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Angelos Mantzaflaris

G+S Report No. 86

May 2019



Approximation power of C1-smooth isogeometric
splines on volumetric two-patch domains
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Abstract Bases and dimensions of trivariate spline functions possessing first order
geometric continuity on two-patch domains were studied in [4]. It was shown that
the properties of the spline space depend strongly on the type of the gluing data
that is used to specify the relation between the partial derivatives along the inter-
face between the patches. Locally supported bases were shown to exist for trilinear
geometric gluing data (that corresponds to piecewise trilinear domain parameteriza-
tions) and sufficiently high degree. The present paper is devoted to the approxima-
tion properties of these spline functions.

We recall the construction of the basis functions and show how to compute them
efficiently. In contrast to the results in [4], which relied on exact arithmetic opera-
tions in the field of rational numbers, we evaluate the coefficients by computations
with standard floating point numbers. We then perform numerical experiments with
L2-projection in order to explore the approximation power of the resulting spline
functions. Despite the existence of locally supported bases, we observe a reduction
of the approximation order for low degrees, and we provide a theoretical explanation
for this locking.

1 Introduction

The framework of Isogeometric Analysis [7] facilitates numerical simulation with
high-order partial differential equations, since it supports Cr-smooth discretizations
with r > 0. For r = 1, these are especially useful when considering PDEs of order
four, such as the Cahn-Hilliard equation [8], shells [2], and the biharmonic equa-
tion [1].
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While the construction of C1-smooth spline functions on single patches is straight-
forward, the extension to multi-patch domains, which are needed to describe more
complex domains, requires the notion of geometric continuity [16]. More pre-
cisely, Cr-smoothness, (r ≥ 0), of an isogeometric spline function is implied by
Gr-smoothness (geometric continuity of order r) of the associated graph surface [9].
This result has widely been used to construct C1-smooth spline spaces on planar do-
mains.

Smooth approximations over unstructured quadrilateral meshes were considered
in [3]. The construction of geometrically continuous splines on arbitrary topologies
was studied in [14]. Bases and dimensions of the space of C1-smooth isogeometric
functions for bilinear parameterized domains were explored in [10]. Some of these
results have been extended to C2-smooth splines [12].

The numerical examples presented in these publications indicate optimal approx-
imation power for the combination of sufficiently high degrees with certain classes
of gluing data. In particular, the generalization of parameterizations with bilinear
gluing data to the more general class of analysis-suitable parameterizations, which
appears to preserve the optimal approximation properties, was presented in [6, 11].

The extension to trivariate domains was studied in [4, 5, 15]. The domains con-
sidered in [15] are obtained via sweeping, which restricts the available topologies.
In [4], we studied the space of globally C1-smooth splines on a two-patch domain,
which is topologically equivalent to two cuboids. We considered different types of
gluing data and presented the associated dimension formulas. Moreover, we showed
how to construct a basis and identified those types of gluing that yield locally sup-
ported basis functions indicating good approximation properties.

The space of C1-smooth isogeometric functions for trilinearly parameterized
two-patch domains was further studied in [5]. Explicit representations of the locally
supported basis functions were presented and the numerically obtained dimension
formula from [4] was theoretically verified.

The present paper extends these existing results. In Section 2, we recall the notion
of the glued spline space GD, which characterizes the space of C1-smooth isogeo-
metric functions VFFF . Based on these preparations, Section 3 considers the coeffi-
cient patterns of trilinear geometric gluing data, which was found to be promising
for good approximation power in [4], in further detail. These patterns allow us to
efficiently compute a basis of the space VFFF for this type of gluing data. Finally,
in Section 4 we numerically analyze the approximation power of the basis via L2-
fitting. We conclude the paper in Section 5.

2 Preliminaries

We consider two subdomains Ω (1) and Ω (2), both topologically equivalent to a hex-
ahedron, which form the two-patch geometry Ω = Ω (1)∪Ω (2). Let S p

k denote the
space of spline functions on [0,1] of degree p with k uniformly distributed inner
knots of multiplicity p−1. We use it to define the tensor-product space
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Fig. 1: Parameterizations of two volumetric subdomains Ω (1) and Ω (2) joined at the
interface Γ .

P = S p
k ⊗S p

k ⊗S p
k ,

which consists of C1-smooth trivariate spline functions.
The two subdomains are described by parametric representations FFF(i) : Ω̂ =

[0,1]3→Ω (i), i = 1,2 with coordinate functions from P , see Figure 1. These define
the two-patch geometry mapping

FFF = (FFF(1), FFF(2)) ∈P3×P3.

We assume that the two patches meet with C0-smoothness

FFF(1)(u,v,0) = FFF(2)(u,v,0), u,v ∈ [0,1]

at the common interface Γ = [0,1]2×{0}. In this paper, we explore the space

VFFF = [(P×P)◦FFF−1]∩C1(Ω (1)∪Ω (2))

of C1-smooth isogeometric functions on Ω .
The elements of the pairs fff = ( f (1), f (2)) ∈P×P possess representations

f (i) =
n

∑
k=0

b(i)k Nk(u,v,w), i = 1,2,

with real coefficients b(i)k , where Nk denote the tensor-product B-splines that span the
space P . The glued spline space GD is a subspace of P×P , which was introduced
in [4]. For given gluing data D = (β ,γ,α(1),α(2)), which is a quadruple of four
bivariate polynomials, it consists of all functions whose coefficients satisfy
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Fig. 2: Coefficients used by the interface functions (blue bullets) and coefficients
contributing to inner functions (green bullets). The figure shows the control cages
of both patches.

0 =
n

∑
k=0

b(1)k Nk(u,v,0)−b(2)k Nk(u,v,0) and

0 =
n

∑
k=0

b(1)k

(
β (u,v) (∂uNk)(u,v,0)− γ(u,v) (∂vNk)(u,v,0)

+α(1)(u,v) (∂wNk)(u,v,0)
)
−b(2)k α(2)(u,v) (∂wNk)(u,v,0).

(1)

Bases and dimensions of the glued spline space GD for different types of gluing data
were studied in [4]. Furthermore it was observed that

VFFF =GD ◦FFF−1,

for regular geometry mappings FFF ∈ GD. This means that any C1-smooth isogeo-
metric function is the push-forward of a glued spline function. This result is closely
related to [9], which establishes the fact that matched Gk-constructions always yield
Ck-continuous isogeometric elements in a more general setting.

Following the approach in [4], we construct a basis of the space VFFF – and conse-
quently of the space GD – by splitting the space into a direct sum of two subspaces,
i.e.

VFFF = V Γ
FFF ⊕V S

FFF .

The first subspace V Γ
FFF denotes the space of interface functions. It contains the

functions with non-zero coefficients on the shared face Γ and the two neighbor-
ing layers, see blue points in Figure 2. These functions are affected by the specific
choice of gluing data concerned. The second subspace V S

FFF , referred to as the space
of standard functions, contains functions with zero coefficients on these three layers,
see Figure 2 green points. It is spanned by the “usual” isogeometric basis functions
and therefore does not depend on the choice of gluing data.

In order to keep the presentation concise, we restrict ourselves to spaces satisfy-
ing first order homogeneous boundary conditions along ∂Ω , which is indicated by
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(a) Type 3
(b) Type 4.1 (c) Type 4.2.1 (d) Type 4.2.2

(e) Type 4.3
(f) Type 4.4 (g) Type 4.5 (h) Type 4.6

Fig. 3: Coefficient patterns of basis functions for trilinear geometric gluing data.

the subscript 0, and we obtain the decomposition

VFFF ,0 = V Γ
FFF ,0⊕V S

FFF ,0.

3 Basis construction

As noted in [4], trilinear geometric gluing data is particularly promising for appli-
cations. We describe the construction of a basis for V Γ

FFF ,0 in this case.
This type of gluing data is derived from a trilinear geometry mapping FFF =

(FFF(1),FFF(2)), which is assumed to be regular. More precisely, it consists of the four
polynomials

β (u,v) = det
(

∂2FFF(1)(u,v,0),∂3FFF(1)(u,v,0),∂3FFF(2)(u,v,0)
)
,

γ(u,v) = det
(

∂1FFF(1)(u,v,0),∂3FFF(1)(u,v,0),∂3FFF(2)(u,v,0)
)
,

α(1)(u,v) = det∇FFF(2)(u,v,0),

α(2)(u,v) = det∇FFF(1)(u,v,0),

(2)

which have bi-degrees [(3,2),(2,3),(2,2),(2,2)]. For p ≥ 3, the dimension of the
space V Γ

FFF ,0 is equal to

dimV Γ
FFF ,0 = 10+ k (2−11k)− p(2+2k−4k2).
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Locally supported basis functions for trilinear geometric gluing data were presented
in [4]. For the sake of completeness, we recall the obtained coefficient patterns in
Figure 3. The basis for degree p = 3 is obtained by performing index shifts in (2Z)2

for Type 3, while the basis for p = 4 consists of seven different types:

• 2k−1 functions of Type 4.1, with shifts in 2 ·3Z,
• k−1 functions of Type 4.2.1, with shifts in 3Z,
• k(k−1) functions of Type 4.2.2, with shifts in (3Z)2, and
• (k−1)2 functions of Types 4.3–4.6, with shifts in (3Z)2.

The coefficient patterns of the basis functions described above were found by
studying the kernel of the matrix formed by collocating the equation (1) at suitable
Greville abscissa. The first order homogeneous boundary conditions are incorpo-
rated by imposing additional constraints. The corank of the resulting matrix reveals
the dimension of the spline space VFFF ,0, and consequently also of the subspace V Γ

FFF ,0.
Repeated patterns were observed in suitably constructed kernel vectors of that ma-
trix, which allowed us to derive local subproblems that yield a single basis function.

To point out the importance of these local patterns, note that the computation of
the sparsest kernel vectors (that is, the functions with the smallest possible support)
is NP-hard. Therefore, even for small numbers of inner knots k, the computations
can be rather inefficient. Another issue is that computing the rank and the corank
of a matrix with floating point numbers can only be done up to certain precision.
This can create some ambiguity or uncertainty on the actual dimension of the spline
space.

In [4], the first problem was addressed by manually designing suitable orderings
of the coefficients that lead to sparse coefficient patterns when performing RREF 1

computations. We dealt with the second issue by using rational arithmetic. In partic-
ular, the matrix obtained from (1) has rational elements, since they are evaluations of
piecewise polynomial functions with rational coefficients at rational Greville points.
However, as the dimension of the problem increases, working with rational arith-
metic becomes prohibitive.

In the present work, we exploit the fact that the local subproblems, which are de-
fined by the shifted coefficient patterns, are known to have a kernel dimension equal
to one. Consequently, it is no longer necessary to use rational arithmetic. Instead,
since we know that we are looking for a single kernel vector, we use floating point
computations and perform singular value decompositions. We then keep the vector
associated to the singular value closest to zero.

The savings in time and memory needed for the basis computation when using
floating point operations instead of exact arithmetic is demonstrated in Table 1 and
Table 2. The entries of the tables refer to the construction of the basis of the space
V Γ

FFF ,0 for spline degree p = 3 and different numbers of inner knots k. We compare
the approach used in [4], where we had to set up the complete matrix obtained
from (1) using rational arithmetic, with the more efficient construction using local
subproblems and SVD based on floating point operations.

1 Reduced Row Echelon Form
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k = 3 k = 7 k = 15 k = 31

Floating point 0.01s 0.07s 1.03s 25.82s
Rational 5.73s 1037.56s >24h >72h

Table 1: Comparison of time needed, when using floating point and rational compu-
tations to construct the basis.

k = 3 k = 7 k = 15 k = 31

Floating point 9.9MBytes 11.4MBytes 17.6MBytes 42.4MBytes
Rational 20.8MBytes 426.8MBytes >17.7GBytes >32GBytes2

Table 2: Comparison of memory needed, when using floating point and rational
computations to construct the basis.

The entries in Table 1 show the time spent on the computations, whereas the
values in Table 2 depict the maximal resident set size (RSS), which is the amount
of memory occupied by the computation that is held in main memory (RAM). The
expected massive advantage of the localized computation using floating point oper-
ations is clearly visible.

4 Approximation properties

We explore the approximation power of the basis obtained for trilinear geometric
gluing data in case of spline degree p = 3,4. To determine the rates of convergence
we use L2-fitting of suitable target functions that are defined on the two-patch ge-
ometry shown in Figure 4. Besides the usual norms, which are defined on the entire
domain, we analyze the residuals via the following norms on the interface:

Type H1(Γ ) L2(Γ ) L∞(Γ )

Norm ‖∇( f (1)− f (2))|Γ ‖2
√∫

Γ | f |2ds maxΓ | f |
For bivariate C1-smooth spline spaces, optimal convergence rates were obtained for
degree p = 3 and higher, see [13]. However, this does not extend to the trivariate
case of trilinearly parameterized two-patch domains, as shown in Figure 5. In the
left picture, the global error is shown, where a small reduction in the approximation
power can be recognized. This loss in the convergence rate is solely introduced by
the error on the interface, which is depicted in the right plot.

The reduction can be explained by taking a closer look on the involved spline
functions. Consider two spline functions f , f̂ ∈ GD, with f |Γ = f̂ |Γ . Since both
functions are elements of the glued spline space GD, they satisfy the following equa-
tion

2 Aborted because of too high memory requirements.
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Fig. 4: Two-patch geometry used for L2-fitting.

β ∂ug(1)− γ ∂vg(1)+α(1) ∂wg(1)−α(2) ∂wg(2) = 0,

with g ∈GD,g(1) = g|Ω (1) ,g(2) = g|Ω (2) , see (1).
Therefore, their difference, which is again a function in the glued spline space,

satisfies

β ∂u( f (1)− f̂ (1))|Γ︸ ︷︷ ︸
=0

−γ ∂v( f (1)− f̂ (1))|Γ︸ ︷︷ ︸
=0

+

α(1) ∂w( f (1)− f̂ (1))|Γ −α(2) ∂w( f (2)− f̂ (2))|Γ = 0,

hence
α(1) ∂w( f (1)− f̂ (1))|Γ = α(2) ∂w( f (2)− f̂ (2))|Γ .

It has been observed that gcd(α(1),α(2)) = 1, see [5]. This implies that α(1),
which is a bivariate polynomial of degree (2,2), is a factor of each of the polynomial
segments of

d(2) = ∂w( f (2)− f̂ (2))|Γ .
Similarly, α(2) is a factor of each of the polynomial segments of

d(1) = ∂w( f (1)− f̂ (1))|Γ .

We obtain two C1-smooth piecewise polynomial functions d(1)/α(2) and d(2)/α(1).
Since the degree of these functions does not exceed (3,3)− (2,2) = (1,1), we con-
clude that the spline functions

d(i) = ∂w( f (i)− f̂ (i))|Γ , i = 1,2

are indeed single polynomials of degree (3,3) and therefore C∞-smooth.
Consequently, the cross-boundary derivatives of any two functions f and f̂ ,

which take the same values on the interface Γ , differ only by a bi-cubic polynomial
with only four degrees of freedom, and this does not change as h is decreased. This
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h H1(Ω) L2(Ω) L∞(Ω) H1(Γ ) L2(Γ ) L∞(Γ )

0.33 1.29 0.52 0.46 2 1 1
0.17 0.36 9.27 ·10−2 0.11 2.42 0.8 0.82
8.33 ·10−2 6.00 ·10−2 9.19 ·10−3 1.40 ·10−2 3.76 0.48 0.54
4.17 ·10−2 8.97 ·10−3 7.66 ·10−4 1.50 ·10−3 5.24 0.25 0.29
2.08 ·10−2 3.21 ·10−3 1.50 ·10−4 4.94 ·10−4 6.57 0.11 0.12

Fig. 5: L2-approximation errors for trilinear geometric gluing data of degree p = 3.

observation, which is in agreement with the results (that were obtained by a slightly
different approach) in [5], explains the loss of approximation power, as follows.

We consider two smooth functions ϕ, ϕ̂ ∈ C∞(Ω). There exist two sequences
( fh)h and ( f̂h)h, whose elements are taken from the glued spline spaces obtained for
element size h = 1

k+1 → 0, such that ( fh ◦FFF−1)h and ( f̂h ◦FFF−1)h converge to ϕ and
ϕ̂ , respectively. If these sequences converged with the full approximation power, the
derivatives would converge as well, hence

d(i)
h = ∂w

(
f (i)h − f̂ (i)h

)
|Γ →

(
∂w
(
(ϕ− ϕ̂)◦FFF(i)))|Γ , i = 1,2,

as h→ 0. However, this is impossible for almost all pairs of given functions ϕ, ϕ̂ ,
since the functions d(i)

h are single bicubic polynomials for any h.
If we consider spline degrees p > 3, this argument no longer applies and we

observe full approximation power, as shown in Figure 6 for p = 4.

5 Conclusion

Based on earlier results about locally supported bases on trivariate two-patch do-
mains, which were shown to exist for trilinear geometric gluing data (that corre-
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h H1(Ω) L2(Ω) L∞(Ω) H1(Γ ) L2(Γ ) L∞(Γ )

0.33 0.47 0.14 0.19 0.2 1.41 ·10−2 0.11
0.17 6.38 ·10−2 1.02 ·10−2 1.83 ·10−2 5.40 ·10−3 1.83 ·10−4 1.90 ·10−3

8.33 ·10−2 4.83 ·10−3 3.92 ·10−4 9.49 ·10−4 3.99 ·10−4 4.66 ·10−6 6.75 ·10−5

4.17 ·10−2 2.89 ·10−4 1.12 ·10−5 3.76 ·10−5 2.36 ·10−5 1.17 ·10−7 2.31 ·10−6

Fig. 6: L2-approximation errors for trilinear geometric gluing data of degree p = 4.

sponds to piecewise trilinear domain parameterizations) and sufficiently high de-
gree, we investigated the approximation properties of these functions. In addition we
also showed how to efficiently compute the basis functions using standard arithmetic
(i.e., floating point numbers). We observed that the existence of locally supported
interface basis functions for spline degree p = 3 does not suffice to provide optimal
approximation power, even though these functions take non-zero values along the
interface. In addition to the experimental results we also derived a theoretical justi-
fication for this surprising fact. We also confirmed that these effects are no longer
present for higher polynomial degrees. Future work will be devoted to multi-patch
domains with more than two patches and to applications in numerical simulation.
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continuous functions on planar multi-patch geometries. Comput. Methods Appl. Mech. Engrg.,
316:209 – 234, 2017.

11. M. Kapl, G. Sangalli, and T. Takacs. Construction of analysis-suitable G1 planar multi-patch
parameterizations. Comput. Aided Des., 97:41–55, 2018.

12. M. Kapl and V. Vitrih. Space of C2-smooth geometrically continuous isogeometric functions
on planar multi-patch geometries: Dimension and numerical experiments. Comput. Math.
Appl., 73(10):2319–2338, 2017.
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