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Abstract

We present a novel technique for the numerical integration of trivariate functions on trimmed
domains. Our approach combines a linear approximation of the trimming surface with a correction
term. The latter term makes it possible to achieve a cubic convergence rate, which is one order
higher than the rate obtained by using the linear approximation only. We also present numerical
experiments that demonstrate the method’s potential for applications in isogeometric analysis.

Keywords: Trimming, isogeometric analysis, numerical integration, quadrature

1. Introduction

The flexibility of NURBS surface representations in computer-aided design is greatly enhanced
by the use of trimming. More precisely, only a part of the parameter domain is active, while a
region defined by a trimming curve is discarded. For example, the trimming curve can be the
result of a surface-surface intersection.

Isogeometric analysis [1, 2] is based on the use of bi- and trivariate NURBS parameterizations
of two- and three-dimensional computational domains. Again, the use of trimming operations
increases the flexibility of these representations of the geometry. According to the isogeometric
paradigm, the same discrete space is employed for the analysis (i.e. the numerical solution of
partial differential equations) as for the representation of the geometry, thus unifying the fields of
computer-aided design and numerical simulation.

Trimming also plays a role in the context of unfitted finite element methods [3], such as the
finite cell method [4]. In this class of methods, the solution is approximated using a background
finite element mesh that is intersected with the underlying geometry.

In both situations, efficient and accurate quadrature rules are needed to perform numerical
integration on the trimmed elements of the discretization spaces. They are required in order
to assemble the Galerkin matrices as well as the right-hand sides (load vectors) of the discrete
systems.

Several approaches to numerical integration on trimmed domains have been considered. Most
of this earlier work is limited to the two-dimensional case, see [5] and the references therein. We
discuss a number of related results, focusing on the trivariate case:

A common approach for numerical quadrature on trimmed domains is to subdivide the trimmed
elements into simpler objects, which is sometimes called untrimming, and to find local approxima-
tions that can be dealt with by high-order quadrature rules. The accuracy of the overall procedure
is then governed by the geometric approximation error.

In the volumetric case, this has been described in [6], where the trimming surface is approxi-
mated by piece-wise polynomials, and in [7], using a marching cube-type approach. Tetrahedral
elements have also been used for the discretization of partial differential equations on trimmed
volumes [8]. In [9], the trimmed patch is subdivided into a number of singular tensor-product
B-Spline patches whose boundaries approximate the trimming surface.
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Clearly, the success of these approaches depends on the ability to compute surface-surface
intersections, which is well-known to be a delicate problem [10]. Among other approaches, the use
of interval arithmetics has been proposed to achieve robustness in degenerate or nearly-degenerate
situations [11].

In the context of the finite cell method, the smart octree method for quadrature on volumetric
domains has been introduced in [12]. It is based on an extended adaptive subdivision of the
elements into octants. More precisely, the octant nodes are moved to the trimming surface, in
order to increase the accuracy of the result.

An interesting approach has been presented in [13], where the authors show how to construct
a specific quadrature rule for each trimmed element with the help of non-linear optimization. As
a prerequisite, the method evaluates the integrals of polynomials on a piece-wise linear approxi-
mation to the trimmed domain using a subdivision into convex subdomains, and this determines
the overall accuracy. The numerical experiments demonstrate that the method is suitable for
two-dimensional problems.

Finally, we note that several techniques exist that can help to avoid trimming. Besides untrim-
ming, these include discontinuous Galerkin methods on overlapping patches [14], Schwarz-type
domain decomposition methods [15, 16].

The present paper builds on results from [17], where we presented a method for the quadrature
on trimmed two-dimensional domains with an implicitly defined trimming function. The trimming
function is locally approximated by a linear function whose level-set is used for an initial approx-
imation of the integral. It is shown that the approximation order of the resulting quadrature rule
can be increased by adding an error correction term based on a Taylor expansion.

We generalize this idea to the case of trimmed volumetric domains. Again, we assume that
the trimming surface is given implicitly as a level set of a function, for example as the result of
a Boolean operation on two domains. For parametric trimming surfaces, exact or approximate
implicitization [18, 19] has to be applied as a preprocessing step.

The trivariate trimming function is approximated by a linear function using constrained least
squares optimization, thereby ensuring a consistent topology. The resulting quadratic order of
convergence of the quadrature rule is then increased by adding a simple error correction term. Since
this error correction term only consists of a bivariate integral, it preserves the overall computational
complexity, making the method very efficient.

We apply our method to the problems of L2-projection and isogeometric analysis on trimmed
volumes. In addition to the numerical quadrature, another challenge lies in the stability of the
trimmed basis functions. If one uses the standard B-Spline basis, restricted to the trimmed domain,
the supports of the basis function may be arbitrarily small, resulting in a loss of stability. This
instability can be addressed using modified bases such as extended B-Splines [20, 21] or immersed
B-Splines [22]. Other approaches are the addition of a stabilization term (ghost penalty) to the
bilinear form [23] and the omission of basis functions with sufficiently small support [24]. In
our numerical examples, we implemented the extended B-Spline basis, which recovers stability
by eliminating unstable functions and adding them to a number of stable ones with appropriate
weights, such that the approximation power stays the same.

The paper is organized as follows: We first state the considered problem in Section 2. Then we
describe the reduction to base cases that our method can handle in Section 3. We introduce the
linearized trimmed quadrature rule in Section 4 and its extension using the first order correction
term in Section 5. Finally, we present numerical examples for the quadrature and its application
to L2-projection and isogeometric analysis in Section 6.

2. Problem

Given smooth trivariate functions f and τ and an axis-aligned box B ⊂ R3, we develop a
method for the numerical evaluation of the integral

Iτf =

∫

Bτ

f(x, y, z) dz dy dx
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over the part of B where τ , which is called the trimming function, takes positive values,

Bτ = {(x, y, z) ∈ B : τ(x, y, z) > 0}.

More precisely, we approximate the exact integral by using a weighted quadrature rule

Qτf =
∑

i

wif(xi, yi, zi) ≈ Iτf

with quadrature nodes (xi, yi, zi) and weights wi.
Our approach generalizes earlier work on the two-dimensional case [17]. It consists of three

main steps:

1. We subdivide B into smaller boxes until the sign distribution of the trimming function τ at
the boxes’ vertices is an instance of one of seven base cases.

2. We approximate the trimming function τ by a linear polynomial σ and perform an approx-
imate evaluation of the integral

Iσf =

∫

Bσ

f(x, y, z) dz dy dx

by Gauss quadrature.

3. We improve this initial approximation to Iτf by adding an error correction term that is
derived from the Taylor expansion of the linear interpolant Iσ+u(τ−σ)f at u = 0. This
results in a bivariate integral, which is again evaluated via Gauss quadrature.

Summing up, the quadrature rule Qτ consists of two types of quadrature nodes and weights in each
cell: the nodes and weights of the trivariate Gauss quadrature performed in the second step and
the nodes and weights of the bivariate Gauss quadrature needed to evaluate the error correction
term in the third step.

The next three sections discuss the three steps in more detail.

3. Subdivision and base cases

Our method is designed to be able to treat a number of base cases, which are characterized
by the sign distribution of the trimming function on the vertices of B. Intuitively, the sign
distribution captures how the trimming surface cuts the box B. In addition, we only treat boxes,
whose maximum edge length does not exceed a user-defined constant h, in order to maintain the
accuracy of the numerical integration.

If we distinguish between positive and non-positive signs of τ at the vertices of B, we arrive at
28 = 256 possible cases. However, this number can be reduced significantly by considering the 48
isometries of the cube (i.e. the rotations and reflections of the cell) and possibly inverting the signs
of τ at the vertices. This results in the 15 cube configurations of the marching cube algorithm.

Five of these configurations, which are shown in Figure 1, correspond to a single component
of the trimming surface within B. More precisely, if the trimming surface has a single component
within B, then the sign distribution belongs to one of these configurations. These are the base
cases of our method, which are handled directly. In addition we also handle the case of only
positive signs, which corresponds to an untrimmed box B = Bτ . Clearly, this case does not
require any particular treatment, simple Gauss quadrature is sufficient.

The remaining nine configurations are dealt with by splitting the box B into eight sub-boxes.
The splitting is applied recursively until each generated box is an instance of one of the six base
cases. Similarly, we split the box B into eight sub-boxes if the maximum edge length exceeds
h. The total number of generated boxes satisfies Nh = O( 1

h3 ) if the trimming surface is regular
within B.

It should be noted that the trimming surface may possess several components within B even
if the sign distribution belongs to one of the base cases. As we shall see later, our technique gives
correct results also in these situations.
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Figure 1: The base cases defined up to rotations, reflections and sign inversion.

4. Linearized trimmed quadrature rule

Consider a quadrature cell

B = [x0, x1]× [y0, y1]× [z0, z1].

We approximate the trimming function τ by a linear function

σ(x, y, z) = σ1x+ σ2y + σ3z + σ4 (1)

and apply Gauss quadrature to the integral of f over

Bσ = {(x, y, z) ∈ Ω : σ(x, y, z) > 0}.

The approximation ensures that the signs of σ on the vertices of B agree with the signs of τ .
While in the two-dimensional case such an approximation can be obtained quite easily, we need
to solve a constrained optimization problem in the three-dimensional case. This is described in
the next section.

Since the zero-level set of the linear function σ is a plane, its intersection with B is a polygon.
Hence, Bσ is a polyhedron. In order to get quadrature points and weights for Bσ we need to find
a multi-patch parameterization over the reference domain [0, 1]3. This is described in section 4.2.

4.1. Constrained least squares approximation

The approximation of the trimming function τ by a linear function σ of the form (1) with the
additional condition that the plane σ(x, y, z) = 0 intersects B in the same edges as τ leads to a
constrained least squares problem:

min
σ∈R4

1∑

i=0

1∑

j=0

1∑

k=0

(σ1xi + σ2yj + σ3zk + σ4 − τijk)2 (2)

subject to Sσ ≥ 0.

Here, τijk is the value of τ on the vertex (xi, yj , zk) of B.
The matrix S represents the conditions on the intersections of the plane with the edges of B.

Since we allow for the zero-level set of σ to go through the vertices, the sign of σ(x, y, z) on each
vertex of B needs to be either the same as the sign of τijk or zero. This gives the eight inequalities

{
σ1xi + σ2yj + σ3zj + σ4 ≥ 0 for τijk ≥ 0

−σ1xi − σ2yj − σ3zj − σ4 ≥ 0 for τijk ≤ 0.
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Figure 2: Example level sets for the five base cases.

Figure 3: Several steps of refinement of the linear approximation to the ball.

Depending on the sign distribution of τ on B this number can be further reduced by omitting
redundant conditions. For example, the matrix S for the second base case in Figure 1 (the
tetrahedral case) equals

Stet =




x0 y0 z0 1
−x0 −y0 −z1 −1
−x0 −y1 −z0 −1
−x1 −y0 −z0 −1


 .

The hexagonal base case (the fifth in Figure 1), has the maximum number of 8 constraints.
In order to solve this optimization problem computationally, we formulate it as a quadratic

programming problem

min
σ

1

2
σᵀAσ − bᵀσ (3)

subject to Sσ ≥ 0,

where A and b are defined by the objective function (2). Several algorithms exist for solving
quadratic programming problems. In our implementation we use the one presented in [25]. Since
the size of the optimization problem is bounded, the time needed to compute the solution is
bounded by a constant, independent of the specific configuration.

Figure 2 shows examples for the intersections of B with the zero-level sets of linear functions
obtained by solving problem (3) for all five base cases, Figure 3 shows the approximation of a
ball (which is defined by a trimming function) obtained by considering uniformly sized boxes with
decreasing diameter.

4.2. Parameterization of the approximate domain

In order to find the quadrature nodes, we need to define a parameterization of the polyhedral
domain Bσ = {(x, y, z) ∈ B : σ(x, y, z) ≥ 0}. In the first, second and third base case in Figure 1,
the resulting polyhedron is a cuboid, a tetrahedron or a prism1, respectively. A parameterization
can be obtained by a single, trilinear parameterization, which is degenerate for the tetrahedron

1More precisely, it is a pentahedron, which is topologically equivalent to a triangular prism.

5



Figure 4: Parameterization of the linearized domain: Base cases 2-5 (top row) and the subdivision
into trilinear patches for cases 4 and 5 (bottom row).

and the prism. For the fourth case, we create a multi-patch parameterization that consists of two
degenerate trilinear patches representing prisms. In the fifth base case, we obtain three trilinear
patches (two prisms and a four-sided pyramid). Instances of base cases 2-5 and the splitting into
trilinear patches for cases 3 and 4 are shown in Figure 4.

If B is an instance of a rotation or a reflection of one of the base cases, the parameterization is
simply composed with the respective transformation matrix. Whenever the box is in an inverted
base case, i.e. one of the base cases with all signs flipped, we first compute the integral over the
entire box B and then subtract the integral defined by the base case.

4.3. Numerical integration

We use a q × q × q-point Gauss rule for the approximation of the integral

Iσf =

∫

Bσ

f(x, y, z) dz dy dx. (4)

This will be denoted as Linearized Trimmed (LT) quadrature rule.
If B is an instance of a base case without sign inversion, we obtain

LT[B, τ ]f =

#patches∑

i=1

q3∑

j=1

wijf(xij , y
i
j , z

i
j)

︸ ︷︷ ︸
(?)

, (5)

where the nodes (xij , y
i
j , z

i
j) are the images of the tensor-product Gauss nodes (ξj , ηj , ζj) for the

corresponding patch Gi of the parameterization of Bσ and

wij = wGauss
j |det∇Gi(ξj , ηj , ζj)|
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σ > 0

σ < 0

τ00 < 0 τ10 < 0

τ11 < 0τ01 > 0

σ > 0

σ < 0

τ00 < 0 τ10 < 0

τ11 < 0τ01 > 0

Figure 5: Two-dimensional visualization of the continuity of F . For the approximation on the
left-hand-side, the function F (u) is smooth. For the approximation on the right-hand-side, it
is only C0-smooth, because the boundary of the integration domain Bηu crosses the north-east
corner.

with the tensor-product Gauss weights wGauss
j . Otherwise, if B is an inversion of an instance of

a base case (i.e. the signs of τ at the cell vertices are flipped), then the signs of the weights wij
are flipped and the sum (?) that corresponds to the trilinear parameterization of the entire box is
added to (5).

5. Corrected linearized trimmed quadrature

In the final step of our method, we add an error correction term to the cell-wise LT quadrature
rule in order to alleviate the error caused by the linear approximation of the integration domain.

5.1. The first order correction term

First, we define the linear interpolant between σ and τ for u ∈ [0, 1]:

ηu(x, y, z) = σ(x, y, z) + u(σ(x, y, z)− τ(x, y, z)). (6)

We then consider the integral over the intermediate integration domains

Bηu = {(x, y, z) ∈ B : ηu(x, y, z) > 0}

as a function of a parameter u ∈ [0, 1], i.e.

F (u) =

∫

Bηu

f(x, y, z) dz dy dx.

Since σ and τ share the sign distribution at the box’ vertices, this function is expected to be
C2-smooth for u ∈ [0, 1]. More precisely, it is C2-smooth if the level sets of ηu intersect the
boundary of the box transversally and do not cross any vertex or edge as u varies from 0 to 1. A
two-dimensional illustration of this is shown in Figure 5.

By construction, F (0) = Iσf and F (1) = Iτf . In order to approximate F (1), we perform a
Taylor expansion of the function F around u = 0 and evaluate it at u = 1:

F (1) ≈ F (0) + F ′(0). (7)

We call F ′(0) the first order error correction term. The right-hand side, where we use Gaus-
sian quadrature to evaluate both contributions, defines the Corrected Linearized Trimmed (CLT)
quadrature rule.
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5.2. Evaluation of the correction term

The first order error correction term admits a simple analytic representation.

Lemma 1. The first order error correction term is equal to

F ′(0) = −
∫

{σ=0}∩B
f

τ

‖∇σ‖ ds. (8)

Proof. We evaluate the derivative of the integral F (u) with respect to the parameter u with the
help of Reynold’s transport theorem and obtain

F ′(u) =

∫

{ηu=0}∩B
fvu ds,

where the normal velocity vu is given by

vu = −
d
duηu

‖∇ηu‖
.

From the definition (6) of ηu we infer

∂ηu
∂u

= τ − σ

and

∇ηu = ∇σ + u(∇τ −∇σ).

Setting u = 0 and using that σ vanishes on the zero-level we arrive at the representation (8).

For the numerical evaluation of the bivariate integral (8), we consider the subdivision of the
integration domain {σ = 0} ∩B, which is defined by the patches covering the polyhedral domain
Bσ, see Section 4.2. This subdivision consists of at most two triangular and quadrilateral facets,
which admit bilinear parameterizations. We use a q × q point Gauss rule to evaluate the con-
tributions of the facets to the overall integral. Consequently, the CLT quadrature rule takes the
form

CLT[B, τ ]f = LT[B, τ ]f +

#surface patches∑

i=1

q2∑

j=1

vijf(xij , y
i
j , z

i
j),

where (xij , y
i
j , z

i
j) are the Gauss nodes mapped to the i-th planar patch using the parameterization

Hi and

vij =
vGauss
j τ(xij , y

i
j , z

i
j)

√
det∇HiT (ξj , ηj)∇Hi(ξj , ηj)

‖∇σ(xij , y
i
j , z

i
j)‖2

(9)

with the (2D) tensor-product Gauss weights vGauss
j .

In the experiments we will observe that the optimal number of Gauss nodes in each direction
when using the first order error correction term is q = 2. This is expected, since otherwise the
overall approximation order is dominated by the linear approximation and the correction term.

Higher order correction terms, which are beyond the scope of the present paper, involve edge
integrals and point evaluations. Clearly, higher order Gauss rules are needed to achieve higher
overall accuracy.
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5.3. Computational complexity

Next, we consider the computational complexity of both LT and CLT. We assume that each
evaluation of f and τ takes constant time.

Theorem 1. LT requires O(q3) function evaluations.

Proof. The constrained least squares approximation is performed in constant time and thus the
complexity for finding the approximations σ in all quadrature cells is O(1). Thus, the complexity
is dominated by the trivariate quadrature in (4) which is performed up to three times per element.
Since we use a q × q × q-point Gauss rule, the overall complexity is O(q3).

Theorem 2. The computational complexity of CLT is the same as the computational complexity
of LT.

Proof. The first order correction term (8) consists of a bivariate integral which is approximated
using the same amount of Gauss nodes per direction as for the trivariate integral (4). Since the
number of function evaluations in the computation of the weights (9) is constant in h, the overall
complexity is governed by the trivariate integral in LT and the complexities are asymptotically
the same.

The overall effort of the compound quadrature rule (which sums up the contributions of the
Nh sub-boxes, see Section 3) thus evaluates to O(Nhq

3).

6. Numerical examples

We implemented the method using the open source C++ library G+Smo [26]. For solving the
quadratic programming problem (3) we use QuadProg++ [27].

6.1. Convergence of the quadrature

In this section, we analyze the behavior of our method with respect to h-refinement. This
means that we first subdivide a given geometry uniformly into boxes of size h and then apply
different quadrature rules to them.

Ellipsoid example. In our first numerical example we use our method to compute the volume of
the region enclosed by an ellipsoid given implicitly by

τ(x, y, z) = − (x− 0.5)2

a2
− (y − 0.5)2

b2
− (z − 0.5)2

c2
+ 1.

Its piece-wise linear approximation after five steps of refinement is shown in Figure 6. We compare
the convergence of LT and CLT when using two Gauss nodes per direction in both the trivariate
integral in LT and the bivariate integral in the first order error correction term for CLT. Addi-
tionally, we compare the two methods with simply using Gauss quadrature for all cells that lie
completely inside the integration domain. This method will be denoted as the inner cell (IC)
method.

In the plot shown in Figure 7 we observe that the use of error correction increases the order
of convergence by one, resulting in cubic convergence. On the other hand, simply omitting all
trimmed cells gives only linear convergence.

Section 5.3 showed that the computational complexity of both LT and CLT is linear with
respect to the number of quadrature cells. This is the same complexity as for the usual Gauss
quadrature over untrimmed cells. Figure 8 shows the computation times needed by our imple-
mentation of LT, CLT and IC for various values of the mesh size h. We observe asymptotically
equivalent computation times of all three methods. The additional computational effort for CLT,
which is required for the advanced treatment of the trimmed cells, is more than justified by the
increased accuracy.
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Figure 6: Piece-wise linear approximation of the ellipsoid after five steps of refinement

Torus example. In our next example, we compute the volume of a torus given implicitly by the
trimming function

τ(x, y, z) = −((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 +R− r)2 + 4R((x− 0.5)2 + (y − 0.5)2).

Figure 9 shows the result of the approximation of τ by linear functions in each cell after five steps
of refinement. As in the previous example, we employ a 2×2×2-point Gauss rule for the trivariate
quadrature in LT and a 2× 2-point Gauss rule for the bivariate quadrature in the correction term
for CLT. Figure 10 depicts the quadrature error for various values of h for LT, CLT, and IC.
This example confirms that the previous observations also apply to non-convex (and hence more
complicated) domains.

6.2. L2 fitting and isogeometric analysis

We apply our method to the problems of L2-projection onto the trimmed B-Spline basis and
Galerkin projection of the Poisson problem on a trimmed domain Ωτ ⊂ R3, where the trimming
surface is given implicitly by a function τ : Ω→ R.

In addition to the numerical quadrature, another important challenge in the numerical treat-
ment of trimmed domains is the stability of the basis. If we used the trimmed B-Spline basis

B̃i(x, y, z) =

{
B̂i(x, y, z) if τ(x, y, z) > 0

0 else
(10)

for isogeometric analysis or for L2 projection, then the supports suppB̃i ∩Ωτ might be arbitrarily
small, depending on how the trimming surface cuts each element of the discretization. In order to
address the loss of stability caused by this fact, we use the extended B-Spline basis [20].

Basis functions whose support is smaller than a given threshold (e.g. less than an entire
element) are eliminated and added to (p + 1)d stable basis functions with appropriate weights,
thereby maintaining the property of polynomial reproduction. This is usually implemented as a
post-processing step of the full system matrix. More precisely, The stable system matrix Â and
right-hand-side b̂ are given by

Â = EAET , b̂ = Eb,

where the rectangular matrix E contains the extension weights (for details see [20]) and A and b
are the system matrix and right-hand-side related to the trimmed B-splines (10).
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Figure 7: Approximation of the volume enclosed by an ellipsoid using the LT and CLT.
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Figure 8: Computation times for computing the volume enclosed by the ellipsoid

Example: L2-projection. We apply our quadrature method to the assembly of the mass matrix in
order to perform an L2-projection of the function

u(x, y, z) = sin(πxyz) + cos(2π(y + z)) (11)

into the space of trimmed splines on the unit cube trimmed with a ball of radius r = 0.23 around
one of the vertices. Its trimming function is given by

τ(x, y, z) = x2 + y2 + z2 − 0.232.

The solution is shown in Figure 11.
We use extended B-splines in order to arrive at a stable discretization. Figure 12 shows the

h-dependence of the L2-error for several polynomial degrees p. We achieve the optimal rates of
convergence.

However, it should be noted that one obtains similar results when using LT or even IC. Indeed,
the resulting L2 approximation is not very sensitive with respect to perturbations of the domain
boundary.
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Figure 9: Linear approximation of the torus after some steps of refinement
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Figure 10: Approximation of the volume of the torus using the LT and CLT.

Example: Poisson equation on cube with spherical cavity. Next, we use our quadrature rules to
assemble the stiffness matrix in order to solve the Poisson equation





∆u = f in Ωτ ,
∂u
∂ν = h on ∂ΩNeumann

τ ,

u = g on ∂ΩDirichlet
τ

(12)

using Galerkin projection, based on extended B-splines.
We use Gauss quadrature with (p+1)3 nodes for the element-wise quadrature on the untrimmed

elements and the linear approximations to the trimmed elements. We also use (p+1)2 Gauss nodes
for the bivariate integral in the error correction term for CLT.

The domain is the unit cube, which has been trimmed by a ball of radius r = 0.23 around the
center, thus defining the trimming function

τ(x, y, z) = (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.232.

We impose Dirichlet boundary conditions on the boundary of the cube and homogeneous Neumann
boundary conditions on the spherical trimming surface. As a manufactured solution fulfilling these
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Figure 11: Exact solution (11) on the trimmed cube.
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Figure 12: L2-projection, stabilized using extended B-splines
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Figure 13: The example solution (13) on the trimmed domain clipped with a plane through the
origin (only for the visualization).

boundary conditions we choose

u(x, y, z) =
10(x− 1

2 )√
(x− 1

2 )2 + (y − 1
2 )2 + (z − 1

2 )2
(13)

+ (τ(x, y, z))2(8 cos(2π(y + z)) + 5 sin(2πxy)).

The first term of u is constant on the lines through the center of the domain, thus fulfilling
homogeneous Neumann boundary conditions on every sphere. The second term as well as its
normal derivative vanishes on the trimming surface, which is given as the level set τ = 0. Figure 13
shows the manufactured solution on the domain Ωτ which was clipped by a plane through its center
for the visualization.

First we consider the error measured in the H1-seminorm, see Fig. 14, which can be analyzed
with the help of Strang’s lemma [28]. It is bounded by the sum of the approximation error (caused
by the discretization) and the consistency error (due to the numerical integration).

For quadratic spline discretizations (p = 2), the approximation error (with respect to the
H1-seminorm) converges with order two, and hence it suffices to use a quadrature method that
provides this level of accuracy. Nevertheless, the CLT provides a small improvement, compared
to LT.

For cubic spline discretizations (p = 3), the approximation error (with respect to the H1-
seminorm) converges with order three, and hence one needs to employ quadrature method that
provides the same accuracy. The plot clearly demonstrates that CLT maintains the overall accu-
racy, while LT does not.

Second we consider the error measured in the L2-norm, see Fig. 15. For quadratic spline
discretizations (p = 2), we obtain the full rate of convergence (order 3) when using CLT. However,
the use of LT does not provide the full rate, even though it did suffice for optimal (quadratic) H1

seminorm convergence.
The situation is different for cubic splines (p = 3): Here, CLT gives only a (sub-optimal)

cubic convergence rate, and an even lower accuracy is obtained when using LT. We conclude that
the accuracy of the quadrature does not suffice to extend the optimal rate of convergence with
respect to the H1 seminorm (which was guaranteed by Strang’s lemma and demonstrated in Fig.
14) to the L2 norm. A similar phenomenon was observed in [29], where a higher accuracy of the
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Figure 14: h-dependence of the error of the Galerkin approximation in the H1-seminorm.
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Figure 15: h-dependence of the error of the Galerkin approximation in the L2-norm.
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quadrature was required for even degree splines in order to achieve the optimal rate of convergence
with respect to the L2 norm.

We summarize the experimentally observed rates of convergence with respect to the H1 semi-
norm and the L2 norm (separated by /) in the following table:

degree LT CLT
p = 2 2/2 2/3
p = 3 2/2 3/3

Optimal rates are shown in bold. We conclude that CLT is ideally suited for quadratic discretiza-
tions, and beneficial for cubic ones.

In Figure 16, we see that, as is expected, the error appears predominantly on the trimming sur-
face, which is where most of the consistency error occurs. However, for linear and quadratic spline
discretizations, the error is more evenly distributed than for the cubic discretization. Again, this
indicates that the accuracy of the trimmed quadrature – which is used near the trimming surface
only – is still insufficient to obtain the optimal rate of convergence for cubic spline discretizations.

7. Conclusion and future work

We presented an efficient and stable method for the numerical quadrature on trimmed volumes
and its application to isogeometric analysis with homogeneous Neumann boundary condition on
the trimming surface. Dirichlet boundary conditions on trimming surfaces are usually imposed
weakly, for example using Nitsche’s method. To this end, an integral term over the boundary
is added to the bilinear form. Moreover, boundary integrals appear naturally when imposing
non-homogeneous Neumann boundary conditions. This makes it necessary to perform numerical
quadrature on the trimming surface. An open task is therefore to apply the presented method to
integration on level-set surfaces.

In order to apply the method to higher-order discretizations, it is natural to add further terms
to the Taylor expansion (7). Our conjecture is that each term results in an additional order of
convergence of the quadrature error.
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