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Abstract. The numerical integration over a planar domain that is cut by an implicitly defined boundary curve
is an important problem that arises, for example, in unfitted finite element methods and in isogeometric analysis
on trimmed computational domains. In this paper, we establish an efficient quadrature rule of arbitrary order for
this class of domains. It is based on a very general version of the transport theorem for moving domains defined
by implicitly defined curves. Our approach is suited for high-order geometrically unfitted finite element methods
as well as for high-order trimmed isogeometric analysis.

Key words. numerical quadrature, unfitted finite element method, immersed methods, fictitious domain
methods, isogeometric analysis, trimming, transport theorem

AMS subject classifications. 53A04, 65N30, 65N85

1. Introduction. Accurate and efficient quadrature rules for domains that are defined by a
fixed geometry that is intersected by a curve or surface are needed in several applications.

These include geometrically unfitted finite element methods [2], such as CutFEM [6], and
immersed finite element [50] and fictitious domain methods [18]. In these methods, the solution
to a partial differential equation (PDE) is approximated in a discrete space that is defined by
background mesh that covers the computational domain. The computational domain is then
specified by its boundary, which is often represented implicitly, for example by a distance function.
In general, the boundary of the background mesh does not coincide with (i.e., it is not fitted to) the
boundary of the computational domain. Therefore, this approach results in a discretization that
consists of interior elements of the background mesh as well as cut elements along the boundary of
the computational domain. Dirichlet boundary conditions are imposed weakly and the stability of
the discretization is ensured by modifying the bilinear form. Several approaches exist, including
high-order schemes [7, 28, 34]. In order to implement unfitted FEM, a quadrature rule for the cut
elements along the computational domain’s boundary is needed to assemble the system matrix.
According to Strang’s lemma, the approximation order of the employed quadrature rule needs to
match the approximation order of the discrete space. It is therefore necessary to define high-order
quadrature rules for the cut elements in order to be able to employ discretization spaces of high
approximation orders.

Another important application of quadrature rules on geometries that are intersected by curves
appears in the framework of Isogeometric Analysis (IgA) [21]. IgA aims at approximating solutions
to PDEs that are defined on models produced by Computer Aided Design (CAD) systems with-
out changing the underlying geometric description. In CAD systems, the geometries are usually
represented by tensor-product B-Splines or NURBS (non-uniform rational B-Splines). According
to the isogeometric paradigm, the solution to the PDE is approximated in the same space that is
use for representing the geometry. This approach enables the seamless integration of CAD and
numerical analysis as well as the use of high-order discretizations, which compare favorably to
finite element methods [3, 16].

In practice, CAD models increase the flexibility of tensor-product spline constructions by
including trimmed patches. These are created when a tensor-product patch is intersected by a
trimming curve or surface that splits the patch into an active and an inactive region. The advantage
of this technique is that it makes it possible to represent much more complex geometries. However,
in the context of numerical analysis using isogeometric analysis, the occurrence of trimmed patches
results in a number of challenges [32]. Especially when using high-order spline discretizations, we
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need accurate quadrature rules on trimmed domains that match the approximation order of the
employed discrete spaces.

The treatment of trimmed domains has thus been a major focus of the recent research in IgA,
and many similarities to unfitted FEM have been noted. Besides quadrature, several problems have
been investigated: The stability of the discretization needs to be dealt with, since the support of
the basis functions can become arbitrarily small when refining the discretization space. This issue
can be resolved by employing modified bases such as extended B-Splines [22, 31], by modifying
the bilinear form [4, 5], employing specialized preconditioners [12], or by the use of multi-grid
solvers [13, 29]. Adaptivity has been introduced to isogeometric and immersed methods on trimmed
domains through the use of THB-splines [10, 17]. The coupling between trimmed patches is a
further challenge that has been addressed [40, 51], for example in the context of shells [27].

The present paper focuses entirely on quadrature. The standard approach to numerical quad-
rature on elements that are cut by a curve is to subdivide each element of the discretization into
simple subdomains, such as polygons with curved edges, for which quadrature rules are avail-
able. It has been used extensively both for isogeometric analysis [17, 25, 48] and for unfitted FEM
[14, 38]. In isogeometric analysis, the conversion of trimmed elements into a number of untrimmed
entities is also referred to as untrimming [1, 23, 33].

Clearly, the success of this conversion depends on the robustness and the efficiency of the
available tools for computing intersections and for the approximation of the cut domain’s bound-
aries. In particular, intersection computations for free-form geometries are well known to be a
hard problem [39], and the solution that has been implemented in the existing CAD technology
requires a substantial amount of engineering knowledge, and sometimes even user interaction. On
the one hand, the level of difficulty increases both with the order of the discretization, due to
the need to generate more accurate representation of the subdomains as it is increased. On the
other hand, it also increases with the degree of the geometry representations, which makes robust
intersection computations more difficult. For instance, the intersection curves of bicubic patches
– a standard representation for free–form geometry in CAD – possesses algebraic order 324 in the
parameter domains!

Besides untrimming, a number of further approaches to the numerical integration on cut
elements have been proposed.

A classical approach, which has been applied to immersed boundary methods [42], is adap-
tive quadrature by quadtree or octree subdivision. In this method the computational domain is
subdivided adaptively along the interface until a predefined depth is reached. The method has
been improved by moving the resulting quadrature nodes onto the geometric boundary in [26],
resulting in the smart octree method. This provides accurate approximations of the integrals but
the number of quadrature nodes can be very high. In [15] and [49], this method is extended by
the use of error-estimators, aimed at reducing the number of sub-cells in the octree subdivision.

Another research direction aims at transforming the integrals over bivariate or trivariate do-
mains into a number of univariate integrals. In [11] a method for the integration over tetrahedra
that are cut by implicit surfaces has been presented. Each tetrahedron is parameterized with
respect to suitable coordinate directions that allow for a representation of the original integral
by nested univariate integrals, taking into account the appearing singularities. The reduction to
univariate integrals can also be achieved via integral theorems such as the divergence theorem or
Green’s theorem, an idea that has been investigated extensively in different contexts [20, 41, 45].
Similar to untrimming, these methods rely on the accurate computation of intersections.

Another interesting approach builds on the construction of specific quadrature rules for each
trimmed element by solving a non-linear optimization problem [36]. In order to formulate the
moment-fitting equations that define the quadrature nodes, the integrals of polynomials are ap-
proximated on a subdivision of the considered element into convex sub-cells. Since solving a
nonlinear optimization problem in each cell can be expensive, it has been proposed to choose the
nodes in advance and only solve for the quadrature weights [24, 35].

Motivated by the marching cube algorithm, the Corrected Linearized Trimmed quadrature
rule (CLT) for the numerical integration on planar domains intersected with implicitly defined
curves was developed in [44]. It was then extended to the thee-dimensional case of volumes
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intersected with implicit surfaces in [43]. The method defines a fourth-order quadrature rule on
each integration cell and consists of three steps:

• In a first step it is ensured that the considered integration cell belongs to a small number
of predefined base cases, which are defined by the signs of the implicit function at the cell
vertices. These base cases are similar to the ones of the marching cube algorithm [37].

• In a second step the function that defines the implicit curve is approximated by a linear
function, which results in the approximation of the trimming curve by a straight line.
This is used as an initial approximation and by itself results in a third-order quadrature
rule.

• Finally, in the third step of the method, the approximation order is increased by one
by adding an error correction term that is based on the Taylor expansion of the linear
interpolation between the original integral and the approximate one. This correction term
consists of the first derivative of the integral over a moving domain and it is computed
using Reynold’s transport theorem.

Unlike most of the existing methods, this approach does not require any intersection computations.
Instead, it suffices to evaluate the function that defines the interface at the cells’ vertices.

Using shape sensitivity analysis (see [9]) instead of Reynold’s transport theorem, a similar
error correction approach was explored in [46]. More precisely, a piecewise linear (and not just
linear as in our approach) approximation of the interface combined with first-order correction
terms is used to generate moment-fitting equations that define quadrature rules with predefined
nodes inside the computational domain. The presented experiments indicate convergence rate 2
for dimension d = 2, but (surprisingly) rate 4 for d = 3, according to Table 2 of [46] and Table
2 of [47], while our results would justify rate 3 in both cases. We believe that the results of the
present paper prepare the ground for extending the moment-fitting approach to higher orders.

So far, we were able to achieve a fourth-order approximation of the integral in each cut
integration cell, hence the method is suited, e.g., for Galerkin methods for second order problems
that employ discretization spaces with cubic approximation order, such as piecewise quadratic
polynomials. In order to extend the method to high-order quadrature, which is needed when
using Galerkin methods based on high-order finite element or spline spaces, we need to be able
to compute all derivatives of the integral of a function over a moving domain. In order to so, we
need a very general version of the transport theorem.

In the present work, which focuses on two-dimensional integrals, we derive a transport theorem
for moving curves that may possess vertices. We then show how to apply it to the computation of
all the derivatives of the integral over a moving domain. This result enables us to establish efficient
quadrature rules of arbitrary order for planar domains that are cut by implicitly defined curves.
We analyze the accuracy and computational complexity and provide numerical examples both for
the numerical quadrature and its application to an immersed isogeometric Galerkin method.

The rest of the paper is organized as follows: We begin in Section 2 by recapitulating the
quadrature rule based on first order error correction that was introduced in [44] and [43]. Then,
in Section 3, we prove the transport theorem for moving curves. Section 4 adapts the transport
theorem to the special setting of implicitly defined curves and shows how to use it to compute
derivatives of arbitrary order in this setting. We use these results in Section 5 to define the novel
high-order quadrature rule for planar domains that are cut by an implicitly defined curve, whose
complexity and accuracy we then analyze in the subsequent section. The paper concludes by
presenting numerical results in Section 7, which are followed by closing remarks and suggestions
for future research.

2. Numerical quadrature by error correction. In the previous publication [44], a fourth-
order quadrature rule for planar implicitly defined trimmed elements was presented. It is assumed
that the integration region is given by the set

Bτ = {(x, y) ∈ B : τ(x, y) > 0},
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where B ⊂ R2 is a quadrilateral (for example a trimmed element of a spline discretization) and τ
is a differentiable function

τ : B → R,

called trimming function. The aim is to approximate the integral

(2.1) Iτf =

∫

Bτ

f(x, y) dy dx

of a function f over the computational domain.
In order to approximate the integral (2.1), the trimming function τ is first approximated by

a linear function

σ(x, y) = σ0x+ σ1y + σ2,

whose function values at the vertices of B have the same signs as the original trimming function’s.
These signs define the base cases of the method. In the two-dimensional setting, there are two
trimmed base cases: the triangle case and the rectangle case, see Figure 1. It is enforced by

σ < 0

σ > 0
p0

p1

τ > 0 τ > 0

τ < 0τ < 0

σ > 0

σ < 0
p0

p1τ > 0 τ < 0

τ < 0τ < 0

Fig. 1: The two base cases of the quadrature rule for trimmed two-dimensional domains.

adaptive subdivision of B that the considered cell is in one of the two base cases.
In order to find the linear approximation σ, the intersection points p0 and p1 of the zero-level

set of σ with the boundary are determined by interpolation of τ at the intersected edges’ vertices.
This defines σ up to one additional degree of freedom, which is chosen by approximating a partial
derivative of τ using finite differences and setting the corresponding partial derivative of σ to the
same value. In the rectangle base case, ∂τ

∂y is approximated while in the triangle base case the

partial derivative in the direction of the longest edge component inside {σ > 0} is used.
Once an approximate trimming function σ is found, the integral

(2.2) Iσf =

∫

Bσ

f(x, y) dy dx,

where

(2.3) Bσ = {(x, y) ∈ B : σ(x, y) > 0},

is used as an initial approximation to (2.1). Since σ is linear, Bσ is a polyhedron and the inte-
gral is therefore simple to evaluate. The resulting quadrature rule is called Linearized Trimmed
quadrature rule (LT).

To improve the approximation, the intermediate trimming function

(2.4) η(u, x, y) = σ(x, y) + u(τ(x, y)− σ(x, y))
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is defined, which leads to the function of intermediate integral values

Q(u) =

∫

Bη(u)

f(x, y) dy dx,

where Bη(u) = {(x, y) ∈ B : η(u, x, y) > 0}. The sum of the first two terms of the Taylor
expansion of Q around u = 0 is then used as an improved approximation

(2.5) Q(1) ≈ Q(0) +Q′(0).

The quadrature rule resulting from approximating the two terms on the right-hand-side of (2.5) is
called Corrected Linearized Trimmed quadrature rule (CLT). It was shown in [44] that while the
approximation (2.2) results in a third order quadrature rule (on the element level), the corrected
quadrature rule resulting from (2.5) is of fourth order.

In this paper, we will extend (2.5) by adding further terms of the Taylor expansion

(2.6) Q(1) ≈
k∑

α=0

Q(α)(0)

α!

for any k ∈ N. We thereby define a new type of quadrature rule of order k + 3 that consists of
distinct nodes and weights for the integrand as well as for its derivatives:

∫

Bτ

f(x, y) dy dx ≈
max(0,k−1)∑

α=0

nα∑

q=1

〈
ωαq , D

αf(xαq )
〉

=
∑

i

ωif(xi) +
∑

j

ωj · ∇f(xj) +
∑

r

〈ωr, Hf (xk)〉F + . . . ,(2.7)

where ωαq ∈
⊗α R2, i.e. ωi ∈ R, ωj ∈ R2, ωr ∈ R2×2.

The derivative Q′(u) can be computed using Reynold’s transport theorem and consists of an
integral over the moving curve {η(u, x, y) = 0} ∩ B. This makes it necessary to compute the
derivatives of this integral with respect to u in order to find the higher-order correction terms.

3. The transport theorem for moving curves. Throughout this section, let

A(u) ⊂ R2

be a family of curves, and

L(u) ⊂ A(u)

a family of oriented curve segments with boundary.
We denote by n the unit normal of L, by t the unit tangent, by v the scalar normal velocity

and by κ the curvature. All these quantities depend on both the parameter u ∈ R and the point
x ∈ A(u). Additionally, we denote by b0(u) the start point and by b0(u) the end point of L(u)
with respect to the orientation, and by

(3.1) v0/1(u) = t(u,b0/1(u)) · db0/1

du
(u)

the tangential component of the boundary velocity.
We are interested in the first derivative of the curve integral of a function F on the subcurve

L with respect to the parameter u.

Proposition 3.1 (Transport theorem for moving curves). Given a function F ∈ C1(R×R2),
the derivative of the curve integral over L satisfies

(3.2)
d

du

∫

L(u)

F ds =

∫

L(u)

∂F

∂u
+DnFv − Fκv ds+ F (u,b1(u))v1(u)− F (u,b0(u))v0(u).
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Proof. We consider an arbitrary u0 ∈ R and choose a family of parameterizations

q(u, .) : [τ0(u), τ1(u)]→ L(u)

of L(u) such that q(0, τ) = q0(τ), where

q0 : [τ0(u0), τ1(u0)]→ L(u0)

is an arc-length parameterization. We denote by n0(τ) be the normal field and v0(τ) the scalar
normal velocity field of L(u0).

As a consequence of Taylor’s theorem there exists ε > 0, such that for u ∈ [u0 − ε, u0 + ε]

(3.3) q(u, τ) = q0(τ) + (u− u0)v0(τ)n0(τ) + (u− u0)2Γ(τ, u).

Here, Γ(τ, u) is a bounded remainder term.
We rewrite the integral of F over L(u) as

∫

L(u)

F (u, x) ds =

∫ τ1(u)

τ0(u)

F (u,q(u, τ))‖∂q

∂τ
(u, τ)‖dτ

and its derivative with respect to u as

d

du

∫

L(u)

F ds =

∫ τ1(u)

τ0(u)

(
∂F

∂u
+∇F · ∂q

∂u

)
‖∂q

∂τ
‖+ F

∂

∂u
‖∂q

∂τ
‖ dτ

+
dτ1
du

(u)F (u,q(u, τ1(u)))‖∂q

∂τ
(u, τ1(u))‖ − dτ0

du
(u)F (u,q(u, τ0(u)))‖∂q

∂τ
(u, t0(u))‖.(3.4)

According to (3.3), the appearing derivatives of q are

∂q

∂u
(u, τ) = v0(τ)n0(τ) + 2(u− u0)Γ(u, τ) + (u− u0)2 ∂Γ

∂u
(u, τ),(3.5)

∂q

∂τ
(u, τ) =

∂q0

∂τ
(τ) + (u− u0)

(
∂v0

∂τ
(τ)n0(τ) + v0(τ)

∂n0

∂τ
(τ)

)
+ (u− u0)2 ∂Γ

∂τ
(u, τ)(3.6)

and

∂2q

∂τ∂u
(u, τ) =

∂v0

∂τ
(τ)n0(τ) + v0(τ)

∂n0

∂τ
(τ) + 2(u− u0)

∂Γ

∂τ
(u, τ) + (u− u0)2 ∂

2Γ

∂u∂τ
(u, τ).(3.7)

The norm of the tangent evolves as

∂

∂u

(
‖∂q

∂τ
‖
)

=
∂q
∂τ ·

∂2q
∂τ∂u

‖∂q∂τ ‖

and we therefore have at u = u0

∂

∂u

(
‖∂q

∂τ
‖
)

(u0, τ) =
∂q0

∂τ (τ)

‖∂q0

∂τ (τ)‖
·
(
∂v0

∂τ
(τ)n0(τ) + v0(τ)

∂n0

∂τ
(τ)

)

=
∂q0

∂τ
(τ) · v0(τ)

∂n0

∂τ
(τ)

= −κ0(τ)v0(τ).(3.8)
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We substitute (3.5)-(3.8) into (3.4) and evaluate at u = u0, arriving at

d

du

∫

L(u)

F ds

∣∣∣∣∣
u=u0

=

∫ τ1(u0)

τ0(u0)

(
∂F

∂u
+∇F · ∂q

∂u

∣∣∣∣
u=u0

)
‖∂q0

∂τ
‖ − Fκ0(τ)v0(τ) dτ

+
dτ1
du

(u0)F (u0,q(u0, τ1(u0)))‖∂q0

∂τ
(u0, τ1(u0))‖

− dτ0
du

(u0)F (u0,q(u0, τ0(u0)))‖∂q0

∂τ
(u0, τ0(u0))‖

=

∫ τ1(u0)

τ0(u0)

∂F

∂u
+∇F · ∂q

∂u

∣∣∣∣
u=u0

− Fκ0(τ)v0(τ) dτ

+
dτ1
du

(u0)F (u0,q(u0, τ1(u0)))− dτ0
du

(u0)F (u0,q(u0, τ0(u0))).(3.9)

Using the definition of q, the boundary points are defined as

b0/1(u) = q(u, τ0/1(u))

and their derivatives satisfy

db0/1

du
=
∂q

∂u
+
∂q

∂τ

dτ0,1
du

.

Consequently, the tangential part of the velocity fulfills

(3.10) v0/1 =
db0/1

du
· t =

∂q

∂u
·

∂q
∂τ

‖∂q∂τ ‖
+

∥∥∥∥
∂q

∂τ

∥∥∥∥
dτ0,1
du

=

∥∥∥∥
∂q

∂τ

∥∥∥∥
dτ0,1
du

.

Using (3.5), (3.9), (3.10) and the fact that u0 was chosen arbitrarily completes the proof.

Remark 3.2 (Higher derivatives). On a first glance it seems as if the computation of higher
derivatives was possible by simply applying Proposition 3.1 repeatedly. However, in general the
integrand on the right-hand-side of (3.2) is itself not a function in C1(R×R2) and Proposition 3.1
cannot be applied to it directly. In the next Section, we will apply the transport theorem to
implicitly defined moving curves. We will see that in this special case, the transport theorem can
be applied repeatedly and can therefore be used to compute all derivatives with respect to u.

4. Implicit curves intersecting a fixed domain. We apply Proposition 3.1 to the special
case of implicitly defined curves that intersect a fixed domain. Our goal is to derive easy-to-evaluate
expressions for all derivatives of the integral over an implicitly defined moving curve.

4.1. Definitions. We assume that the family of curves A(u) is given as the zero-level set

(4.1) η(u, x, y) = 0

of a function η ∈ C1,2(R× R2). Furthermore, we assume that L(u) is the intersection

(4.2) L(u) = A(u) ∩ B̄

of the implicit curve A(u) with the closure of a region B ⊂ R2. While L(u) may possibly consist
of more than one curve segment, we consider only one of them for simplicity. The case of multiple
segments will be dealt with by considering them individually.

Since A(u) is defined implicitly in (4.1), we have the following representations of the normal,
normal velocity, tangent and curvature for one choice of orientation (see [19]):

n =
−∇η
‖∇η‖ , v =

ηu
‖∇η‖ , t =

1

‖∇η‖∇η
⊥(4.3)
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and

κ =
t ·Hηt

‖∇η‖ =
∇η⊥ ·Hη∇η⊥
‖∇η‖3 ,(4.4)

where

Hη =

(
ηxx ηxy
ηxy ηyy

)

is the Hessian and

∇η⊥ =

(
−ηy
ηx

)

is the gradient rotated by π
2 counterclockwise. Clearly, all of these quantities depend on u, x, and

y. Strictly speaking, they are only defined if η(u, x, y) = 0.
Additionally, we assume that the region B is defined implicitly by a function ψ ∈ C(R2), such

that

B = {ψ(x, y) = 0}.

For points p ∈ ∂B that satisfy ∇ψ(p) 6= 0, we denote by

ν =
−∇ψ
‖∇ψ‖

the outwards-pointing normal of the boundary ∂B. Furthermore, we define b0(u) to be the start
point, and b1(u) to be the end point of L(u) on the boundary {η = 0} ∩ ∂B, with respect to the
orientation defined by the tangent t.

4.2. The transport theorem for implicit curves. In order to express the derivative of
the integral over an implicit moving curve, we first need to find a representation of the tangential
part of velocity of its boundary.

Lemma 4.1. The tangential part of the velocity of the boundary of L(u) at the start or end
point b0/1(u) is given by

(4.5) v0/1(u) =
−ηuν · ∇η
∇η · ν⊥‖∇η‖

∣∣∣∣
(u,b0/1(u))

.

Proof. Because b0/1(u) lies on ∂B for all u, we have

(4.6)
∂b0/1

∂u
(u) = λ(u)ν⊥(b0/1(u))

for some function λ(u). Since b0/1(u) also lies on A(u), it also fulfills η(u,b0/1(u)) = 0 and
therefore

∂η

∂u
+∇η · λ(u)ν⊥ = 0.

This implies

λ(u) =
−ηu
∇η · ν⊥

∣∣∣∣
(u,b0/1(u))

.

By substituting λ into (4.6) and using the definitions (3.1) and (4.3) we conclude (4.5).

With this representation for the tangential part of the boundary velocity we can state the transport
theorem for moving implicit curves:
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Proposition 4.2. We assume that for all u the boundary intersections b ∈ {η = 0} ∩ ∂B
satisfy ∇ψ(b) 6= 0. Then, the derivative of the integral of a function F ∈ C1(R × R2) over the
moving curve satisfies

d

du

∫

{η=0}∩B
F ds =

∫

{η=0}∩B

∂F

∂u
+∇F · −ηu∇η‖∇η‖2 − F

ηu∇η⊥ ·Hη∇η⊥
‖∇η‖4 ds

+
∑

b∈{η=0}∩∂B
F

ηuν · ∇η
|∇η · ν⊥| ‖∇η‖

∣∣∣∣
(u,b(u))

.(4.7)

Proof. The equation follows from Proposition 3.1, Lemma 4.1 and (4.3)-(4.4). In particular,
the signs of the boundary terms are correctly taken into account since at the start point b0 of
each curve segment we have

sign(∇η(u, b0(u)) · ν⊥(b0(u))) = 1

while at the end point b1 of each curve segment we have

sign(∇η(u, b1(u)) · ν⊥(b1(u))) = −1.

4.3. Higher order derivatives. Assuming sufficient smoothness of η, ψ and F , we observe
that the right-hand side in Proposition 4.2 consists of an integral of a function in C1(R × R2)
over the moving curve and of point evaluations of another C1(R× R2)-function at the boundary
intersections.

For simplicity, we once more consider there to be single component of η = 0 inside B. By
setting

F (1) =
∂F

∂u
+DnFv − Fκv

=
∂F

∂u
+∇F · −ηu∇η‖∇η‖2 − F

ηu∇η⊥ ·Hη∇η⊥
‖∇η‖4

and

B
(1)
0/1(u) = F (u,b0/1(u))v0/1(u),

= F
ηuν · ∇η

|∇η · ν⊥| ‖∇η‖

∣∣∣∣
(u,b0/1(u))

,

we can write the first derivative as

d

du

∫

L(u)

F ds =

∫

L(u)

F (1) ds+B
(1)
1 (u)−B(1)

0 (u).

In order to compute the second order derivative, we therefore need to compute the derivative of
an integral term as well as the derivatives of the boundary terms. The derivative of the integral
can be evaluated by another application of Proposition 4.2. In order to compute the derivatives
of the boundary terms we observe that, the chain rule implies

(4.8)
d

du
G(u,b0/1(u)) =

∂G

∂u
(u,b0/1(u)) +∇G(u,b0/1(u)) · db0/1

du
(u).

for any differentiable function G.
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Using these representations, we can express the second derivative of the curve integral,

d2

du2

∫

L(u)

F ds =

∫

L(u)

∂F (1)

∂u
+DnF

(1)v − F (1)κv ds

+ F (1)(u,b1(u))v1(u)− F (1)(u,b0(u))v0(u)

+
∂B

(1)
1

∂u
(u,b1(u)) +∇B(1)

1 (u,b1(u)) · db1

du
(u)

− ∂B
(1)
0

∂u
(u,b0(u))−∇B(1)

0 (u,b0(u)) · db0

du
(u).

Consequently, we can use Proposition 4.2 to compute all derivatives of the curve integral, also in
the case of multiple components of the curve inside B.

We define the two linear operators C : Ck(R× R2)→ Ck−1(R× R2),

CG =
∂G

∂u
+DnGv −Gκv

=
∂G

∂u
+∇G · −ηu∇η‖∇η‖2 −G

ηu∇η⊥ ·Hη∇η⊥
‖∇η‖4

and B : C0(R× R2)→ C0(R),

BG(u) =
∑

b∈{η=0}∩∂B
G

ηuν · ∇η
|∇η · ν⊥| ‖∇η‖

∣∣∣∣
(u,b(u))

and obtain

Theorem 4.3. Given a function F ∈ Ck(R × R2), the derivatives of the curve integral over
L satisfy

(4.9)
dk

duk

∫

L(u)

F ds =

∫

L(u)

CkF ds+
∑

i+j=k−1
i,j≥0

di

dui
BCjF.

Proof. The proof follows by repeatedly applying Proposition 4.2.

Finally, we need to evaluate the differential operator di

dui in Theorem 4.3 explicitly.

Lemma 4.4. Given a function G ∈ C1(R× R2) we have

(4.10)
d

du
G(u,b0/1(u)) =

(
∂G

∂u
−∇G ·

(
ηu
‖∇η‖2∇η −

ηuν · ∇η
∇η · ν⊥‖∇η‖2∇η

⊥
))∣∣∣∣

(u,b0/1(u))

.

Proof. The proof follows from (4.8), Lemma 4.1 and (4.3)-(4.4),

5. Error correction terms of the 2D corrected trimmed quadrature rule. We use
Theorem 4.3 to compute all correction terms of the approximation of the integral over a trimmed
domains presented in [44] and [43]. Analogously to the first order error correction that we sum-
marized in section 2, we need to evaluate the terms of Taylor expansion

(5.1) Q(1) ≈ Q(0) +Q′(0) +
Q′′(0)

2
+
Q′′′(0)

6
. . .

of the intermediate integral values

Q(u) =

∫

Bη(u)

f(x, y) dy dx,
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where Bη(u) = {(x, y) ∈ B : η(u, x, y) > 0} and

η(u, x, y) = σ(x, y) + u(τ(x, y)− σ(x, y)).

In [43, Lemma 1] it was shown that the first derivative of the integral over the implicitly defined
moving domain is given by

(5.2) Q′(u) = −
∫

{η=0}∩B
f

ηu
‖∇η‖ ds

and that the first order correction term therefore satisfies

Q′(0) = −
∫

{σ=0}∩B
f

τ

‖∇σ‖ ds.

We observe that (5.2) is an integral of a function

F = f
ηu
‖∇η‖

over a moving family of curves that is defined as the intersection of implicitly defined curves
{η = 0} and a fixed region B.

We first use Proposition 4.2 to compute the second order correction term.

Corollary 5.1 (Second order correction term). The second order correction term takes the
form

Q′′(0) = −
∫

{σ=0}∩B

(
τ2∇f + 2fτ (∇τ −∇σ)

)
· ∇σ

‖∇σ‖3 ds+ C,

where

(5.3) C =
f(p1)τ(p1)2

σ3
x

σy
+ σxσy

+
f(p0)τ(p0)2

σ3
y

σx
+ σxσy

if B is in the triangle base case and

(5.4) C = −f(p1)τ(p1)2

σ3
y

σx
+ σxσy

+
f(p0)τ(p0)2

σ3
y

σx
+ σxσy

if B is in the rectangle base case (see Figure 1). Here, p0 = b0(0) and p1 = b1(0) are the start
and end points of L(0).

Proof. In order to compute the derivative of (5.2) we set

F = f
ηu
‖∇η‖ .

The derivative with respect to u is given by

(5.5) Fu = f
ηuu‖∇η‖ − ηu∇ηu·∇η‖∇η‖

‖∇η‖2 = −f ηu∇ηu · ∇η‖∇η‖3 ,

where we used the definition of η from (2.4) and the assumption that σ is linear to see that ηuu = 0.
Computing the gradient of F , we arrive at

(5.6) ∇F = f
∇ηu‖∇η‖ − ηu Hη∇η‖∇η‖

‖∇η‖2 +∇f ηu
‖∇η‖ .
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From (2.4), (5.5) and (5.6), we infer

Fu|u=0 = −f (τ − σ)(∇τ −∇σ) · ∇σ
‖∇σ‖3(5.7)

and

∇F |u=0 = f
(∇τ −∇σ)

‖∇σ‖ +∇f (τ − σ)

‖∇σ‖ .(5.8)

Using Proposition 4.2 and the observation that D2η = 0, we obtain

Q′′(0) =(5.9)
∫

{σ=0}∩B
−f (τ − σ)(∇τ −∇σ) · ∇σ

‖∇σ‖3 +

(
f

(∇τ −∇σ)

‖∇σ‖ +∇f (τ − σ)

‖∇σ‖

)
· −(τ − σ)∇σ
‖∇σ‖2 ds

+ F
−(τ − σ)ν · ∇σ
∇σ · ν⊥‖∇σ‖

∣∣∣∣
(u,b1(u))

− F
−(τ − σ)ν · ∇σ
∇σ · ν⊥‖∇σ‖

∣∣∣∣
(u,b0(u))

= −
∫

{σ=0}∩B

τ2∇f · ∇σ + 2fτ (∇τ −∇σ) · ∇σ
‖∇σ‖3 ds

+ F
−τν · ∇σ
∇σ · ν⊥‖∇σ‖

∣∣∣∣
(u,b1(u))

− F
−τν · ∇σ
∇σ · ν⊥‖∇σ‖

∣∣∣∣
(u,b0(u))

.(5.10)

Note, that σ = 0 in the integration region.
In the triangle base case, the outward-pointing normals of the boundary are

ν0 = ν(u,b0(u)) =

(
−1
0

)
and ν1 = ν(u,b1(u)) =

(
0
−1

)
,

while in the rectangle base case they are ν0 =

(
−1
0

)
and ν1 =

(
1
0

)
. Substituting these values

into the two last terms in (5.10) leads to (5.3)-(5.4).

We can use Theorem 4.3 to compute all further correction terms. Because of the definition of
the operators B0/1 and C in Theorem 4.3 and the representation of the boundary derivatives
in Lemma 4.4, each additional error correction term contains an additional derivative of the
integrand f . If we approximate all appearing curve integrals using a standard quadrature rule,
such as Gaussian quadrature, this leads to a new quadrature rule in the form of (2.7). We call
it k-times corrected linearized trimmed quadrature rule and denote it by kCLT, where k is the
number of correction terms.

Remark 5.2 (Extension to the three-dimensional case). In [8, (5.6)], a transport theorem for
surface integrals is presented. The derivative of the integral over a moving surface the transport
consists of the sum of another integral over the moving surface and an integral over the moving
boundary curves, which in our application are the intersections of the implicitly defined surface
with the faces of the box. This means that together with Theorem 4.3, all correction terms can
be computed also in the three-dimensional case, thereby extending the method that was proposed
in [43].

6. Computational complexity and accuracy. We expect that the error of kCLT con-
verges with order k + 3 on a single cell with respect to the cell size, assuming that the appearing
integrals are approximated well enough. Therefore, we need to choose quadrature rules for the ap-
pearing univariate and bivariate integrals that match this approximation order. Because Gaussian
quadrature with q nodes is exact for polynomials of degree 2q− 1, this means that we need to use

q =

⌈
k + 2

2

⌉
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nodes per direction for both the univariate and the bivariate quadrature rules.
More precisely, we consider the compound quadrature rule

(6.1)

∫

Ωτ

f(x, y) dy dx ≈
∑

Bτ∈Qtrimmed

kCLT(Bτ , f) +
∑

B∈Quntrimmed

Gauss(B, f)

over a subdivision
Qtrimmed ∪Quntrimmed

of
Ωτ = {(x, y) ∈ Ω : τ(x, y) ≥ 0}

into trimmed and untrimmed cells of uniform size h.
We assume that there are asymptotically

N = h−2

untrimmed cells and
n = h−1

trimmed cells in the subdivision. In order to achieve an order of convergence of convergence of
k + 2 for the quadrature error, we need therefore need to choose a quadrature rule of order k + 3
for the trimmed cells and a quadrature rule of order k + 4 for the untrimmed cells. This can be
achieved by choosing kCLT with

qtrimmed =

⌈
k + 2

2

⌉

Gauss nodes per direction for the trimmed cells and a Gaussian quadrature rule with

quntrimmed =

⌈
k + 3

2

⌉

nodes per direction for the untrimmed cells.

Theorem 6.1. In terms of function evaluations of the integrand and its derivatives, the com-
plexity of the compound rule (6.1) based on kCLT is

O
(
Nk2 + n

(
k2 + 2kk + 2k

))

Proof. On every trimmed cell in Qtrimmed, we evaluate the integrand at the quadrature nodes
belonging to the bivariate quadrature rule for the approximated integration region {σ > 0} ∩ B.
Moreover, we evaluate the first k − 1 derivatives of the integrand at the nodes corresponding to
the univariate quadrature rule for the line integral over {σ = 0} ∩B. Finally, we need to evaluate
the first k − 2 at the start and end points of the line. Taking into account the dimension of the
k-th derivative of a function, this means that we perform

q2
trimmed +

max(0,k−1)∑

α=0

2αqtrimmed + 2

max(0,k−2)∑

α=0

2α

function evaluations on each trimmed cell. Because the number of quadrature nodes for both the
trimmed and untrimmed cells depend linearly on k, the result follows.

Remark 6.2. When considering the dependence on h, we observe that the estimate in The-
orem 6.1 is dominated by the first term, which corresponds to the bivariate Gauss quadrature
on the untrimmed cells. In particular, this means that the computational complexity of kCLT is
asymptotically the same as the one of classical Gauss quadrature, while achieving a much higher
accuracy. Furthermore, the asymptotic complexity with respect to h is independent of the number
of error correction terms, which makes high-order kCLT very efficient.
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Fig. 2: The integration region
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Fig. 3: Error convergence when approximating the area of a quarter circle with increasing number
of error correction terms

7. Numerical examples. We will now demonstrate the accuracy and efficiency of our ap-
proach in a number of numerical experiments. We implemented the method using the open source
C++ library G+Smo [30]. For the approximation of the bivariate and univariate integrals appear-
ing in the correction terms, we used standard Gauss quadrature with an appropriate number of
nodes.

7.1. Area approximation. In our first example, we compute the area of a quarter circle of
radius 0.9 inscribed in the unit square B = [0, 1]2. It is defined by the trimming function

τ(x, y) = −x2 − y2 + 0.81,

see Figure 2.
We compare quadrature rules from zero to three error correction terms, denoted by LT (lin-

earized trimmed quadrature rules) and kCLT (k-times corrected linearized trimmed quadrature
rule). Figure 3 confirms that each additional error correction term results in an additional order
of convergence of the quadrature error.



QUADRATURE ON PLANAR DOMAINS BASED ON TRANSPORT THEOREMS 15

Fig. 4: The integrand defined in (7.1) over a disk of radius r = 0.3.
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Fig. 5: Error convergence when approximating the function f in (7.1) over a disk using increasing
numbers of error correction terms

7.2. Integrating a function over a trimmed domain. In our next example, we approx-
imate the integral of the function

(7.1) f(x, y) = 32x6y − 48x4y2 + 18x2y3 − 1

over a disk of radius 0.3 inscribed in the unit square, meaning that the trimming function is

τ(x, y) = (x− 0.5)2 + (y − 0.5)2 − 0.32.

The value of the integral can be evaluated exactly and is equal to −7526007π
100000000 .

Figure 4 shows the integrand that we consider in this example. The main difference in this
example compared to our last example, is that the derivatives of the integrand are non-zero and
therefore the related terms of the quadrature rule (2.7) appear in the computation.. As in our last
example, we compare the convergence rates of the quadrature error when using quadrature rules
with an increasing number of error correction terms. In Figure 5 we observe that adding more
error correction terms results in higher orders of convergence also in this example.

Next, we will investigate the computational complexity of our method. To this end, we record
the computation times needed for achieving the approximations presented in Figure 5. In order
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Fig. 6: Computation times when approximating the function f in (7.1) over a disk using increasing
numbers of error correction terms

to make a fair comparison, we use the minimum number of Gauss nodes for the univariate and
bivariate Gauss quadrature rules that are employed for approximating the appearing integrals in all
corrected linearized trimmed quadrature rules. This means that for LT we use 1 node per direction,
for CLT and 2CLT we use 2 nodes per direction and for 3CLT we use 3 nodes per direction. Figure 6
shows the computation times. We observe that asymptotically the approximation is computed in
quadratic time for all methods, which is also the same asymptotic time needed for classical Gauss
quadrature. This confirms the results of Theorem 6.1 and Remark 6.2. Additionally, the overhead
cost of each additional error correction term is very small compared to the increase in accuracy
that we observed in Figure 6.

7.3. Solving the Poisson equation. Finally, we apply our high-order quadrature rule for
trimmed surfaces to the solution of a partial differential equation using isogeometric analysis. In
particular, we solve the Poisson equation





∆u = f in Ωτ ,
∂u
∂ν = h on ∂ΩNeumann

τ ,

u = g on ∂ΩDirichlet
τ

.(7.2)

As the computation domain Ωτ , we choose a unit square B = [0, 1]2 with a circular hole around
its center. The trimming curve is thereby given implicitly by

τ(x, y) = (x− 0.5)2 + (y − 0.5)2 − 0.232.

We impose homogeneous Neumann boundary conditions on the trimming curve and Dirichlet
boundary conditions on the edges of the square. As an exact solution with homogeneous Neumann
boundary conditions on the circle we set

u(x, y) =
10(x− 1

2 )2

(x− 1
2 )2 + (y − 1

2 )2
+ τ(x, y)2(x10 + 20y4 + 100x6y7),

the function is shown in Figure 7.
We use the standard quadrature rule LT as well as the error-corrected quadrature rules CLT

and 2CLT to assemble the system matrix of an isogeometric Galerkin method using B-Splines of
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Fig. 7: The exact solution u

different polynomial degrees p. More precisely, we use extended B-Splines [22] in order to achieve
numerical stability. This stabilization technique works well for isogeometric methods that use
relatively low spline degrees, but it is known to be less efficient for higher degrees [31]. This makes
performing experiments with discretizations using high spline degrees challenging. All integrals
appearing in the corrected trimmed quadrature rules are approximated using Gaussian quadrature
with p + 1 nodes per direction. The optimal rates of convergence for the employed spline spaces
are p+ 1 in the L2 norm and p in the H1 seminorm. We therefore consider a quadrature rule to
be suitable if it can realize these orders.

Figure 8 reports the L2-error as well as the H1-error of the approximate solutions resulting
from discretizing with polynomial degrees p = 2 through p = 4 using our quadrature rules LT,
CLT and 2CLT:

• We observe that for p = 2 both CLT and 2CLT achieve the optimal cubic order of
convergence in the L2 norm, while LT only achieves second order. All three methods
achieve the optimal quadratic rate of convergence in theH1 seminorm. This is to expected,
since the overall error is bounded by the quadratic order provided by the LT quadrature
rule.

• Comparing the results for degree p = 3, we observe that 2CLT is more accurate than
CLT and realizes the optimal quartic order of convergence in the L2 norm, while both
methods lead to an optimal cubic order of convergence when measuring the error in the
H1 seminorm.

• Finally, for p = 4, the accuracy increases with each correction term and 2CLT is able to
realize the optimal quartic rate of convergence in the H1 seminorm.

The results indicate that kCLT leads to an optimal rate of convergence in the L2-norm for spline
degrees up to p = k + 1. If the error is measured only in the H1-norm, kCLT is optimal even for
spline degrees up to p = k + 2.

8. Conclusion and future work. We presented a novel quadrature rule for planar domains
that are intersected with an implicitly defined curve. Our method is able to achieve arbitrarily
high order and is therefore well suited for high-order geometrically unfitted finite element methods
and isogeometric analysis on trimmed CAD models. It as at the same time efficient, accurate and
easy to implement and can be integrated into existing software.

Our method is based on a Taylor expansion of the interpolation between the original integral
and an approximation, which makes it necessary to compute derivatives of integrals over moving
curves. In order to obtain a quadrature rule of arbitrary order, we first proved a transport theorem
for moving curves and showed that in the case of implicitly defined moving curves, it can be used
to compute any derivative of the integral.
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(b) p=3
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Fig. 8: Error of the approximate solution to (7.2) in the L2 norm (left) and the H1 seminorm
(right) using different quadrature rules and polynomial degrees.

Future work includes the generalization of the method to the 3D case where the error correction
terms include integrals over moving surfaces, moving curves in the integration cells’ boundary faces
as well as point evaluations at their edges. We provided a guideline on how to apply the techniques
presented in this paper to the integration on cut volumes in Remark 5.2.

Furthermore, in order to arrive at a theoretical guarantee of the convergence order, the re-
mainder term of Taylor expansion needs to be further investigated. For the first order correction
term, this analysis has been carried out in [44]. While the details of the proof were quite technical,
there seem to be no unsurmountable obstacles for the extension to higher orders.
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