`
A + v`G`

B.
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By induction, all sub-vectors vpk, p < `, can be written as vpk = %pk z
p
B,k = %pk u

p
k, whenever

∆p
k is an orphan, and vpk = OT otherwise. Using assumption (A1) we obtain

vp Sp+1
BA

( ∏̀

r=p+2

SrAA

)
= O`

A for p = 1, . . . , `− 1.

For each G`-connected component ∆`
k we get

0
[on ∆`

k]
= O`A,kG

`
A,k + v`kG

`
B,k.

If ∆`
k is not an orphan, then we conclude v`k = 0, since the only non-trivial representation

of a null function with respect to G` involves all functions (we assumed all elements of z`

to be non-zero).
Otherwise, if ∆`

k is an orphan, then G`
A,k is void. According to assumption (A2) there

exists a scalar %`k, such that
v`k = %`k z

`
B,k = %`k u

`
k.

We conclude that any linear dependency relation can be obtained as a linear combination
of vectors wLK , where CL

K is an orphan,

w =
∑

K,L :CL
K is

an orphan

%LK w
L
K .

Theorem 25 gives us all linear dependency relations in the truncated hierarchical gener-
ating system for certain classes of hierarchies of generating systems, including ZP elements.
Consequently, one can restore linear independence by omitting a suitable subset of T . This
observation will be used in the next section.

7. Adaptive surface fitting with hierarchical ZP elements

Zwart-Powell elements are a particularly interesting class of box splines on the criss-
cross grid, since they combine low degree with C1 smoothness. Based on the theoretical
results presented so far we use their truncated hierarchical version to perform surface fitting
with adaptive refinement.

7.1. Hierarchical refinement

Given a set of data (points (xi, yi) with associated values fi, i = 1, . . . ,m, for a large
number of points m), we iteratively compute a least-squares approximation and perform a
refinement procedure until the approximation error becomes smaller than a given tolerance.

In our examples, the points are distributed uniformly in the domain Ω (which is an
axis-aligned box) and their number is much larger than the dimension of span T . In order
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to simplify the presentation we do not consider any regularization strategy here, which
might be needed in order to avoid problems with singular linear systems2. The discussion
of such a strategy is beyond the scope of the present paper. Instead, we focus on the issue
of adaptive refinement and the elimination of the linear dependencies in the truncated
hierarchical generating system.

We consider two different refinement strategies; they will be referred to as relative and
full refinement. Moreover, since the computation of the least-squares approximation needs
a generating system that is a basis, we have to find linear dependencies in T and eliminate
suitable functions to restore linear independence. Except for this part (step (b) below),
our algorithm is similar to the one used by Giannelli et al. (2012):

Hierarchical approximation.

• Input: an initial domain Ω ⊂ R2 together with the data set (xi, yi, fi), i = 1, . . . ,m,
which associates real values fi to a set of points (xi, yi) ∈ Ω, a certain tolerance ε,
and a maximum value for the number of iteration steps smax.

• Algorithm:

(a) define an initial generating system G0 of ZP elements on Ω and initialize s = 0;

(b) determine the linear dependency relations in the current truncated hierarchical
generating system and restore linear independence by omitting suitably chosen
functions from T ; this creates a modified generating system T ?.

(c) compute the least squares approximation f =
∑

ϕ∈T ?

cϕϕ that minimizes

m∑

i=0

(fi − f(xi, yi))
2 (34)

with respect to the coefficients of T ?;
(d) if max |fi − f(xi, yi)| > ε and s < smax, then set s = s + 1 and apply the

hierarchical refinement according to the considered refinement strategy; repeat
steps (b) and (c); otherwise the algorithm terminates.

• Output: The least-squares approximation f expressed in terms of truncated hierar-
chical generating system of ZP elements so that max |fi − f(xi, yi)| ≤ ε or s = smax.

In step (b) we have to consider connectivity graph at each level of the current truncated
hierarchical generating system. We have to find all the connected components of level `
that are identified as orphans. Once we find all such components, we can restore linear in-
dependence by eliminating one function from each orphan, see Lemma 24 and Theorem 25.

2For instance, such problems would be present if the number of degrees of freedom in certain subset of
Ω exceeds the number of data points in that subset.
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These functions are indicated by the circles in the hierarchical meshes shown in the figures
that illustrate the examples below.

In step (d) we use two different refinement strategies. Both fit into the same black-box
procedure.

Hierarchical refinement.

• Input: the current hierarchical sequence of nested hierarchical domains together with
points (xi, yi) marked for refinement;

• Output: a nested sequence of domains Ω̂ ⊇ · · · ⊇ Ω̂N , so that

Ω̂ = Ω, Ω̂` ⊇ Ω`, ` = 1, . . . , N, (35)

and the corresponding truncated hierarchical generating system. For each point that
is marked for refinement, the level of the domain containing it

max
`
{` | (xi, yi) ∈ Ω`}

increases.

The difference between relative and absolute refinement strategy is the number of points
that are marked for refinement. In the case of relative refinement we select the (user-
specified) percentage of the points where the largest errors occur. For absolute refinement
we simply choose all points where the error exceeds the given threshold.

The enlargement of the domains in (35) is obtained by adding a suitable number of cells
from the neighborhood of each point that is marked for refinement to the corresponding
domain. This neighborhood is chosen such that at least one ZP element is added to the
corresponding generating system. The domain enlargement is followed by a cleaning step
in order to restore the property that the domains are nested in the hierarchy.

7.2. Adaptive fitting with relative refinement strategy

We compute the least-squares approximations of the function

f(x, y) =
2

3 exp (
√

(3x− 5)2 + (3y − 5)2)
+

2

3 exp (
√

(3x+ 5)2 + (3y + 5)2)

+
2

3 exp (
√

(2x)2 + (2y)2)
, (x, y) ∈ [−3, 3]2,

shown in Figure 12(a). A similar function was used by Giannelli et al. (2012). We obtained
the data by sampling on a uniform grid of size 100 × 100. In step (b) we performed
hierarchical refinement by considering 5% of the points. The tolerance was chosen as
ε = 105 and we considered 5 steps of refinement. The relative refinement strategy results
in the loss of symmetry as it is evident from Figure 12(f). Due to the loss of C1 smoothness
around the 3 “peaks”, the refinement is concentrated around them. Table 1 provides
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step dim ldr max error

0 63 1 0.41801

1 179 2 0.24848

2 350 4 0.13247

3 662 4 0.06110

4 1490 4 0.00119

Table 1: Using the relative refinement strategy (Section 7.2): The dimension of the generating system
after elimination of chosen functions, number of linear dependency relations (ldr) and the maximum error.

information concerning the number of degrees of freedom and the resulting error in the five
steps of refinement.

In the initial configuration (s = 0), the ZP elements possess one linear dependency
relation. We recover the linear independence by eliminating the function represented by a
circle in the upper left corner in Figure 12(b). After the first refinement, the domain Ω1

splits Ω into two orphans. Thus, we eliminate two functions from level 0, see Figure 12(c).
Note that we always eliminated functions that are located close to the boundary of the

domain Ω. Consequently, the circles representing them are placed outside of Ω, since they
are located at the center of the full support (not trimmed by Ω).

Similarly we proceed with the refinement and eliminate four functions after each of
the three following refinement steps. In the last step one should note that the connected
component of ∆2 (red), which is surrounded by ∆3 (yellow), is not an orphan, since it
is G2-connected to the other parts of ∆2. Similarly, the small yellow spots in the mesh
obtained in the last step do not represent additional orphans.

7.3. Adaptive fitting with absolute refinement strategy

In the second example we considered the function (also used by Giannelli et al., 2012),

f(x, y) =





1, y − x ≥ 1/2,

2(y − x), 0 ≤ y − x ≤ 1/2,

1/2 cos (4π
√
q(x, y)) + 1/2, q(x, y) ≤ 1/16,

0, otherwise,

(for (x, y) ∈ [0, 2]× [0, 1])

where q(x, y) = (x−3/2)2+(y−1/2)2. Again we sampled 100×100 points on a uniform grid.
The threshold is now ε = 102. The results of the surface approximation are summarized in
Table 2. After four steps, the error satisfied the given tolerance and no further refinement
was necessary.

Once more, the ZP elements of the initial configuration possess one linear dependency
relation. It is eliminated by omitting function in the upper left corner, see Fig. 13(b). In
this particular example, the dimension of L(T ) increases by one in each step of refinement,
and thus, we omit more and more (suitably chosen) functions.
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(a) the function f (b) s = 0, one orphan (c) s = 1, two orphans

(d) s = 2, four orphans (e) s = 3, four orphans (f) s = 4, four orphans

Figure 12: Using the relative refinement strategy (Section 7.2): Adaptively refined meshes and corre-
sponding least-squares approximations of the function in (a) by truncated hierarchical ZP elements; circles
denote the functions that were eliminated in order to restore the linear independence of the truncated
hierarchical generating system.
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step dim ldr max error

0 59 1 0.47043

1 179 1 0.03781

2 440 2 0.01667

3 680 3 0.00828

Table 2: Using the absolute refinement strategy (Section 7.3): The dimension of the generating system
after elimination of chosen functions, number of linear dependency relations (ldr) and the maximum error.

According to our experience, the second refinement strategy performs better, since it
better preserves the symmetry that may be present in the data and it also reduces the error
faster than the first one. However, if the error threshold is chosen too small (such that it
cannot be reached by using only the maximum number of levels that is specified), then
the second strategy may lead to an almost global refinement, and the relative refinement
strategy would give better results.

8. Closure

We extend the framework of truncated hierarchical bases (Giannelli et al., 2012, 2013)
to the case of generating systems, where linear dependencies are possible. We formulated
a new framework in order to generalize the existing approach to the new setting. It was
shown that many of the advantageous properties of truncated hierarchical basis are also
present in the new setting. These include the preservation of coefficients, the nested nature
of refinement via domain enlargement, and the partition of unity property.

As specific applications we considered hierarchies of hierarchical B-splines and hier-
archical Zwart-Powell (ZP) elements, where we performed adaptive surface fitting. This
naturally led us to the question how to eliminate the linear dependencies that are inherited
by the hierarchical generating system. For ZP elements, and for the class of hierarchical
generating systems with similar properties, we obtained a satisfactory answer.

Our future work will be devoted to further applications of the presented theoretical
framework. These may include spline surfaces of general topology, general subdivision
surfaces, and more general classes of functions with more complicated linear dependency
relations.
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