
Fast Formation of

Isogeometric Galerkin

Matrices via Integration by

Interpolation and Look-up

Maodong Pan, Bert Jüttler,
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Abstract

Although isogeometric analysis possesses many advantages over classical finite element meth-
ods, the computational costs of matrix assembly (especially for high polynomial degrees)
constitute a bottleneck in isogeometric numerical simulations. To address this issue, we
propose an efficient algorithm for the formation of isogeometric Galerkin matrices based on
the interpolation, look-up and sum factorization techniques. This method consists of three
steps: First, we project the common factors occurring in the integrals into an appropriate
spline space via the interpolation or quasi-interpolation operator. Subsequently, the entries
of the stiffness and mass matrices are approximated by a sum of integrals of tensor-product
B-splines. Second, to perform an exact integration of the integrands in the approximated
matrices, a look-up table for the standardized B-spline tri-product integrals is built. Finally,
the system matrices are efficiently assembled by invoking the sum factorization technique.
We present a detailed analysis of the computational costs, in order to compare the new
method with the existing approaches for all polynomial degrees. Several numerical tests
confirm that the proposed method ensures the efficiency of matrix assembly. In addition,
the extension of our approach to matrix-free applications is also discussed.

Keywords: Isogeometric analysis; Matrix assembly; Computational complexity;
Interpolation and look-up; Sum factorization

1. Introduction

Isogeometric analysis (IgA), introduced by Hughes et al. [26], provides a true design-
through-analysis framework by employing the same mathematical representations (such as
NURBS) for both the geometry description and the discretization of partial differential
equations (PDEs) [16]. Consequently, it possesses significant advantages over the traditional
finite element method. These include higher regularity of the isogeometric discretizations
of PDEs [10], enhanced robustness in a number of practical applications [25], and improved
accuracy of the obtained numerical solutions [17, 18].
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However, it has been noted that these advantages come at the price of increased compu-
tational complexity per degree of freedom in the matrix assembly process, and this effect is
more pronounced for high spatial dimensions and spline degrees [13, 38]. In particular, the
process of assembling the stiffness and mass matrices via standard element-wise Gaussian
quadrature leads to complexity of O(Np3d), where N , p, d denote the number of degrees
of freedom, the spline degree and the spatial dimension respectively. It is obvious that the
computational cost grows fast as p increases, especially for d = 3. Techniques for the fast
formation of system matrices became an active topic in isogeometric analysis, and substan-
tial research effort has been devoted to efficient algorithms for generating the stiffness and
mass matrices arising in isogeometric discretizations.

The work on this topic can be roughly classified into four categories: (A) reduced or spe-
cialized quadrature rules; (B) isogeometric collocation methods; (C) quadrature techniques
employing sum factorization; (D) quadrature-free approaches.

(A) Reduced or specialized quadrature rules. Initially, Gaussian quadrature was widely used
for isogeometric simulation, but its performance is far from optimal. This is attributed to the
fact that Gaussian quadrature rules do not take the smoothness of NURBS basis functions
across element boundaries into account, resulting in more quadrature points than required for
stability and accuracy. Thus one way to improve the computational efficiency of numerical
integration is to reduce the number of quadrature nodes. This was first proposed by Hughes
et al. [27] through particular instances and the development of quadrature rules for NURBS
patches with uniform knots. Subsequently, a large number of related approaches [1, 4, 6–
9, 14, 15, 22, 28, 42] focusing on deriving optimal (with respect to the number of evaluations)
quadrature rules for various spline spaces have been explored. Among these approaches, the
most advanced one is weighted quadrature [15], which is a sophisticated strategy to exploit
sum factorization. The idea is to design specialized quadrature rules that require fewer
evaluations, thereby generating a significant speedup with complexity O(Npd+1). Various
important issues concerning the practical implementation of this method are discussed in
the recent work [23]. While weighted quadrature is efficient, it is not able to preserve the
symmetry of the resulting system matrices.

(B) Isogeometric collocation methods. Isogeometric collocation, originally presented in [5],
is a valuable alternative approach to the Galerkin method, in which the strong form of the
underlying PDEs is enforced at a set of locations (called collocation points), based on the
higher regularity of the isogeometric discretizations. The main advantage of isogeometric
collocation over Galerkin methods is the minimal computational effort of O(Npd) for matrix
assembly, since for each degree of freedom only one evaluation (at the associated collocation
point) is required [41]. Thus collocation methods can be considered as one-point quadrature.
A disadvantage is the lack of theoretical guarantees for the convergence properties. To
address this issue, an ideal collocation scheme whose solution coincides with the solution of
the Galerkin method was introduced in [21], thus recovering optimal rate of convergence.
Within this framework, an improved convergence behaviour can be obtained by using a
subset of the collocation points estimated in [21] with local symmetry [35]. The investigation
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of super-convergent points also contributes to the development of special quadrature rules
for IgA [19]. Despite the recent progress, a rigorous mathematical explanation for the
convergence behaviour observed for these methods is not available yet.

(C) Quadrature techniques employing sum factorization. Sum factorization, a well-known
technique in the field of spectral elements and high-order finite elements [2, 34, 36], was first
employed for assembling isogeometric Galerkin matrices in [3]. In this initial contribution to
the use of sum factorization in IgA, the assembly process was performed in an element-wise
procedure and has a computational complexity O(Np2d+1). Four years later, Bressan and
Takacs [12] applied the sum factorization technique in a global fashion, thereby reducing the
complexity to O(Npd+2). In fact, all the quadrature rules with tensor-product structures
admit the acceleration via the sum-factorization technique.

(D) Quadrature-free approaches. These methods abandon the use of numerical integration
altogether. In the interpolation and look-up approach [32], a factor in the integrand com-
posed of both the coefficients of the PDEs as well as the geometry mapping is first projected
into a spline space, and subsequently the resulting integrals are evaluated exactly via pre-
computed compact look-up tables. The total complexity of this method isO(Np2d). Another
category of quadrature-free work is towards exploitation of the tensor methods. It has been
observed that the multivariate functional integrals occurring in isogeometric discretizations
can be well approximated by a sum of small number of univariate functional integrals with
the use of tensor decomposition technique. In [33], the authors have explored this technique
to perform the assembly task of isogeometric matrices. To avoid the computationally expen-
sive higher-order singular value decomposition required in the tensor decomposition step,
Scholz et al. [43] employed standard singular value decomposition to decouple isogeometric
discretizations partially, while maintaining a quasi-optimal complexity for the matrix for-
mation. For these low-rank assembling approaches, the overall computational complexity
is O(NRpd), where R is the approximated rank of the tensors representing the quadra-
ture weight function. A related method that exploits the tensor-product structure (more
precisely, the low Kronecker rank of the matrices) was established recently [24].

Summing up, the fastest available methods for isogeometric matrix assembly are weight-
ed quadrature (with complexity O(Npd+1)) and the low-rank assembling approach (with
complexity O(NRpd)). However, the first method does not keep the symmetry of the matri-
ces, and the second one requires tensor decomposition methods. Moreover, the performance
of the low-rank assembling approach is determined by the tensor rank R, which depends on
the geometry and on the coefficients of the PDEs.

The present paper describes an efficient method for the assembling of isogeometric
Galerkin matrices, which has the complexity O(Npd+1). The main contributions are:

• We combine the techniques of interpolation, look-up and sum factorization, thereby
introducing a fast matrix assembly algorithm.

• A detailed analysis of the computational costs in terms of the asymptotic number of
floating point operations per degree of freedom for different matrix assembly approach-
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es is provided. This confirms that the new method also performs well for low degree
p.

• In addition to matrix assembly, the extension of our method for matrix-free applica-
tions is also presented.

The remainder of the paper is structured as follows. In the following section, we intro-
duce the model problem and recall some facts concerning Galerkin-based discretizations in
IgA. Sections 3–7 present our approach in detail. In Section 8, several experimental results
are demonstrated to verify the effectiveness of the proposed method, and comparisons with
other approaches are also provided. In Section 9, the extension of our method to matrix-
free applications is presented, and the subsequent section discusses the proposed method
for assembling the stiffness matrix. The paper concludes with a summary and future work.
Additional details concerning interactions between B-splines, the complexities of other tech-
niques for matrix assembly and other methods for matrix-free applications are postponed to
three appendices.

2. Preliminaries

As our model problem, we consider the reaction-diffusion equation with homogeneous
Dirichlet boundary conditions

{
−div(D∇u) + λu = f in Ω

u = 0 on ∂Ω
(1)

on the domain Ω ⊂ Rd (d ≤ 3), where D = D(x) is a symmetric and uniformly positive
definite matrix, and λ = λ(x) is a non-negative function. The variational form of this
problem consists in finding u ∈ H1

0 (Ω), such that

a(u, v) = f(v), ∀v ∈ H1
0 (Ω), (2)

where

a(u, v) =

∫

Ω

∇uT (x)D(x)∇v(x) + λ(x)u(x)v(x) dx, f(v) =

∫

Ω

f(x)v(x) dx.

In isogeometric analysis, the computational domain Ω is parameterized by a geometry
mapping

F : Ω̂→ Ω

which is typically represented by NURBS. In order to keep the presentation simple, we will
assume that this mapping is a d-variate single-patch tensor-product spline function

F (x̂) =
∑

i∈I
ciβ̂i(x̂),
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which is defined on the parameter domain Ω̂ = [0, 1]d. The mapping is specified by control
points ci, which are multiplied by tensor-product B-splines

β̂i(x̂) =
d∏

`=1

β̂`,i`(x̂`), i = (i1, . . . , id)

of degree p. These multivariate B-splines β̂i are products of the d univariate B-splines β̂`,i`
of degree p defined on [0, 1].

For simplicity, it will be assumed that both the geometry mapping and the isogeometric
discretization use n univariate B-splines of degree p and smoothness Cp−1 in each coordinate
direction. Consequently, all inner knots possess multiplicity 1, and these knots subdivide
each of the univariate domains into n − p univariate elements. The finite index set I thus
takes the form

I = {i : 0 < i` ≤ n,∀ ` = 1, . . . , d}.
The isogeometric discretization takes advantages of the given parameterization of the

domain Ω. Specifically, the discretization space Vh ⊂ H1
0 (Ω) is defined by

Vh = span{φi : φi = β̂i ◦ F−1, φi|∂Ω = 0, i ∈ I}.

The finite-dimensional space Vh is used for isogeometric approximation of the weak form
in (2), which consists in finding uh ∈ Vh, such that

a(uh, vh) = f(vh), ∀vh ∈ Vh. (3)

The approximate solution uh is written as

uh =
∑

i∈I
uiφi (4)

with unknown coefficients u = {ui}i∈I . We substitute this expansion into (3) and take
vh = φi, i ∈ I. The coefficients of the approximate solution are found by solving the linear
system

(S +M)u = b, (5)

which involves the stiffness matrix S, the mass matrix M and the load vector b. The
elements of these quantities take the form

Sij =

∫

Ω

∇φTi D∇φjdx =

∫

Ω̂

∇̂β̂Ti D̃∇̂β̂jdx̂, (6)

Mij =

∫

Ω

λφiφjdx =

∫

Ω̂

λ̂β̂iβ̂j | det ∇̂F |dx̂, (7)

and

bi =

∫

Ω

fφidx =

∫

Ω̂

f̂ β̂i| det ∇̂F |dx̂ (8)
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respectively, where
D̃ = ∇̂F−1D̂∇̂F−T | det ∇̂F |

is a d× d matrix, and D̂ = D ◦ F , λ̂ = λ ◦ F , f̂ = f ◦ F . Moreover, the symbol ∇̂ denotes
the gradient operator in the parameter domain Ω̂.

Remark 1. Similar to the previous works [3, 15], we assume the physical domain is pa-
rameterized by a single-patch tensor-product spline function just for the sake of simplicity,
althogh it is well known that NURBS are typically employed for representing both the com-
putational domain and numerical solution in isogeometric analysis. In fact, the proposed
approach can be extended to the case of using NURBS as the basis (see [32, Remark 4] and
[43, Section 2.3]), since this situation only leads to slightly involved formulas for the quan-

tities D̃, λ̂| det ∇̂F | and f̂ | det ∇̂F | appearing in the stiffness matrix (6), mass matrix (7)
and load vector (8) respectively. In addition, non-rational splines are sufficient to represent
the geometry in many cases. �

3. Outline of the method

In order to keep the presentation concise, we will focus on the mass matrix

Mij =

∫

Ω̂

β̂iβ̂jwdx̂, w = λ̂| det ∇̂F |. (9)

The stiffness matrix (6) and load vector (8) can be dealt with similarly. We describe our
method and analyze the computational complexity in the three-dimensional case (d = 3).

The difficulties for the evaluation of the integrals (9) are caused by the function w,
which is generally non-polynomial and possibly of high degree. Moreover, this function is a
common factor shared by many integrals. Unlike the quadrature-based methods, we propose
to replace w by a spline (quasi-) interpolation, followed by an exact and efficient evaluation
of the resulting integrals. The overall pipeline of our approach can be outlined as follows:

• Step I: First we apply the interpolation or quasi-interpolation operator to project the
common factor w into a tensor-product spline space.

• Step II: Following the spline projection, the entries of the mass matrix can be approx-
imated by a sum of elementary integrals of tri-product B-splines. In order to allow
for an exact integration of the integrands in the approximated mass matrix, a look-up
table for the standardized B-spline tri-product integrals is built.

• Step III: Finally the matrix is efficiently assembled by invoking the sum factorization
technique.

In the following sections, we will discuss the three steps in detail.
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4. Step I: Spline projection by interpolation or quasi-interpolation

First we project the function w into the tensor-product spline space S = span{β̂k : k ∈ I}
containing spline functions of degree p that are Cp−1 smooth, which is also used to define
the isogeometric discretization. As observed in [32], choosing this space allows to maintain
the optimal order of approximation. Applying a spline projection (e.g., an interpolation or
quasi-interpolation operator) to w, we arrive at

w(x̂) ≈
∑

k∈I
wkβ̂k(x̂) (10)

with the coefficients wk.
It should be noted that the spline projection via interpolation or quasi-interpolation is

the only step that introduces a numerical error in the evaluation of the integrals (9). The
influence of this error to the overall accuracy has been analyzed in [32] based on Strang’s
lemma. It was shown that a spline approximation of degree p suffices to preserve the overall
accuracy of the isogeometric simulation.

For the interpolation operator, the approximation of w is constructed by tensor-product
spline interpolation at Greville abscissas, and the coefficients of the interpolant can be
obtained using de Boor’s algorithm [11]. A detailed description of this procedure was given
in [32].

The use of quasi-interpolation provides a valuable alternative approach. The quasi-
interpolant of a univariate function ϕ(x̂) by B-spline basis {β̂i : i = 1, . . . , n} of degree p
takes the general form

Qpϕ(x̂) =
n∑

i=1

µpi (ϕ) β̂i(x̂).

Various choices of the linear coefficient functionals µpi have been proposed in the literature,
see e.g. [39] for the uniform case. We focus on coefficient functionals that are based on
values of ϕ at certain sample points, taking the form

µpi (ϕ) =
∑

j

αi,jϕ(γj). (11)

Appendix B recalls a simple approach invented by Lyche and Schumaker [31] for quasi-
interpolation with non-uniform knots. The two plots in Figure 1 compare interpolation and
quasi-interpolation by quadratic splines. Both methods are comparable, but interpolation
has a slightly better accuracy.

The extension of quasi-interpolation to tensor-product splines is straightforward: E.g.,
for dimension d = 3, each of the n3 coefficients in (10) is computed from at most (p + 2)3

sampled values w(γ1,j1 , γ1,j2 , γ1,j3), which can be expressed as

wk =
∑

j

αkjw(γ1,j1 , γ2,j2 , γ3,j3)

=
∑

j3

α3,k3j3

∑

j2

α2,k2j2

∑

j1

α1,k1j1w(γ1,j1 , γ2,j2 , γ3,j3),
(12)
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Figure 1: Error of two spline projections of ϕ(x̂) = sin 7x̂ with 16 (left) and 32 (right) knot spans. The
splines are obtained via interpolation (blue) and quasi-interpolation (red).

where the weights αkj = α1,k1j1α2,k2j2α3,k3j3 are determined by the coefficient functionals
µpi , possessing a tensor-product structure that facilitates the use of the sum factorization
approach.

5. Step II: Approximation of the integral by spline projection, look-up tables

Using the spline approximation of w in (10), we approximate the matrix elements by
sums of elementary integrals of tensor-product B-splines

Mij ≈
∫

Ω̂

β̂iβ̂j
∑

k∈I
wkβ̂kdx̂ =

∑

k∈I
wk

∫

Ω̂

β̂iβ̂j β̂kdx̂. (13)

By introducing the univariate B-spline tri-product integrals

L`,i`j`k` =

∫ 1

0

β̂`,i` β̂`,j` β̂`,k`dx̂`, (14)

we rewrite the sum (13) as

Mij ≈
∑

k∈I
wk

3∏

`=1

L`,i`j`k` . (15)

In the case of uniform knots, the majority of the tri-product integrals (14) (more precisely, all
integrals that do not involve boundary B-splines) that are required for the matrix assembly
can be derived from the standardized B-spline tri-product integrals (SBTI)

Λδ δ′δ′′
jk =

∫

R
βp,δ[0,1,...,p+1](x̂)βp,δ

′

[j,j+1,...,j+p+1](x̂)βp,δ
′′

[k,k+1,...,k+p+1](x̂)dx̂ (16)

with 0 ≤ j, k ≤ p and δδ′δ′′ = 0, δ, δ′, δ′′ ∈ {0, 1}, which can be precomputed, forming a
look-up table with 7(p + 1)2 entries. Note that the case δ = δ′ = δ′′ = 1 is not considered.

8



Table 1: The values of SBTI for degree p = 2.

j, k Λ000
jk Λ001

jk Λ010
jk Λ011

jk Λ100
jk Λ101

jk Λ110
jk

0, 0 12/35 0 0 2/5 0 2/5 2/5

0, 1 43/420 31/120 −31/240 −7/40 −31/240 −7/40 17/60

0, 2 1/840 1/120 −1/240 −1/40 −1/240 −1/40 1/60

1, 0 43/420 −31/240 31/120 −7/40 −31/240 17/60 −7/40

1, 1 43/420 31/240 31/240 17/60 −31/120 −7/40 −7/40

1, 2 1/168 7/240 0 1/120 −7/240 −7/60 1/120

2, 0 1/840 −1/240 1/120 −1/40 −1/240 1/60 −1/40

2, 1 1/168 0 7/240 1/120 −7/240 1/120 −7/60

2, 2 1/840 1/240 1/240 1/60 −1/120 −1/40 −1/40

Table 2: The values of SBTI for degree p = 3, scaled by K = 181, 440.

j, k KΛ000
jk KΛ001

jk KΛ010
jk KΛ011

jk KΛ100
jk KΛ101

jk KΛ110
jk

0, 0 47, 496 0 0 42, 840 0 42, 840 42, 840

0, 1 18, 871 35, 682 −17, 841 −14, 139 −17, 841 −14, 139 33, 885

0, 2 868 3, 888 −1, 944 −7, 236 −1, 944 −7, 236 5, 148

0, 3 1 10 −5 −45 −5 −45 27

1, 0 18, 871 −17, 841 35, 682 −14, 139 −17, 841 33, 885 −14, 139

1, 1 18, 871 17, 841 17, 841 33, 885 −35, 682 −14, 139 −14, 139

1, 2 2, 550 8, 130 0 2, 646 −8, 130 −21, 546 2, 646

1, 3 17 129 −21 −135 −108 −711 153

2, 0 868 −1, 944 3, 888 −7, 236 −1, 944 5, 148 −7, 236

2, 1 2, 550 0 8, 130 2, 646 −8, 130 2, 646 −21, 546

2, 2 868 1, 944 1, 944 5, 148 −3, 888 −7, 236 −7, 236

2, 3 17 108 21 153 −129 −711 −135

3, 0 1 −5 10 −45 −5 27 −45

3, 1 17 −21 129 −135 −108 153 −711

3, 2 17 21 108 153 −129 −135 −711

3, 3 1 5 5 27 −10 −45 −45

Here βp,δΞ (x̂) represents the derivative of order δ of the univariate B-spline with local knot
vector Ξ. Table 1 and 2 present the look-up tables composed of the SBTI (16) for quadratic
and cubic splines, respectively. Owing to the properties of B-splines, the SBTI values are
related to the quantities (14) via

L`,i`j`k` = h`





Λ000
j`−i`,k`−i` if i` = min{i`, j`, k`}

Λ000
i`−j`,k`−j` if j` = min{i`, j`, k`}

Λ000
i`−k`,j`−k` if k` = min{i`, j`, k`}

, (17)

where h` is the mesh size of B-splines β̂`,i` , β̂`,j` , β̂`,k` . Only SBTI values with δ = δ′ = δ′′ = 0
are needed for assembling the mass matrix according to (15), while assembling the stiffness
matrix requires all entries of the look-up table.

Remark 2. This approach is also suitable for non-uniform B-splines. In this situation,
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we generate look-up tables for all the tri-product integrals (14) in each direction via Gauss
quadrature. Unlike the uniform case, the size of the look-up table for non-uniform B-splines
not only depends on the spline degree, but also the number of basis functions in each
direction. Using the quantities introduced in Appendix A, we can estimate the number of
entries in this look-up table as

7
3∑

`=1

n∑

i`=1

min{n,i`+p}∑

j`=max{1,i`−p}
C3(i`, j`).

The number of quadrature nodes needed to evaluate one of the entries tends to

d3p+ 1

2
eĒ3 = O(p2)

as n increases, where Ē3 is the average number of elements in the support intersection of
three B-splines, provided that this intersection is non-empty. The precise number is not of
much interest, since the total number of quadrature nodes per degree of freedom (and hence
the number of required floating point operations per degree of freedom) tends to

lim
n→∞

1

n3

(
7

3∑

`=1

n∑

i`=1

min{n,i`+p}∑

j`=max{1,i`−p}
C3(i`, j`)

) (
d3p+ 1

2
eĒ3

)

= lim
n→∞

1

n3
(21nC̄2C̄3)

(
d3p+ 1

2
eĒ3

)
= 0.

We conclude that the generation of these look-up tables does not contribute significantly to
the overall computational costs. �

6. Step III: Evaluation via sum factorization

The interpolation and look-up (IL) method established in [32] performs the matrix as-
sembly via the spline projection and look-up as discussed above, resulting in a complexity of
O(n3p6). Taking the IL approach as a starting point, we further reduce the computational
cost of matrix assembly by exploiting the tensor-product structure via the sum factorization
technique. This technique is widely applied in spectral methods [36], and has also been
employed for efficient assembling of matrices in isogeometric analysis [3, 12, 15, 23, 40].

We derive the interpolation, look-up and sum-factorization (ILS) method by rewriting
the sum in (15) as

Mij ≈
∑

k3

L3,i3j3k3

∑

k2

L2,i2j2k2

∑

k1

L1,i1j1k1wk1k2k3

︸ ︷︷ ︸
= M ILS,1

i1j1k2k3︸ ︷︷ ︸
= M ILS,2

i1i2j1j2k3︸ ︷︷ ︸
= M ILS,3

i1i2i3j1j2j3

, (18)
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where we introduce three auxiliary tensors M ILS,1, M ILS,2 and M ILS,3. Subsequently we
calculate the sums for all pairs (i, j) via the following algorithm.

Algorithm MassMatrixAssembly . ILS algorithm
for i1 from 1 to n do

for j1 from max(1, i1 − p) to min(n, i1 + p) do . supports of β̂1,i1 and β̂1,j1 intersect
for k2 from 1 to n do

for k3 from 1 to n do
M ILS,1

i1j1k2k3
= 0 . initialization of 1st tensor

for k1 from max(1, i1 − p, j1 − p) to min(n, i1 + p, j1 + p) do

. supports of β̂1,i1 , β̂1,j1 and β̂1,k1 intersect

M ILS,1
i1j1k2k3

+= L1,i1j1k1
wk1k2k3

. evaluation of 1st tensor

for i2 from 1 to n do
for j2 from max(1, i2 − p) to min(n, i2 + p) do . supports of β̂2,i2 and β̂2,j2 intersect

for k3 from 1 to n do
M ILS,2

i1i2j1j2k3
= 0 . initialization of 2nd tensor

for k2 from max(1, i2 − p, j2 − p) to min(n, i2 + p, j2 + p) do

. supports of β̂2,i2 , β̂2,j2 and β̂2,k2
intersect

M ILS,2
i1i2j1j2k3

+= L2,i2j2k2M
ILS,1
i1j1k2k3

. evaluation of 2nd tensor

for i3 from 1 to n do
for j3 from max(1, i3 − p) to min(n, i3 + p) do

. supports of β̂3,i3 and β̂3,j3 intersect

M ILS,3
i1i2i3j1j2j3

= 0 . initialization of 3rd tensor
for k3 from max(1, i3 − p, j3 − p) to min(n, i3 + p, j3 + p) do

. supports of β̂3,i3 , β̂3,j3 and β̂3,k3
intersect

M ILS,3
i1i2i3j1j2j3

+= L3,i3j3k3
M ILS,2

i1i2j1j2k3
. evaluation of 3rd tensor

return M ILS,3

7. Computational costs and comparison with other methods

We analyze the computational complexity of our method by calculating the asymptotic
number of floating point operations (flops) per degree of freedom (dof). More precisely, the
following quantity

A = lim
n→∞

T

n3
(19)

will be evaluated, where T denotes the total number of flops.
The proposed ILS method, which is summarized in Section 3, consists of three steps:

Projecting the common factor in the required integrals into a tensor-product spline space,
building a look-up table and assembling the matrix.

For the spline projection step, when using quasi-interpolation operator, note that there
are no more than p+2 non-zero coefficients α`,k`j` for each instance of k` in (12). The tensor-
product structure indicates that sum factorization can be used to perform this computation,
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which yields

wk =
∑

j3

α3,k3j3

∑

j2

α2,k2j2

∑

j1

α1,k1j1w(γ1,j1 , γ2,j2 , γ3,j3)

︸ ︷︷ ︸
= w

(1)
k1j2j3︸ ︷︷ ︸

= w
(2)
k1k2j3︸ ︷︷ ︸

= w
(3)
k1k2k3

, (20)

where three auxiliary tensors W (1), W (2) and W (3) are introduced. Indeed the sum-
factorization technique has also been used in global surface interpolation [37, Section 9.2.5].
Similar to Algorithm MassMatrixAssembly, we perform the summations (20) in a recur-
sive way. It suffices to consider the non-zero elements and terms in the tensors.

The first (innermost) loop evaluates about n ·n ·n non-zero elements w
(1)
k1j2j3

by summing
over at most p + 2 indices j1 and requires 2 flops per term. The evaluation of the second
auxiliary tensor with about n · n · n non-zero elements w

(2)
k1k2j3

proceeds by summing over at
most p + 2 indices j2 and needs 2 flops per term. Finally we evaluate the n · n · n non-zero
elements w

(3)
k1k2k3

by summing over at most p+ 2 indices j3, requiring again 2 flops per term.
Summing up, the quasi-interpolation operator requires not more than 6n3(p + 2) flops and
thus asymptotically not more than 6(p+ 2) flops per dof.

Another approach to the spline projection proceeds simply by interpolation at the Gre-
ville abscissas. As analyzed in [32], this approach has a similar computational complexity
as quasi-interpolation.

We already noted that the size of the look-up table for uniform and non-uniform univari-
ate B-spline tri-product integrals is O(p2) and O(np2) respectively, and the computational
effort required to build it does not contribute significantly to the overall computational
effort.

As stated in Algorithm MassMatrixAssembly, the task is to recursively evaluate
the nonzero elements of three auxiliary tensors. In order to facilitate the analysis of the
computational complexity of this step, we introduce some quantities which are presented in
Appendix A. The first loop of the algorithm evaluates

n∑

i1=1

C2(i1) · n · n

non-zero elements M ILS,1
i1j1k2k3

by summing over C3(i1, j1) indices k1 for each pair (i1, j1) and
needs 2 flops per term. The second loop computes

n∑

i1=1

C2(i1) ·
n∑

i2=1

C2(i2) · n

non-zero elements M ILS,2
i1i2j1j2k3

by summing over C3(i2, j2) indices k2 for each pair (i2, j2) and

12



needs 2 flops per term. Finally we evaluate

n∑

i1=1

C2(i1) ·
n∑

i2=1

C2(i2) ·
n∑

i3=1

C2(i3)

non-zero elements M ILS,3
i1i2i3j1j2j3

by summing over C3(i3, j3) indices k3 for each pair (i3, j3),
performing 2 flops per term. Therefore, as n increases, the number of flops per dof required
by the matrix assembly step tends to 2C̄2C̄3(1 + C̄2 + C̄2

2).
Summing up, the asymptotic number of flops per dof for the ILS method does not exceed

6(p+ 2) + 2C̄2C̄3(1 + C̄2 + C̄2
2) = 24p4 + 60p3 + 62p2 + 36p+ 18. (21)

We compare the ILS method with several other approaches, including Gauss quadrature
(GQ), element-wise Gauss quadrature with sum factorization (EGS) [3], interpolation and
look-up (IL) [32], weighted quadrature (WQ) [15] and global Gauss quadrature with sum
factorization (GGS) [12]. Appendix C provides a detailed description of these previous
approaches.

Remark 3. We notice that the tensors M ILS,` (` = 1, 2, 3) introduced in Algorithm Mass-
MatrixAssembly possess up to three symmetries. Indeed, it is always possible to swap the
indices i` and j`, ` = 1, 2, 3, without altering the value of the tensor element. Consequent-
ly, the mass matrix assembly via ILS can be performed even more efficiently by exploiting
these symmetries. The resulting method will be denoted as ILS-S. A detailed analysis (not
presented here) shows that one achieves an asymptotic number of flops per dof not exceeding

3p4 + 14p3 + 26p2 + 27p+ 18. (22)

The leading coefficient is reduced by the factor 1/23 = 1/8, due to the three symmetries that
are present in the final matrix. In fact, the third step of the assembly – where the highest
number of symmetries is present – dominates the complexity with respect to the degree p.
A similar speedup can be achieved for all the other approaches that preserve the symmetry
of the mass matrix (GQ, EGS, IL and GGS). �

Table 3 lists the asymptotic number of flops per dof for p = 1, . . . 5 as n increases, and
the asymptotics of that number as p increases. The ILS method has a significant advantage
over the other methods that also preserve the symmetry of the resulting matrix. This is not
the case for WQ, which achieves the same complexity with respect to the degree p and even
leads to a smaller value of the leading coefficient (approx. 66.7% of ILS). All methods except
WQ can be further accelerated by exploiting the symmetries to reduce the computational
effort. The resulting ILS-S method possesses the same complexity as ILS, and achieves
both the smallest number of flops per dof for all degrees and a smaller value of the leading
coefficient (12.5% of ILS and 18.75% of WQ).
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Table 3: Asymptotic number of floating point operations per degree of freedom for
different matrix assembly approaches. Note that the numbers for ILS and ILS-S are
an upper bound.

p = 1 p = 2 p = 3 p = 4 p = 5 asymptotics

GQ 1,672 60,534 794,688 5,890,750 30,326,616 O(p9)
EGS 512 7,047 47,104 209,375 715,392 O(p7)
IL 1,390 27,460 202,642 907,960 3,014,326 O(p6)

GGS 304 2,646 11,904 37,750 96,336 O(p5)
WQ 190 1,014 3,350 8,446 17,934 16p4 +O(p3)
ILS 200 1,202 4,248 11,138 24,248 24p4 +O(p3)

ILS-S 88 336 954 2,206 4,428 3p4 +O(p3)

8. Numerical experiments

We test the performance of the ILS method on four computational domains, taken from
the G+Smo test suite [20], focusing on computational complexity and numerical behaviour.
Figure 2 visualizes these domains and provides information regarding the number of control
points and the degrees of the parameterizations. We also compare the computation times
with Gauss quadrature (GQ) and with the interpolation and look-up (IL) method. All
of these approaches are implemented in C++ using the G+Smo library [29], and all the
experiments are conducted on a laptop computer of an Intel Core i5-7300HQ CPU, 2.5 GHz
with 8 GB memory.

(a) 2×3×2, p=(1, 2, 1) (b) 5×5×2, p=(4, 4, 1) (c) 9×2×5, p=(2, 1, 2) (d) 3×3×2, p=(2, 2, 1)

Figure 2: Computational domains used for testing the performance of different methods.

8.1. Numerical behaviour

In order to evaluate numerically the behaviour of the proposed method, which includes
the computational complexity with respect to the number of degrees of freedom n3 and
the spline degree p, we consider a 3D Poisson problem on each of the four computational
domains shown in Figure 2.

First we study the dependence of the time needed for generating the matrices on the
number of degrees of freedom n3. Figures 3(a)-3(d) present the observed time required for
assembling the system matrix with various p and n3 on four different domains, respectively.
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The computational time depends linearly on the number of degrees of freedom, which is in
line with the expected results.
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Figure 3: Computational time of our ILS method for assembling the system matrix on different domains
with various spline degrees and numbers of degrees of freedom.

Next we investigate the relation between the computational time and the degree p for
different methods. In order to eliminate the effect of the number of degrees of freedom on
the result, we divide the computational time by n3 in all examples.

Figure 4(a) shows a log-log plot of the dependence of the assembling time by different
methods and the spline degree. Here we consider relatively large degrees p (up to 10) and
estimate the slopes to evaluate the asymptotic behaviour. For Gauss quadrature (GQ), we
use p+1 nodes per element in each direction, which is proved to guarantee optimality of the
Galerkin formulation with numerical quadrature [32]. All the plots confirm the theoretical
asymptotic behaviour of IL and ILS with respect to the degree p, which were analyzed in
Section 7. In addition, Figure 4(b) reports the achieved speedup with respect to GQ and
IL.
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(a) Degree-dependence of assembly time (b) Speedup

Figure 4: (a) Computational time for assembling the system matrix with various spline degrees (p =
2, . . . , 10). The computational time of Gauss quadrature for p > 7 is not included. (b) Visualization of
the observed speedup with respect to GQ and IL. Each row corresponds to one computational domain.
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8.2. Computational time comparisons

In addition, we summarize the computational time of the different methods for various
spline degrees and computational domains in Table 4. The corresponding speedup factors
between our method and the others are also reported. For Gauss quadrature (GQ), we limit
the degree to six since the computation for higher degree is too time-consuming (more than
2 hours). Moreover, we use the same number of knot spans (24 in our tests) in all directions
and for all degrees, for simplicity. Note that the discretization is not isogeometric if the
degree of the parameterization exceeds p, which happens in some of these cases.

Clearly, our method is significantly faster than other state-of-the-art matrix-assembly
approaches, especially for high spline degrees. Nevertheless, due to the common use of
low degrees in isogeometric applications, the speedup achieved for these degrees is equally
important, and the ILS approach is beneficial also in this situation.

The speedup factors do not match the theoretically predicted values as noted in Table 5.
Indeed, for p ≥ 3, the ILS is method is approximately 18 times slower than predicted theo-
retically. This is due to implementation aspects, since the development team of the G+Smo

library [29] invested substantial efforts and manpower into the efficient implementation of
the matrix assembly via Gaussian quadrature. Nevertheless, these numbers still indicate the
advantages of the new method.

9. Matrix-free applications using ILS

In addition to assembling the stiffness and mass matrix, another important step in solving
PDEs using IgA is the numerical solution of the assembled linear system (5), which often
relies on iterative methods. These methods only require the ability to evaluate matrix-vector
products, while a direct access to the matrix elements is not mandatory. This observation
has been exploited in recent publications [12, 40], which propose a matrix-free strategy,
merging the assembly and linear system solving into a single operator application step. This
avoids storing the stiffness and mass matrix explicitly.

9.1. Algorithm for matrix-vector products using ILS

For the simplicity of presentation, we only consider the products of the mass matrix M
and a vector u. Based on (18) we arrive at

(Mu)i =
∑

j

Mijuj (23)

≈
∑

j3

∑

k3

L3,i3j3k3

∑

j2

∑

k2

L2,i2j2k2

∑

j1

uj1j2j3
∑

k1

wk1k2k3L1,i1j1k1

︸ ︷︷ ︸
= V

(1)
i1j1k2k3︸ ︷︷ ︸

= V
(2)
i1j2j3k2k3︸ ︷︷ ︸

= V
(3)
i1i2j3k3

, i ∈ I,
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Table 4: Assembly time and speedup for various spline degrees, numbers of
degrees of freedom and computational domains by different methods.

Domain Degree #DOF
Assembly time (s) Speedup

GQ IL ILS GQ/ILS IL/ILS

(a)

1 15,625 5.91e-1 5.71e-1 1.09e-1 5.42e0 5.24e0
2 17,576 3.52e0 2.52e0 5.34e-1 6.59e0 4.71e0
3 19,683 2.36e1 9.76e0 1.74e0 1.36e1 5.61e0
4 21,952 1.33e2 3.61e1 4.45e0 2.99e1 8.13e0
5 24,389 6.84e2 1.23e2 8.98e0 7.62e1 1.37e1
6 27,000 2.55e3 3.62e2 2.31e1 1.11e2 1.57e1
7 29,791 n/a 1.06e3 3.34e1 n/a 3.17e1
8 32,768 n/a 2.59e3 5.27e1 n/a 4.92e1
9 35,937 n/a 5.76e3 9.21e1 n/a 6.25e1

(b)

1 15,625 8.39e-1 8.29e-1 1.08e-1 7.77e0 7.68e0
2 17,576 4.04e0 2.92e0 5.24e-1 7.70e0 5.57e0
3 19,683 2.48e1 9.95e0 1.65e0 1.51e1 6.05e0
4 21,952 1.44e2 3.97e1 4.15e0 3.46e1 9.55e0
5 24,389 6.59e2 1.19e2 8.95e0 7.37e1 1.32e1
6 27,000 2.75e3 3.90e2 2.30e1 1.18e2 1.69e1
7 29,791 n/a 9.92e2 3.42e1 n/a 2.90e1
8 32,768 n/a 2.42e3 5.02e1 n/a 4.82e1
9 35,937 n/a 5.53e3 8.32e1 n/a 6.65e1

(c)

1 15,625 6.41e-1 6.25e-1 1.11e-1 5.78e0 5.63e0
2 17,576 3.68e0 2.88e0 5.33e-1 6.90e0 5.40e0
3 19,683 2.34e1 9.73e0 1.72e0 1.36e1 5.67e0
4 21,952 1.39e2 3.90e1 4.21e0 3.32e1 9.28e0
5 24,839 6.94e2 1.24e2 9.13e0 7.60e1 1.35e1
6 27,000 2.76e3 4.04e2 2.35e1 1.18e2 1.72e1
7 29,791 n/a 1.02e3 2.98e1 n/a 3.41e1
8 32,768 n/a 2.59e3 5.00e1 n/a 5.18e1
9 35,937 n/a 5.83e3 9.11e1 n/a 6.40e1

(d)

1 15,625 5.97e-1 6.23e-1 1.10e-1 5.43e0 5.66e0
2 17,576 3.47e0 2.53e0 5.43e-1 6.38e0 4.65e0
3 19,683 2.17e1 9.23e0 1.76e0 1.24e1 5.26e0
4 21,952 1.49e2 4.15e1 4.31e0 3.45e1 9.61e0
5 24,389 6.71e2 1.18e2 1.01e1 6.63e1 1.16e1
6 27,000 2.43e3 3.39e2 2.61e1 9.32e1 1.30e1
7 29,791 n/a 1.00e3 3.19e1 n/a 3.13e1
8 32,768 n/a 2.40e3 5.34e1 n/a 4.48e1
9 35,937 n/a 5.71e3 9.21e1 n/a 6.20e1

Table 5: The predicted and experimentally observed speedup of the ILS method with
respect to Gauss quadrature. For each degree, we take the corresponding minimal
speedup value on four domains listed in Table 4 as the observed speedup value, and
the predicted value is obtained from Table 3 directly.

p = 1 p = 2 p = 3 p = 4 p = 5

Predicted speedup 8.36 50.36 187.07 528.89 1250.69

Observed speedup 5.42 6.38 12.4 29.9 66.3
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where three auxiliary tensors V (1), V (2) and V (3) are introduced. Similar to Algorithm
MassMatrixAssembly, the calculation of the vector v = Mu can also be performed in a
recursive way, which is summarized in the following algorithm.

Algorithm MassMatrixVectorProduct
for i1 from 1 to n do

for k2 from 1 to n do
for k3 from 1 to n do

for j1 from max(1, i1 − p) to min(n, i1 + p) do . supports of β̂1,i1 and β̂1,j1 intersect

V
(1)
i1j1k2k3

= 0 . initialization of 1st tensor
for k1 from max(1, i1 − p, j1 − p) to min(n, i1 + p, j1 + p) do

. supports of β̂1,i1 , β̂1,j1 and β̂1,k1
intersect

V
(1)
i1j1k2k3

+= wk1k2k3L1,i1j1k1

for j2 from max(1, k2 − p) to min(n, k2 + p) do . supports of β̂2,j2 and β̂2,k2
intersect

for j3 from max(1, k3 − p) to min(n, k3 + p) do

. supports of β̂3,j3 and β̂3,k3 intersect

V
(2)
i1j2j3k2k3

= 0 . initialization of 2nd tensor
for j1 from max(1, i1 − p) to min(n, i1 + p) do

. supports of β̂1,i1 and β̂1,j1 intersect

V
(2)
i1j2j3k2k3

+= uj1j2j3V
(1)
i1j1k2k3

for i2 from 1 to n do
for j3 from 1 to n do

for k3 from max(1, j3 − p) to min(n, j3 + p) do . supports of β̂3,j3 and β̂3,k3
intersect

V
(3)
i1i2j3k3

= 0 . initialization of 3rd tensor
for j2 from max(1, i2 − p) to min(n, i2 + p) do

. supports of β̂2,i2 and β̂2,j2 intersect
for k2 from max(1, i2 − p, j2 − p) to min(n, i2 + p, j2 + p) do

. supports of β̂2,i2 , β̂2,j2 and β̂2,k2 intersect

V
(3)
i1i2j3k3

+= L2,i2j2k2V
(2)
i1j2j3k2k3

for i3 from 1 to n do
vi1i2i3 = 0

for j3 from max(1, i3 − p) to min(n, i3 + p) do . supports of β̂3,i3 and β̂3,j3 intersect
for k3 from max(1, i3 − p, j3 − p) to min(n, i3 + p, j3 + p) do

. supports of β̂3,i3 , β̂3,j3 and β̂3,k3
intersect

vi1i2i3+= L3,i3j3k3
V

(3)
i1i2j3k3

return v

9.2. Computational costs and comparison with other methods

To estimate the computational costs of Algorithm MassMatrixVectorProduct, it
suffices to consider the non-zero tensor elements and terms in (23). The first step evaluates

n∑

i1=1

C2(i1) · n · n
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Table 6: Asymptotic number of flops per dof with respect to the matrix-free applications.
p = 1 p = 2 p = 3 p = 4 p = 5 asymptotics

WQ 96 160 224 288 352 O(p)
GGS 128 549 1,600 3,725 7,488 O(p4)
ILS 124 516 1,352 2,800 5,028 O(p3)

non-zero elements V
(1)
i1j1k2k3

by summing over C3(i1, j1) indices k1 for each pair (i1, j1) and
requires 2 flops per term. The evaluation of the second auxiliary tensor with

n ·
n∑

j2=1

C2(j2) ·
n∑

j3=1

C2(j3)

non-zero elements V
(2)
i1j2j3k2k3

proceeds by summing over C2(i1) indices j1 for each i1 and needs

2 flops per term. The third step, which computes the tensor V (3) with

n · n ·
n∑

j3=1

C2(j3)

non-zero elements V
(3)
i1i2j3k3

by summing over C2(i2) · C3(i2, j2) indices for each i2, (i2, j2)
and requires 2 flops per term. The last step evaluates the n · n · n non-zero elements vi by
summing over C2(i3) ·C3(i3, j3) indices for each i3 and (i3, j3), requiring another 2 flops per
term.

Summing up, the number of flops per dof tends to

2C̄2(C̄2
2 + C̄2C̄3 + 2C̄3)

as n increases, which brings the asymptotic number of flops per dof to

28p3 + 54p2 + 34p+ 8 = O(p3).

We compare the ILS method with two other quadrature methods (WQ and GGS) in terms
of matrix-free applications. The algorithms for the evaluation of matrix-vector products us-
ing these two techniques are described in Appendix D. Table 6 presents the asymptotic
numbers of flops per dof for these matrix-free approaches. It can be seen that the computa-
tional cost of the GGS method is more expensive than our method, while the WQ method
is even faster. However, it should be noted that the WQ method does not preserve the
symmetry of the matrices and thus imposes constraints on the selection of suitable iterative
solvers, cf. [44].

10. Assembling the stiffness matrix

Applying a spline projection (e.g., an interpolation or quasi-interpolation operator) de-

fined in the space S to the common factor D̃ in the occurring integrals (6), we obtain

D̃(x̂) ≈
∑

k∈I
D̃kβ̂k(x̂)
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with the coefficient matrices D̃k = (drsk )r,s=1,2,3. Consequently, the stiffness matrix is rewrit-
ten as

Sij =

∫

Ω̂

∇̂β̂Ti D̃∇̂β̂jdx̂ ≈
3∑

r=1

3∑

s=1

∑

k

drsk

∫

Ω̂

(∂̂rβ̂i)(∂̂sβ̂j)β̂kdx̂

︸ ︷︷ ︸
= Srsij

, (24)

where the partial derivatives are defined as ∂̂rβ̂i = ∂rβ̂i/∂x̂r and nine auxiliary tensors
Srs (r, s = 1, 2, 3) are introduced. For assembling the stiffness matrix using ILS, we need to
apply this technique to each of the nine tensors. The computational cost of evaluating each
tensor is the same as the one required for evaluating the mass matrix (7), and summing the
nine tensors up requires

9 ·
n∑

i1=1

C2(i1) ·
n∑

i2=1

C2(i2) ·
n∑

i3=1

C2(i3)

flops. Thus, the asymptotic number of flops per dof needed to assemble the stiffness matrix
by ILS does not exceed

9
(
6(p+ 2) + 2C̄2C̄3(1 + C̄2 + C̄2

2)
)

+ 9C̄3
2 = 9(24p4 + 68p3 + 74p2 + 42p+ 19).

Similar to the case of mass matrix, the use of symmetries provides a further speedup.
First, the tensors S`` (` = 1, 2, 3) possess three symmetries and can be evaluated at a
reduced cost shown in (22). Second, the remaining six tensors S``′ (1 ≤ `, `′ ≤ 3, ` 6= `′)
can be organized into three pairs S12

ij + S21
ij , S13

ij + S31
ij and S23

ij + S32
ij . The first pair can be

rewritten as

S12
ij + S21

ij =
∑

k3

L3,i3j3k3

(∑

k2

L2,i2j2′k2

∑

k1

d12
k1k2k3

L1,i1′j1k1

︸ ︷︷ ︸
= T

(1)
i1j1k2k3

+
∑

k2

L2,i2′j2k2

∑

k1

d21
k1k2k3

L1,i1j1′k1

︸ ︷︷ ︸
= T

(2)
i1j1k2k3

)

︸ ︷︷ ︸
= T

(3)
i1i2j1j2k3︸ ︷︷ ︸

= T
(4)
i1i2i3j1j2j3

,

where we introduce four auxiliary tensors T (`) (` = 1, . . . , 4) and use look-up tables for

integrals of derivatives (indicate by ′) also. The tensor T
(4)
i1i2i3j1j2j3

, whose assembly determines
the coefficient of p4 in the number of flops, is symmetric firstly with respect to swapping i3
and j3 and secondly with respect to swapping (i1, i2) and (j1, j2). The other two pairs can
be dealt with in a similar way. A detailed analysis (not presented here) reveals that the
asymptotic number of flops per dof for evaluating the stiffness matrix is reduced to

27p4 +O(p3)

with the help of symmetries.
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11. Summary and future work

Based on the techniques of (quasi-) interpolation, look-up and sum factorization, we
developed an efficient algorithm for assembling the system matrices arising in isogeometric
Galerkin discretizations. The resulting method requires O(Npd+1) flops for the matrix as-
sembly task. It is competitive with weighted quadrature [15] in terms of the required number
of flops, while preserving the symmetry of the matrices.

We also presented an analysis of the computational complexity for different approaches,
which indicates that our method has a significant advantage over the other methods that
preserve the symmetry of the matrix, both in terms of the asymptotic behaviour and for
low polynomial degrees. Weighted quadrature, however, gives the same p-complexity of the
number of flops per dof and lower costs (approx. 66%). Several numerical experiments
confirmed these theoretical results. It was also shown that our method admits a further
speedup (by a factor of approx. 8) based on the symmetries of the matrix.

The matrices assembled by the ILS method are exactly the same as the ones obtained with
the IL approach. The theory developed in the work [32] shows that our method maintains
the optimal rate of convergence, provided that the spline projection is sufficiently accurate.

In addition, the proposed new method can also be used for performing matrix-free ap-
plications. In this case, however, it is slower than weighted quadrature.

Regarding the future work, two further improvements and extensions will be considered.
First, extending the proposed method to adaptively refined splines, such as HB-splines
and THB-splines. Second, we plan to explore several options for optimizing the current
code, including GPU computation [30], in order to close the gap between the predicted
and observed speedup with respect to Gauss quadrature (see Table 5). The code of our
implementation will be made available as part of the G+Smo C++ library for isogeometric
analysis.

Acknowledgement

The authors gratefully acknowledge the support provided by the Austrian Science Fund
(FWF) through the doctoral program W1214 “Computational Mathematics”, and by the
ERC Advanced Grant “CHANGE” (GA No. 694515). We also thank the reviewers for their
comments, which were very helpful for preparing the revised version.

Appendix A. Overlapping functions and active elements

For analyzing the computational costs of matrix assembly approaches, we introduce the
following quantities:

• First, the number C2(i`) counts the B-splines that possess a non-empty support in-
tersection with the fixed B-spline β̂`,i` , where we only consider B-splines with single
knots. As n increases, the average number tends to

C̄2 = lim
n→∞

1

n

n∑

i`=1

C2(i`) = 2p+ 1.
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• Second, the number C3(i`, j`) counts the B-splines that possess a non-empty support
intersection with the product of two fixed B-splines β̂`,i` and β̂`,j` , where we only
consider pairs of B-splines with overlapping supports and single knots. The support
intersection of B-splines β̂`,i` and β̂`,j` consists of at least 1 and at most p+1 elements.

Consequently, there are at least p + 1 and at most 2p + 1 B-splines β̂`,k` with a non-

empty support intersection (i.e., β̂`,i` β̂`,j` β̂`,k` 6= 0). Considering a fixed B-spline β̂`,i` ,
we compute the average number C̄3, varying over the 2p + 1 different possibilities for
choosing β̂`,j` . As n increases, the average number tends to

C̄3 = lim
n→∞

1
n∑

i`=1

C2(i`)

n∑

i`=1

min{n,i`+p}∑

j`=max{1,i`−p}
C3(i`, j`)

=
1

2p+ 1

(
(p+ 1) + . . .+ 2p+ (2p+ 1) + 2p+ . . .+ (p+ 1)

)
=

3p2 + 3p+ 1

2p+ 1
.

• Third, the number E2(i`, j`) counts the elements in the support intersection of two
B-splines β̂`,i` and β̂`,j` . Again, we only consider pairs of B-splines with overlapping
supports and single knots. The support intersection of these two B-splines consists of
at least 1 and at most p + 1 elements, which brings 2p + 1 different possibilities for
choosing β̂`,j` . As n increases, the average number Ē2 tends to

Ē2 = lim
n→∞

1
n∑

i`=1

C2(i`)

n∑

i`=1

min{n,i`+p}∑

j`=max{1,i`−p}
E2(i`, j`)

=
1

2p+ 1
(1 + . . .+ p+ (p+ 1) + p+ . . .+ 1) =

(p+ 1)2

2p+ 1
.

Appendix B. Quasi-interpolation for splines with non-uniform knots

We explain this technique in the univariate case, where we consider splines of degree p
with knots

(κ−p, . . . , κ0, κ1, κ2, . . . , κn−p−1, κn−p, . . . , κn) (B.1)

that satisfy κi ≤ κi+1 and κi < κi+p+1. In particular, it is standard to use the p-fold
boundary knots 0 = κ1−p = . . . = κ0 and κn−p = . . . = κn−1 = 1. The two extremal
knots κ−p and κn are arbitrary. In fact, they do not have any influence on the B-splines’
values on the domain [κ0, κn−p] except that they should be non-positive and not less than
1, respectively.

Recall that the n B-splines β̂i, i = 1, . . . , n, have associated Greville abscissas

γi =
1

p

i−1∑

j=i−p
κj.
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We consider the n−p sub-sequences (γj, . . . , γj+p) with indices j = 1, . . . , n−p that contain
p+ 1 consecutive Greville abscissas, and use interpolation to define associated polynomials

pj(x̂) =

j+p∑

k=j

λj,k(ϕ) (x̂− γk)p, (B.2)

satisfying pj(γk) = ϕ(γk) for k = j, . . . , j + p. Simple closed-form expressions for their
coefficients λj,k(ϕ) are available for low degrees p:

• p = 2, index triplets (k, k′, k′′) = (j, j+1, j+2) and all permutations thereof:

λj,k(ϕ) =
1

2

( ϕ(γk′)

(γk − γk′)2
+

ϕ(γk′′)

(γk − γk′′)2
− (γk′ − γk′′)2ϕ(γk)

(γk − γk′)2(γk − γk′′)2

)
(B.3)

• p = 3, index quadruplets (k, k′, k′′, k′′′) = (j, j+1, j+2, j+3) and all permutations
thereof:

λj,k(ϕ) =
(γk′′ − γk′′′)3ϕ(γk′) + (γk′′′ − γk′)3ϕ(γk′′) + (γk′ − γk′′)3ϕ(γk′′′)

3(γk′ − γk)(γk′′ − γk)(γk′′′ − γk)(γk′ − γk′′)(γk′′ − γk′′′)(γk′′′ − γk′)
(B.4)

The formulas for general degree p can be derived via the blossoms of the Lagrange basis
polynomials. The particular representation (B.2) of these polynomials ensures the symmetry
of the coefficient functionals.

The spline coefficients of the interpolating polynomials (B.2) are obtained via the blos-
soming approach,

νpj,i(ϕ) =

j+p∑

k=j

λj,k(ϕ)

p∏

`=1

(κi−` − γk). (B.5)

In the case of even degree splines, the functionals µpi appearing in the quasi-interpolation
operator are directly determined by these coefficients. More precisely, we consider the poly-
nomial that interpolates ϕ at the Greville abscissas centered at γi, and the boundary poly-
nomials otherwise. The spline coefficients of this polynomial is used to compute the value
of the functional,

µpi (ϕ) =





νp1,i(ϕ) if 1 ≤ i < p
2
,

νp
i− p

2
,i
(ϕ) if 1 + p

2
≤ i ≤ n− p

2
,

νpn−p,i(ϕ) if n− p
2
< i ≤ n.

(B.6)

In the case of odd degree splines, we proceed similarly but need to average the coefficients
of two polynomials, in order to obtain symmetric formulas:

µpi (ϕ) =





νp1,i(ϕ) if 1 ≤ i < p+1
2
,

γi − κi−p−1

κi − κi−p−1

νp
i− p+1

2
,i
(ϕ) +

κi − γi
κi − κi−p−1

νp
i− p−1

2
,i
(ϕ) if 1 + p+1

2
≤ i ≤ n− p+1

2
,

νpn−p,i(ϕ) if n− p+1
2
< i ≤ n.

(B.7)
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Finally we note that these coefficient functionals agree with those defined in [39] in the case
of uniform knots, except for the coefficients near the boundaries. This is due to the fact
that the author did not use the Greville abscissas in that work.

Summing up, the application of the quasi-interpolation operator consists of three steps:

1. Compute the p+ 1 coefficients λj,k(ϕ) of the local interpolating polynomials, see (B.3)
and (B.4),

2. create the required spline coefficients of these polynomials via (B.5) (one or two for
each inner polynomial with even and odd degree p, respectively, and dp

2
e for each of

the boundary polynomials), and
3. evaluate the coefficient functionals according to (B.6) and (B.7).

These three steps can be combined into a single formula of the form (11).

Appendix C. Analysis of other techniques for matrix assembly

We briefly analyze the computational effort needed for assembling the mass matrix via
Gauss quadrature (GQ), element-wise Gauss quadrature with sum factorization (EGS), in-
terpolation and look-up (IL), weighted quadrature (WQ), and global Gauss quadrature with
sum factorization (GGS).

Appendix C.1. Gauss quadrature (GQ)
After introducing a tensor-product grid of Gauss nodes ĝk = (ĝ1,k1 , ĝ2,k2 , ĝ3,k3) with

associated quadrature weights γk = γ1,k1γ2,k2γ3,k3 , we arrive at the expression

Mij ≈
∑

k

[β̂i(ĝk)][β̂j(ĝk)][w(ĝk)γk]. (C.1)

Note that we enumerate the Gauss nodes by using a global index k = (k1, k2, k3).
The number of Gauss nodes per univariate element will be denoted by m. As described

in Section 8.1, one has to use as many as m = p + 1 Gauss nodes, in order to make sure
that the quadrature error does not spoil the optimal rate of convergence. Reduced Gauss
quadrature, which uses fewer Gauss nodes, has also been studied in the literature.

The direct evaluation of (C.1) proceeds as follows:

1. We firstly precompute and store the terms enclosed by the square brackets for all the
relevant i, j,k, which requires about 2n3m3(p+ 1)3 + (n− p)3m3 flops.

2. Next, we visit n3 instances of the first index i.
3. For each i, we visit C2(i1) · C2(i2) · C2(i3) instances of the second index j.
4. For each pair (i, j), we visit all elements in the support intersection of the two tensor-

product B-splines β̂i and β̂j , taking E2(i1, j1) · E2(i2, j2) · E2(i3, j3) elements into ac-
count.

5. For each element, we add the product of the terms enclosed by square brackets at m3

associated Gauss nodes to the approximate value of the integral. It needs 3 flops per
node.

Summing up, as n increases, the number of flops per dof tends to the value

AGQ = 3m3C̄3
2 Ē

3
2 + 2m3(p+ 1)3 +m3 = 3(p+ 1)9 + 2(p+ 1)6 + (p+ 1)3 = O(p9).
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Appendix C.2. Element-wise Gauss quadrature with sum factorization (EGS)

The work described in [3] relies on mesh element-based assembly, which is a well-
established technology in traditional finite element analysis. Each mesh element contributes
a local mass matrix of size (p+ 1)3 × (p+ 1)3 to the full mass matrix.

More precisely, when considering the summation over the mesh elements, which are
indexed by ` = (`1, `2, `3), the sum in (C.1) is transformed into

Mij ≈
∑

`

∑

k3

[β̂3,i3(ĝ3,k3)β̂3,j3(ĝ3,k3)γ3,k3 ]
∑

k2

[β̂2,i2(ĝ2,k2)β̂2,j2(ĝ2,k2)γ2,k2 ]
∑

k1

[β̂1,i1(ĝ1,k1)β̂1,j1(ĝ1,k1)γ1,k1 ]w(ĝk)

︸ ︷︷ ︸
= MEGS,1

`,i1j1k2k3︸ ︷︷ ︸
= MEGS,2

`,i1i2j1j2k3︸ ︷︷ ︸
= MEGS,3

`,i1i2i3j1j2j3

,

where we introduce auxiliary tensors MEGS,1
` , MEGS,2

` and MEGS,3
` for each mesh element.

The terms enclosed by the square brackets are pre-computed (with negligible computational
effort) to speed up the computation.

The first (innermost) loop, which computes the first auxiliary tensors for all mesh ele-
ments, evaluates (n − p)3 · (p + 1) · (p + 1) ·m ·m elements MEGS,1

`,i1j1k2k3
by summing over m

indices k1 and requires 2 flops per term. The evaluation of the second auxiliary tensors with
(n − p)3 · (p + 1) · (p + 1) · (p + 1) · (p + 1) ·m elements MEGS,2

`,i1i2j1j2k3
proceeds by summing

over m indices k2 and needs 2 flops per term. Finally we evaluate the local mass matrices
with (n − p)3 · (p + 1) · (p + 1) · (p + 1) · (p + 1) · (p + 1) · (p + 1) elements MEGS,3

`,i1i2i3j1j2j3
by

summing over m indices k3, requiring another 2 flops per term. In addition, accumulating
all these local matrices to the global matrix costs (n− p)3 · (p+ 1)6 flops. Summing up, the
total number of flops evaluates to

TEGS = (n− p)3
(
2m3(p+ 1)2 + 2m2(p+ 1)4 + 2m(p+ 1)6 + (p+ 1)6

)
= O(n3p7),

which brings the asymptotic number of flops per dof to

AEGS = (p+ 1)5(2p2 + 7p+ 7) = O(p7).

Appendix C.3. Interpolation and Look-up (IL)

The interpolation and look-up method [32] consists of three steps: Building the look-up
tables, spline projection and matrix assembly.

Building the look-up tables is not costly, which can be neglected compared to the overall
computational cost. The spline projection step requires at most 6n3(p+ 2) flops, which has
been analyzed in Section 7. In the assembly step, the evaluation of the mass matrix (15)
proceeds as follows:

1. We visit n3 instances of the first index i.

2. For each i, we visit C2(i1) · C2(i2) · C2(i3) instances of the second index j.
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3. For each pair (i, j), we visit C3(i1, j1) ·C3(i2, j2) ·C3(i3, j3) instances of the third index
k.

4. For each pair (i, j,k), the products of the values of tri-product integrals multiplied
with the associated weight needs 4 flops.

Summing up, the asymptotic number of flops per dof does not exceed

6(p+ 2) + 4C̄3
2 C̄

3
3 = 2(54p6 + 162p5 + 216p4 + 162p3 + 72p2 + 21p+ 8) = O(p6).

Appendix C.4. Weighted quadrature (WQ)

Weighted quadrature [15] introduces special rules for the numerical integration of inte-
grals. These rules evaluate the integrand on a tensor grid of nodes

q̂k = (q̂1,k1 , q̂2,k2 , q̂3,k3)

and form a weighted sum with the associated tensor-product weights

νik = ν1,i1k1ν2,i2k2ν3,i3k3 .

When considering only basis functions that are sufficiently far away from the domain bound-
ary, it has been shown that it suffices to use 2p+ 1 quadrature points in the support of the
univariate B-splines, which consist of the inner knots and midpoints of the p+ 1 knot spans.
Nodes and weights are chosen such that the rule exactly evaluates tensor-product spline
functions of degree p. These rules are precomputed and the computational effort is not
significant as it scales with n.

Consequently, the matrix elements are approximated by expressions of the form

Mij ≈
∑

k

β̂j(q̂k)w(q̂k)νik. (C.2)

Again one uses sum factorization for speeding up the evaluation. We rewrite the above
equation as

Mij ≈
∑

k3

[β̂3,j3(q̂3,k3)ν3,i3k3 ]
∑

k2

[β̂2,j2(q̂2,k2)ν2,i2k2 ]
∑

k1

[β̂1,j1(q̂1,k1)ν1,i1k1 ]w(q̂k)

︸ ︷︷ ︸
= MWQ,1

i1j1k2k3︸ ︷︷ ︸
= MWQ,2

i1i2j1j2k3︸ ︷︷ ︸
= MWQ,3

i1i2i3j1j2j3

, (C.3)

and introduce three auxiliary tensors MWQ,1, MWQ,2 and MWQ,3 for evaluating the matrix
elements, focusing on non-zero tensor elements and terms. The terms enclosed by the
square brackets are pre-computed (with negligible computational effort) to speed up the
computation.
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The first (innermost) loop, which computes the first auxiliary tensor, evaluates

n∑

i1=1

C2(i1) · 2(n− p) · 2(n− p)

non-zero elements MWQ,1
i1j1k2k3

by summing over 2E2(i1, j1)− 1 indices k1 for each pair (i1, j1)
and requires 2 flops per term. The evaluation of the second auxiliary tensor with

n∑

i1=1

C2(i1) ·
n∑

i2=1

C2(i2) · 2(n− p)

non-zero elements MWQ,2
i1i2j1j2k3

proceeds by summing over 2E2(i2, j2) − 1 indices k2 for each
pair (i2, j2) and needs 2 flops per term. Finally we evaluate the

n∑

i1=1

C2(i1) ·
n∑

i2=1

C2(i2) ·
n∑

i3=1

C2(i3)

non-zero elements MWQ,3
i1i2i3j1j2j3

by summing over 2E2(i3, j3)−1 indices k3 for each pair (i3, j3),
requiring another 2 flops per term. Therefore, as n increases, the computational effort per
dof is asymptotically equal to

AWQ = (2Ē2 − 1)(8C̄2 + 4C̄2
2 + 2C̄3

2) = 16p4 + 48p3 + 68p2 + 44p+ 14 = O(p4). (C.4)

Appendix C.5. Global Gauss quadrature with sum factorization (GGS)

Recently it has been noted that Gauss quadrature can be further accelerated by avoiding
the element-based assembly [12]. More precisely, one rewrites the mass matrix as

Mij ≈
∑

k3

[β̂3,i3(ĝ3,k3)β̂3,j3(ĝ3,k3)γ3,k3 ]
∑

k2

[β̂2,i2(ĝ2,k2)β̂2,j2(ĝ2,k2)γ2,k2 ]
∑

k1

[β̂1,i1(ĝ1,k1)β̂1,j1(ĝ1,k1)γ1,k1 ]w(ĝk)

︸ ︷︷ ︸
= MGGS,1

i1j1k2k3︸ ︷︷ ︸
= MGGS,2

i1i2j1j2k3︸ ︷︷ ︸
= MGGS,3

i1i2i3j1j2j3

(C.5)

with the help of three auxiliary tensors MGGS,1, MGGS,2 and MGGS,3. Again, the terms
enclosed by the square brackets are pre-computed (with negligible computational effort) to
speed up the computation. Clearly, it suffices to consider only the non-zero tensor elements
and terms in (C.5).

The first (innermost) loop, which computes the first auxiliary tensor, evaluates

n∑

i1=1

C2(i1) · (n− p)m · (n− p)m
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non-zero elements MGGS,1
i1j1k2k3

by summing over mE2(i1, j1) indices k1 for each pair (i1, j1) and
requires 2 flops per term. The evaluation of the second auxiliary tensor with

n∑

i1=1

C2(i1) ·
n∑

i2=1

C2(i2) ·m(n− p)

non-zero elements MGGS,2
i1i2j1j2k3

proceeds by summing over mE2(i2, j2) indices k2 for each pair
(i2, j2) and needs 2 flops per term. Finally we evaluate the

n∑

i1=1

C2(i1) ·
n∑

i2=1

C2(i2) ·
n∑

i3=1

C2(i3)

non-zero elements MGGS,3
i1i2i3j1j2j3

by summing over mE2(i3, j3) indices k3 for each pair (i3, j3),
requiring another 2 flops per term. Summing up, the number of flops per dof tends to

2m3C̄2Ē2 + 2m2C̄2
2 Ē2 + 2mC̄3

2 Ē2 = O(p5)

as n increases, which brings the asymptotic number of flops per dof to

AGGS = 2(p+ 1)3(7p2 + 9p+ 3).

Appendix D. Analysis of other techniques for matrix-free applications

Appendix D.1. Weighted Quadrature

According to evaluation formula (C.2) of WQ, the i-th item of the product of M and a
vector u takes the form

vi =
∑

j

Mijuj ≈
∑

j

∑

k

β̂j(q̂k)w(q̂k)νikuj , (D.1)

which can be rearranged as

vi ≈
∑

k3

ν3,i3k3

∑

k2

ν2,i2k2

∑

k1

ν1,i1k1w(q̂1,k1 , q̂2,k2 , q̂3,k3)V
(3)
k1k2k3

︸ ︷︷ ︸
= V

(4)
i1k2k3︸ ︷︷ ︸

= V
(5)
i1i2k3

(D.2)

and
V

(3)
k1k2k3

=
∑

j3

β̂3,j3(q̂3,k3)
∑

j2

β̂2,j2(q̂2,k2)
∑

j1

β̂1,j1(q̂1,k1)uj1j2j3 ,

︸ ︷︷ ︸
= V

(1)
j2j3k1︸ ︷︷ ︸

= V
(2)
j3k1k2

(D.3)
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where five auxiliary tensors V (`) (` = 1, . . . , 5) are introduced. It suffices to consider the
non-zero tensor elements and terms. The first (innermost) loop evaluates n ·n ·2(n−p) non-

zero elements V
(1)
j2j3k1

by summing over p indices j1 if q̂1,k1 is an element boundary point or
p+ 1 indices j1 if q̂1,k1 is an element midpoint, and requires 2 flops per term. The evaluation

of the second auxiliary tensor with n · 2(n− p) · 2(n− p) non-zero elements V
(2)
j3k1k2

proceeds
by summing over p or p+ 1 indices j2 and needs 2 flops per term. The third loop evaluates
2(n− p) · 2(n− p) · 2(n− p) non-zero elements V

(3)
k1k2k3

proceeds by summing over p or p+ 1
indices j3 and requires 2 flops per term. The evaluation of the fourth auxiliary tensor with
n · 2(n − p) · 2(n − p) non-zero elements V

(4)
i1k1k2

proceeds by summing over 2p + 1 indices
k1 and needs 3 flops per term. The fifth loop evaluates n · n · 2(n − p) non-zero elements

V
(5)
i1i2k3

proceeds by summing over 2p + 1 indices k2 and requires 2 flops per term. Finally
we evaluate the n · n · n non-zero elements vi by summing over 2p + 1 indices k3, requiring
another 2 flops per term.

Summing up, the total number of flops amounts to

O(n3p)

and the asymptotic number of flops per dof is

32(2p+ 1) = O(p).

Appendix D.2. Global Gauss quadrature with sum factorization

The entries of matrix-vector products using GGS can be derived from (C.5), taking the
from

vi =
∑

j

Mijuj ≈
∑

k3

[β̂3,i3(ĝ3,k3)γ3,k3 ]
∑

k2

[β̂2,i2(ĝ2,k2)γ2,k2 ]
∑

k1

[β̂1,i1(ĝ1,k1)γ1,k1 ]w(ĝk)V
(3)
k1k2k3

︸ ︷︷ ︸
= V

(4)
i1k2k3︸ ︷︷ ︸

= V
(5)
i1i2k3

(D.4)
and

V
(3)
k1k2k3

=
∑

j3

β̂3,j3(ĝ3,k3)
∑

j2

β̂2,j2(ĝ2,k2)
∑

j1

β̂1,j1(ĝ1,k1)uj1j2j3

︸ ︷︷ ︸
= V

(1)
j2j3k1︸ ︷︷ ︸

= V
(2)
j3k1k2

,

where five auxiliary tensors V (`) (` = 1, . . . , 5) are introduced. Again, the terms enclosed
by the square brackets are pre-computed (with negligible computational effort) to speed up
the computation.

It suffices to consider the non-zero tensor elements and terms. The first (innermost)

loop evaluates n · n · m(n − p) non-zero elements V
(1)
j2j3k1

by summing over (p + 1) indices
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j1 and requires 2 flops per term. The evaluation of the second auxiliary tensor with n ·
m(n− p) ·m(n− p) non-zero elements V

(2)
j3k1k2

proceeds by summing over p+ 1 indices j2 and
needs 2 flops per term. The third loop evaluates m(n − p) ·m(n − p) ·m(n − p) non-zero

elements V
(3)
k1k2k3

proceeds by summing over p + 1 indices j3 and requires 2 flops per term.
The evaluation of the fourth auxiliary tensor with n ·m(n− p) ·m(n− p) non-zero elements

V
(4)
i1k2k3

proceeds by summing over m(p+ 1) indices k1 and needs 3 flops per term. The fifth
loop evaluates n ·n ·m(n− p) non-zero elements proceeds by summing over m(p+ 1) indices
k2 and requires 2 flops per term. Finally we evaluate the n · n · n non-zero elements vi by
summing over m(p+ 1) indices k3, requiring another 2 flops per term.

Summing up, the total number of flops amounts to

O(n3p4)

and the number of flops per dof is asymptotically equal to

(p+ 1)2(5p2 + 14p+ 13) = O(p4).
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[4] F. Auricchio, F. Calabrò, T.J.R. Hughes, A. Reali, and G. Sangalli. A simple algorithm for obtaining
nearly optimal quadrature rules for NURBS-based isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 249:15–27, 2012.

[5] F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, and G. Sangalli. Isogeometric collocation
methods. Mathematical Models and Methods in Applied Sciences, 20(11):2075–2107, 2010.
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