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Abstract

The framework of Isogeometric Analysis (IgA) makes frequent use of trivariate NURBS parameterizations (representing topologi-
cal cuboids) of the computational domain. Several recent publications [1-6] describe methodologies that decompose a given three-
dimensional solid in boundary representation into a collection of topological cuboids, or generate trivariate NURBS parameterizations
for each of them in a subsequent step. The decomposition can be derived via a segmentation into sufficiently simple “base solids”,
for which cuboidal multi-patch representations are readily available. Based on midpoint subdivision, we propose a new class of base
solids. In addition, we establish the pre-processing step of face pre-segmentation, which simplifies the splitting operations and im-
proves the shape of the resulting topological cuboids. Finally, we show how to realize the midpoint subdivision by a template mapping
approach, which simultaneously generates parameterizations of the base solids as trivariate multi-patch NURBS volumes.
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Figure 1: Given a midpoint subdivision suitable solid (a), a corresponding convex template polyhedron (b) is selected and the bijective
mapping u is constructed. The template is decomposed into topological cuboids via midpoint subdivision (c). Finally, with the help of
the mapping u, the subdivision is transferred to the input solid (d), generating a decomposition into topological cuboids with associated
parameterizations as NURBS volumes.

1. Introduction

Since the advent of Isogeometric Analysis (IgA) in 2005 [7],
there has been a continuous growth of interest in this topic, both
from practitioners and the scientific community. IgA combines
the main features of Computer Aided Design (CAD) and Finite
Element Analysis (FEA), by reusing the basis functions of the de-
sign tools in the analysis step, and prepares the ground to achieve
significant performance gains of the overall product development
process. The survey article [8], written by two eminent experts
in this field, gives an overview of the current state-of-the-art.
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Since the availability of volumetric spline models is a pre-
requisite for IgA, numerous researchers have addressed the con-
struction of such models from various types of input data. One
may distinguish between single- and multi-patch parameteriza-
tions. The first class is conceptually simpler but has limited flex-
ibility.

Single-patch spline representations for swept volumes and
generalized cylinders were constructed in [9, 10]. Harmonic
functions are particularly useful, since they can be employed to
guarantee injectivity [11] and yield high-quality parameteriza-
tions [12]. Given a representation as a tetrahedral mesh, a B-
spline volume representing a solid is constructed by first com-
puting parameterizations via harmonic functions and then per-
forming a spline approximation [13].

The limited flexibility of single-patch NURBS parameteriza-
tions can be enlarged by employing more advanced spline func-
tions, such as T-splines. Several publications address the compu-
tation of parameterizations defined by trivariate T-splines. These
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combine optimization methods with refinement strategies and
techniques from traditional mesh generation [14, 15]. The use of
polycube domains allows to deal with objects of non-zero topo-
logical genus [16], such as solids defined by Boolean operations
[17]. The preservation of boundary features is studied in [18].
A polycube-type construction for cubic polynomial splines over
hierarchical T-meshes (PHT-splines) is presented in [19].

Many domains require the use of multi-patch structures, es-
pecially if tunnels or voids are present. A geometric modeling
framework is established in [6]. Methods based on polycubes ap-
ply mesh deformation techniques to a uniform grid [5, 19]. While
this gives satisfying results in many cases, it does not preserve the
patch structure of a given CAD model. Alternatively, the seg-
mentation into topological cuboids can be constructed by con-
sidering pants decomposition of the boundary surface [4], or by
recursively applying splitting steps (isogeometric segmentation)
that reduce the object’s topological complexity [2, 3, 20]. Once
the segmentation has been found, the multi-patch parameteriza-
tion can be constructed by employing variational techniques and
Coons interpolation [1, 21].

Hybrid approaches, which combine an exact representation of
the solid’s boundary with a tetrahedral mesh in the interior via
intermediate patches defined by offsetting, maintain the compat-
ibility with the initial representation [22].

The present paper contributes to the splitting-based approach
to isogeometric segmentation, which is summarized in [23]. The
initial framework [2], which is limited to solids with only con-
vex edges, has been extended to contractible solids that may pos-
sess non-convex edges [3]. The application to non-contractible
solids (with tunnels but without voids) becomes possible after ex-
ecuting a Reeb graph-based preprocessing step [20]. The impor-
tant problem of intersection-free splitting surface construction
has been addressed in [24]. Finally, the construction of NURBS
volume parameterizations of the resulting cuboidal solids (which
includes a postprocessing step that ensures matching interface
parameterizations) has been described in [23]. It should be noted
that the parameterization step produces an approximation of the
original boundary surfaces, thereby generating a model that is
suitable for both design and analysis.

Recall that the recursive splitting steps are applied until the re-
sulting sub-domains belong to a predefined class of base solids.
With the help of midpoint subdivision, we propose a new and
larger class of base solids. In addition, we establish the pre-
processing step of face pre-segmentation, which simplifies the
splitting operations and improves the shape of the resulting
solids. Finally, we show how to realize the midpoint subdi-
vision by a template mapping approach, which simultaneously
produces parameterizations of the base solids as trivariate multi-
patch NURBS solids.

These contributions lead to the extended segmentation algo-
rithm, which is described in the next section.

2. The extended segmentation algorithm (ESA)

The first step of converting boundary represented CAD data
into volumetric NURBS patches is to subdivide the solid ob-
ject into a collection of topological cuboids, which can then be
parameterized by tensor product NURBS patches in the second

Algorithm ESA: Extended segmentation algorithm
Input : An ESA-suitable solid S .
Output: A decomposition into MS3.

1 Initialize stack with the solid S . Apply face presegmentation
to the faces of S .

2 while stack is not empty do
3 Take the next solid from the stack.
4 if non-convex edges are present then
5 call CLS to remove at least one of them and put the

two resulting solids on the stack.
6 else if high-valent vertices are present then
7 call CLS to to remove at least one of them and put

the two resulting solids on the stack.
8 else if the solid is not a MS3 then
9 call CLS to generate two solids with fewer vertices

and put them on the stack.
10 else
11 output the solid.

step. The isogeometric segmentation pipeline [2, 3, 23] provides
a framework that generates such a subdivision via a recursive al-
gorithm, with the focus on creating a small number of patches.
In this article we propose several extensions, which improve the
quality of the output shapes.

The initial solid, which is required to be contractible (cf. [20]),
is represented by its faces (trimmed NURBS surfaces), edges
(where adjacent faces meet) and vertices (where neighboring
edges meet). Edges and vertices define the edge graph, which
is assumed to be planar, 3-vertex-connected and free of double
edges. Any solid satisyfing these assumption is said to be ESA-
suitable. Recall from [3] that edges are classified into convex and
non-convex ones, see Figure 2.

An existing vertex is defined by the intersection of at least
three boundary faces. Additionally we consider auxiliary ver-
tices, which can be introduced anywhere in the interior of an ex-
isting edge of the solid.

Similarly, existing edges correspond to non-empty intersec-
tions of adjacent boundary faces. In addition, we introduce auxil-
iary edges connecting existing or auxiliary vertices. These edges
split faces into two smaller ones. Its endpoints must not belong
to the same boundary edge. Auxiliary edges are always non-
convex.

It should be noted that the geometric realization of auxiliary
edges and vertices requires special care, in order to avoid inter-
sections and singularities. This is discussed in more detail in [25]
and [24].

The segmentation procedure of the extended pipeline is sum-
marized in the Extended Segmentation Algorithm ESA. Given
a contractible three-dimensional solid S , it recursively performs
splitting operations, until the solid is decomposed into a collec-
tion of solids that are sufficiently simple and hence suitable for
midpoint subdivision. These solids will be referred to as mid-
point subdivision suitable solids (MS3). A more precise defini-
tion of MS3 will be provided in section 5.

Compared to the original method (see [23]), the procedure in-
corporates the following additional features:
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Algorithm CLS: Cutting Loop-based Splitting
Input : A contractible three-dimensional solid S .
Output: Two solids S 1 and S 2.

1 Find all possible cutting loops in the edge graph.
2 Rate each loop by a cost function and select the best one.
3 Construct auxiliary vertices and edges on the solid.
4 Use the cutting loop to construct a cutting surface.
5 Split the solid along the cutting surface.

• We perform a face pre-segmentation. The faces of the initial
solid are subdivided if their shape appears to be unsuitable
for the segmentation algorithm. This is described in more
detail in Section 3.

• The extended procedure makes systematic use of midpoint
subdivision. This type of decomposition, which is avail-
able for any solid with only tri-valent vertices, generates
one cuboidal sub-domain for each vertex. This contribu-
tion is based on two ingredients: First, we need a method to
eliminate high-valent vertices, which is described in more
detail in Section 4. Second, we need a catalog of MS3

and a method for actually performing the subdivision into
cuboidal sub-domains. The latter method is simultaneously
useful for creating the individual trivariate NURBS param-
eterizations. These two contributions are described in more
detail in Sections 5 and 6, respectively.

n1 n2

t1 t2
n1n2

t1 t2

n1n2

t1 t2

Figure 2: Instances of convex, non-convex and auxiliary edges.
Note that the two normal vectors in the right picture actually co-
incide.

The splitting operations in lines 5, 7 and 9 of ESA are per-
formed by instances of the algorithm for Cutting Loop-based
Splitting (CLS, see page 3). First we use Yen’s algorithm [26] to
find all available cutting loops in the edge graph, which is possi-
bly extended by auxiliary edges and vertices. Second, the quality
of these loops is assessed by evaluating a cost function, which
takes combinatorial and geometric aspects into account. Finally,
after selecting the best cutting loop according to the cost func-
tion, we construct the cutting surface and split the solid, see [24].
The main difference between the three cases (lines 5, 7 and 9) is
the choice of the cost function, which is adapted to the specific
situation.

The remaining sections provide further details regarding ESA.
The first splitting operation (line 5 of the algorithm) is covered
by [3] and will not be discussed further.

3. Face pre-segmentation

Clearly, the quality of the segmentation result depends not
only on the combinatorial structure of the edge graph, but is
strongly influenced by the geometry of the solid. More complex
shapes are more challenging than simpler ones and require more
sophisticated techniques in order to obtain a satisfactory result.
The proposed face pre-segmentation of the initial solid takes this
fact into account.

In many cases, the more complicated parts of a solid either
correspond to a large number of faces, or to fewer faces with
more complex shapes. The latter case could not be dealt with
successfully by the original algorithm of [23], since that method
was unable to identify suitable segmentations of faces possessing
a complex shape. We address this problem by splitting those
faces into simpler ones, joined across newly introduced artificial
non-convex edges. These edges then trigger splitting operations
that simplify the shape of the solid.

The insertion of the artificial edges is applied recursively, and
it is repeated until the shape of the face is sufficiently simple. We
use the number of vertices (which should not exceed 7) and the
total variation of tangent vector’s turning angle to identify faces
that need further splitting.

We assume that the shape of the face roughly matches the
shape of the associated parameter domain. This is the case if
the parameterization has bounded distortion. Consequently, it
suffices to analyze the shape of the parameter domain, which is a
much simpler task than analyzing the shape of the face itself.

The face is split along one or several straight lines in the pa-
rameter domain. We determine the location of these lines with
the help of the medial axis transform (MAT) of the domain
boundary, which is a classical tool for shape analysis and seg-
mentation.

The MAT of a planar domain is formed by the centers of max-
imal inscribed disks, along with the associated radius informa-
tion, see [27] and the references cited therein. The local minima
of the radius function along the MAT indicate where to split the
face. Each of the associated maximal disks touches the bound-
ary of the face in two points, cf. Figure 3. The disk’s diameter
connecting them defines the splitting curve.

This simple approach fails in some cases, see Figure 4. In or-
der to address this problem we employ an alternative technique,
which is based on the distance function d(u, v) = ‖b(u) − b(v)‖
of point-pairs on the boundary b of the parameter domain. The
potential splitting lines correspond to prominent local minima of
this function, with well-separated end points. Typically, this re-
sults in several candidates for splitting lines, and we select the
shortest one.

4. Elimination of high-valent vertices

In order to arrive at MS3, we split high-valent vertices (valency
greater than 3) by selecting suitable cutting loops through them.
On the one hand, the choice of the cutting loop needs to ensure
that the valency of the vertex decreases. On the other hand, it
must not increase the valency of any other vertex.

We recall some simple facts about cutting loops. Let v be a
vertex with valency n. A valid cutting loop that passes through v
splits the solid S into two solids S 1 and S 2, which both contain
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Figure 3: Local minimum of the radius function along the medial
axis transform and corresponding maximal disk.

Figure 4: Left: the circle corresponding to the desired cut is not a
maximal inscribed circle. The radius function has no local min-
imum along the MAT. Right: the alternative approach still finds
the desired cut.

the vertex v with valencies n1 and n2 respectively. The two edges
of the cutting loop that contain v can be existing or auxiliary ones,
cf. Figure 5.

A careful analysis of the possible configurations gives the fol-
lowing result.

Lemma 1. The valencies n1 and n2 do not exceed the original
valency n if the cutting loop contains at most one auxiliary edge
through v.

n1 = 4

n2 = 3

naux = 0

n1 = 5

n2 = 3

naux = 1

n1 = 6

n2 = 3

naux = 2

Figure 5: Cutting loops (red) through a vertex with valency 5,
with different numbers naux of auxiliary edges (dashed).

For future reference we state another result.

Lemma 2. If two faces F1 and F2 of an edge graph share two
vertices v and w, the edge (v,w) exists and is contained in both
faces F1 and F2.

Proof. We prove this result by contradiction. Let F1 and F2 be
two faces that share the vertices v and w, but no edge, see Figure
6. We assume that the vertices on both faces are ordered counter-
clockwise and denote the paths from v to w and from w to v in
face F1 by P1 and Q1, respectively. Similarly, we denote the

paths from w to v and form v to w in face F2 by P2 and Q2,
respectively (cf. Figure 6).

The loop Q = Q1 ∪ Q2 contains at least one vertex besides
v and w. Otherwise, the two faces would share the edge (v,w),
since the edge graph is free of double edges. Analogously we
conclude that the loop P = P1 ∪ P2 contains at least one vertex
besides v and w. Consequently, removing the vertices v and w
disconnects the edge graph. This contradicts the assumption that
the edge graph is 3-vertex-connected.

v

w

F1 F2

P1 P2Q1 Q2

Figure 6: The loops considered in the proof of Lemma 2.

The following theorem shows that there always exists a suit-
able cutting loop to reduce the valency of a high-valent vertex.
The main idea of the proof is to suitably extend the proof of The-
orem 1 of [3], which showed that there always exists a valid cut-
ting loop through a given non-convex edge.

Theorem 1. Any solid S , which fulfills the assumptions of ESA
and contains a high-valent vertex v, can be split by CLS into
two solids S 1 and S 2, both containing a copy of v with reduced
valency. The splitting does not increase the valency of any other
vertex and creates only tri-valent ones.

Proof. We enumerate the faces that surround v in counter-
clockwise order by F1, . . . , Fn, and the adjacent vertices by
v1, . . . , vn, with (v, vk) = Fk ∩ Fk+1, where indices are considered
modulo n, see Figure 7. From the n adjacent vertices, we pick
two vertices vi and v j, which are neither connected by an edge,
nor share one of the faces F1, . . . , Fn. This is always possible,
since n ≥ 4 and the edge-graph is planar.

We show that the path (vi, v, v j) can be extended to a valid
cutting loop, i.e., any face contains at most one edge of that loop.
This loop reduces the valency of v, due to the choice of vi and
v j. Moreover, Lemma 1 ensures that the valencies of vi and v j do
not increase. All other vertices are chosen as auxiliary (and hence
tri-valent) ones. The construction of this cutting loop requires the
analysis of two different cases:

Case 1: vi and v j share a face F∗ (cf. Figure 7). We connect
vi and v j by an auxiliary curve in that face, thereby obtaining
the desired cutting loop. Lemma 2 implies that F∗ is none of the
faces Fi, Fi+1, F j or F j+1. Consequently, the cutting loop is valid.

Case 2: vi and v j do not share a face (cf. Figure 8). Let F∗i
be the face that shares an edge with Fi+1 and contains vi but not
v. Similarly, let F∗j be the face that shares an edge with F j and
contains v j but not v.

We consider the union of the faces Fi+1, . . . , F j. From its
boundary we remove the vertex v and the adjacent edges to ob-
tain the path q1 = vi, . . . , q` = v j. The faces, which contain at
least one of the vertices q1, . . . , q` but not v form a 2-vertex con-
nected sub-graph, whose dual graph is connected. The shortest
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path (with respect to the number of edges) from F∗i to F∗j in the
dual graph indicates how to obtain the cutting loop.

The shortest path in the dual graph corresponds to a chain of
faces H1 = F∗i , . . . ,Hm = F∗j of the original graph, such that ad-
jacent faces Hk and Hk+1 share an edge. On each edge Hk ∩Hk+1
we create an auxiliary vertex wk for k = 1, . . . ,m− 1 and connect
consecutive ones by auxiliary curves in the corresponding faces.
Finally we close the cutting loop by connecting vi to w1 and v j to
wm−1 by auxiliary curves in H1 and Hm respectively.

Since, by construction, none of the faces H1, . . . ,Hm contains
v, they are different from Fi, Fi+1, F j and F j+1. Thus, the cutting
loop will be valid.

Fi+1

Fi

Fj+1

Fj

F ∗

v
vj

vi

Figure 7: Theorem 1, case 1: vi and v j are contained in the face
F∗. We connect them by an auxiliary curve.

q2q`−1

q1

q`

q3
q`−2 w1

w2

wm−2

wm−1

Fi+1

Fi
Fj+1

Fj

F ∗
i

F ∗
j

H2Hm−1

v
vj

vi

Figure 8: Theorem 1, case 2: vi and v j do not share a face. We
construct a path in the chain of adjacent faces (green and red)
connecting vi and v j. The green faces contain the shortest path,
with respect to the number of edges.

Note that while Theorem 1 guarantees the existence of a va-
lency reducing cutting loop, it is not used directly to construct it
during the execution of CLS. Instead, we use a suitable cost func-
tion, which leads to the selection of a cutting loop that splits the
solid into two solids, with fewer high-valent vertices, according
to a lexicographic ordering.

5. Midpoint subdivison suitable solids (MS3)

A solid needs to fulfill several requirements to be considered
suitable for midpoint subdivision. The primary condition is that
the solid must only contain tri-valent vertices. This is due to the

fact that midpoint subdivision splits a solid S with n vertices into
n solids, which each contain exactly one vertex of the original
solid. The solids will be topological cuboids if and only if the
valency of any vertex of S is equals to three.

Based on the duality between planar triangulations and pla-
nar graphs with only tri-valent vertices, we generated the edge
graphs of all MS3 with the help of plantri [28]. Table 1 reports
the number of topologically different edge graphs for MS3 with
at most 12 faces, where we restricted ourselves to solids with at
most 6-sided faces. Each of these edge graphs possesses a geo-
metric realization as a convex polyhedron, according to Steinitz’s
theorem (cf. [29]), which will serve as the template for the mid-
point subdivision, see next section. Figures 9 and 10 visualize
the edge graphs and possible realizations of the corresponding
templates for MS3 with at most 9 faces.

# faces 4 5 6 7 8 9 10 11 12
# templates 1 1 2 5 10 15 30 44 77

Table 1: Number of different template MS3 with respect to the
number of faces.

So far we took solely combinatorial properties of MS3 into
account. Since the quality of the output shapes depends strongly
on the geometry of the input solid, we also employ two simple
geometric criteria:

Since all generated sub-domains that share one common face
of the original solid meet in a common edge, small interior angles
will be present if the original solid has faces with many edges.
Therefore we restrict ourselves to solids with at most 6-sided
faces. Similarly, in order to prevent the occurrence of small an-
gles at the central vertex, we restrict ourselves to solids with at
most 12 faces.

6. Midpoint subdivision

Midpoint subdivision was already investigated in [30] for hex-
ahedral mesh generation. In that publication, the main focus was
put on the compatibility of the generated hexahedral sub-meshes
across the interfaces, which was achieved via integer program-
ming. In contrast to this earlier work, we focus on the generation
of a single NURBS volume parameterization for each of the gen-
erated cuboidal sub-domains.

6.1. Midpoint subdivision of template MS3

We consider a convex polyhedron, which represents one of the
template MS3, see Figure 10. For every vertex of the polyhedron,
we construct a topological cuboid, by introducing new vertices,
edges and faces.

First, we choose the midpoints of every edge and every face,
and the center of the polyhedron. Second, we create straight
edges that connect each face-midpoint to the surrounding edge-
midpoints, and the center to all face-midpoints. Third, we create
a bilinear cutting surface for each quadrilateral loop of newly
created edges, and we subdivide the original planar faces of the
polyhedron accordingly.

There are several options for choosing edge midpoints, face
midpoints, and the center of the polyhedron. Since the template
MS3 are all convex, the center of mass is usually a good choice
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Figure 9: Edge graphs of MS3 with at most 9 faces. Figure 10: Template MS3 with at most 9 faces.

in all cases. Figure 11 depicts the midpoint subdivision of a par-
ticular instance of a template MS3.

6.2. The multi-patch structure

Midpoint Subdivision decomposes a given d-dimensional do-
main Ω, which is topologically equivalent (i.e., diffeomorphic) to
a polygon for d = 2 and to a template MS3 for d = 3, into a col-
lection of parameterizable sub-domains. The number of vertices,
all of which have the same valency d, is denoted by nv.

In order to prepare the exposition in the next section, we intro-
duce a multi-patch structure that allows us to describe the entire
domain in terms of the smaller sub-domains. For d = 2, it is
visualized by the part of Figure 12, which is within the dashed
polygonal boundary.

The midpoint subdivision is realized by constructing a multi-

patch parameterization

pi : [0, 1]d → Ω, i = 1, . . . , nv,

with Ω =
⋃nv

i=1 Ωi and Ω◦i ∩ Ω◦j = ∅ if i , j, where Ωi =

pi([0, 1]d).
The boundary facets of the nV individual parameter domains

[0, 1]d are split into two groups:
• The first d facets are used to parameterize the boundary of Ω.
We use the symbols

bi, j : [0, 1]d−1 → ∂Ω ∩ F(i, j), j = 1, . . . , d, with
bi, j(ξ1, . . . , ξ j−1, ξ j+1, . . . , ξd) = pi(ξ1, . . . , ξ j−1, 0, ξ j+1, . . . , ξd),

to represent the d restrictions of the parameterization pi to these
facets. Here, the symbols F(i, j) denote the d faces of Ω that con-
tain the i-th vertex vi.
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Figure 11: Left: Visualization of the midpoint subdivision
(shown for only one vertex). The face midpoints (blue) are con-
nected to all surrounding edge midpoints (purple) and to the
solid’s center (black). Right: The one constructed sub solid from
two different perspectives.

t1t2

Ω̃

q̃

ṽi Ω

vi

q

b̃i,1

b̃i,2

bi,1

bi,2

c̃i,1

c̃i,2

ci,1

ci,2

p̃i

pi

u

Figure 12: Multi-Patch structure (shown within the dashed poly-
gon) and template mapping problem for d = 2.

• The remaining d facets are used to parameterize the interior
interfaces. We use the symbols

ci, j : [0, 1]d−1 → Ω, j = 1, . . . , d, with
ci, j(ξ1, . . . , ξ j−1, ξ j+1, . . . , ξd) = pi(ξ1, . . . , ξ j−1, 1, ξ j+1, . . . , ξd).

to represent the d restrictions of the parameterization pi to these
facets. The interfaces are joined pairwise with C0-smoothness.
More precisely, if the edge (vi, v′i) exists in the solid Ω, there are
indices j and j′ and a permutation π of the d − 1 parameters such
that

ci, j = ci′, j′ ◦ π. (1)

Note that the multi-patch parameterization satisfies

pi(0, . . . , 0) = vi, and pi(1, . . . , 1) = q,

where q is the midpoint of the domain Ω. The multi-patch struc-
ture of a template MS3 is readily available. We will transfer it to
a topologically equivalent general MS3.

6.3. Midpoint subdivision of general MS3

For subdividing a general MS3, the simple techniques de-
scribed in Section 6.1 will not suffice. Instead we consider a
topologically equivalent template MS3 and its associated multi-
patch structure, and construct a regular mapping from the tem-
plate to the solid, which is used to transfer the subdivision.

In our implementation, we pre-computed one realization of
each edge graph by a convex polyhedron and used it as a tem-
plate MS3. These realizations are shown in Figure 10. Clearly, it
would be possible to create more than one realization per edge-
graph and to select the most suitable one (which minimizes the
overall deformation of the mapping that transforms the template
into the target) when transferring the subdivision. So far, our
implementation uses only one geometric realization per MS3.

A well-established approach to construct the required mapping
from a template to a target is the free-form deformation [31],
where a box surrounding the template is mapped into a free-form
volume around the target. This regular mapping transforms the
boundary of the template into the boundary of the target. Its con-
struction is reasonably simple to implement and produces satis-
fying results if the shape of the target is relatively similar to the
shape of the template. Otherwise, we need a more sophisticated
approach, which is based on a systematic use of the multi-patch
structure presented in the previous section.

We denote the given domain, which is assumed to be a MS3,
by Ω, and the associated template by Ω̃. The multi-patch param-
eterizations of the solid and of the template will be denoted by pi

and p̃i, respectively. Similarly, we will use the tilde to distinguish
between the MS3 and its template.

In order to construct a mapping from the template to the target
we consider the following template mapping problem, which is
visualized in Figure 12:

We consider the given template domain Ω̃ with the multi-patch
parameterization p̃i and the boundary parameterizations b̃i, j, for
i = 1, . . . , nv and j = 1, . . . , d. In addition, we are given the
target domain Ω with associated boundary parameterizations bi, j,
where the mapping

β(x̃) = bi, j ◦ b̃−1
i, j (x̃), if x̃ ∈ codomain(b̃i, j)

is assumed to be continuous and bijective. For these given data,
we construct a multi-patch parameterization

pi, i = 1, . . . , nv,

of the target domain Ω, which then defines the template mapping

u : Ω̃→ Ω

u(x̃) = pi ◦ p̃−1
i (x̃), if x̃ ∈ codomain(p̃i).

(2)

In order to make this abstract problem accessible to a numer-
ical solution, we first introduce a multi-patch spline space. It
consists of tensor-product spline functions, defined on a union of
d-dimensional unit cubes, which are C0-smooth across the inter-
faces between these cubes (see [32]), thereby guaranteeing that
(1) is satisfied by construction. Summing up, the multi-patch pa-
rameterization takes the form

p : [0, 1]d × {1, . . . , nv} → Ω

p =
∑

k∈K
dkNk,

(3)
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where Nk are multi-patch B-splines and K their index set.
The individual parameterizations are then obtained as restric-

tions to the patches [0, 1]d × {i},

pi(ξ) = p(ξ, i) =
∑

k∈K i

dkN i
k(ξ), ξ ∈ [0, 1]d, (4)

with tensor-product B-splines N i
k(ξ) = Nk(ξ, i) and index setsK i.

We obtain the parameterization (3) by first choosing the de-
grees and knot vectors of the basis functions Nk and then com-
puting the unknown coefficients dk. The latter are found by min-
imizing the functional

F(d) = P(d) + λQ(d), (5)

where d = (dk)k∈K , and λ ∈ R+. This functional consists of
two parts, whose relative influence is controlled by the positive
weight λ. With U j = [0, 1] j−1 × {0} × [0, 1]d− j we define the
penalty term

P(d) =

nv∑

i=1

d∑

j=1

∫

U j

‖bi, j(x̃) − pi(x̃)‖2dx̃,

which measures the accuracy of the boundary representation.
Additionally we consider a quality measure Q(d), that keeps the
parameterization p regular in the interior of Ω. Several possibili-
ties are listed in [33] for the planar case, which admit extensions
to the three-dimensional situation.

By minimizing the functional (5) we obtain the desired coef-
ficients dk and thus the parameterization p. Together with equa-
tions (2) and (4) we finally obtain the mapping u.

Note that the construction of suitable boundary parameteriza-
tions bi, j for d = 3, which are needed as input for the template
mapping problem, is a non-trivial problem itself. We obtain
these parameterizations by solving template mapping problems
for d = 2 (one for each facet).

7. Segmentation examples

Example 1. We consider a regular dodecahedron, see Figure 13
(left). It is a template MS3 with many rotational symmetries
and therefore perfectly suited for midpoint subdivision. Figure
14 shows the result of the segmentation algorithm described in
[23], i.e., without face pre-segmentation and midpoint subdivi-
sion. The result is valid, but not ideal for parameterization. In
contrast, the use of midpoint subdivision leads to 20 symmetrical
topological cuboids with planar boundary faces. One of those
identical pieces is visualized in Figure 13 (right).

Example 2. We apply the ESA to a cube with two orthogo-
nal slots on opposite sides. Although the shape of this object
is not very complex, an automatic segmentation is non-trivial,
due to the non-convex shape of the object. Figure 15 shows
the result of the original segmentation algorithm without face
pre-segmentation and without the use of midpoint subdivision.
The object is decomposed into three topological cuboids and two
prisms with three-sided base surfaces. However, the shapes of
those output solids are again not ideally suited for constructing a
volumetric parameterization.

Figure 13: A regular dodecahedron and one of the 20 topological
cuboids obtained via midpoint subdivision.

Figure 14: Base solids of the segmentation of the dodecahedron
via the algorithm described in [23]. The computed cutting sur-
faces are all non-planar, some of them being highly curved, and
therefore the resulting shapes are hard to parameterize.

The result of the extended algorithm is shown in Figure 16.
Due to the use of face pre-segmentation, the first few cuts are
very intuitive, since they use planar cutting surfaces that split
the object into four symmetrical convex polyhedra with only tri-
valent vertices. In the last step, those MS3 are further decom-
posed into topological cuboids with bi-linear faces by midpoint
subdivision. The final decomposition is visualized in Figure 17.

Example 3. The next object is a non-convex solid, which does
not contain a non-convex edge. The segmentation algorithm of
[23] uses only one cut that involves the use of an implicit guiding
surface [24] due to the non-convex shape of the object. Since
both resulting sub-domains, which are depicted in Figure 18, are
also strongly non-convex, it is very challenging to represent them
as trivariate NURBS patches.

Figure 15: Segmentation of the bi-slotted cube via the method
described in [23].
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Figure 16: Segmentation of the bi-slotted cube with pre-
segmented faces. Only one half/quarter is shown due to sym-
metry reasons.

Figure 17: Midpoint subdivision of one resulting MS3 after the
face pre-segmentation.

Since this solid is already a MS3, one can directly use mid-
point subdivision, without any previous segmentation steps. This
requires the use of a hexagonal prism as template MS3 (see Fig-
ure 10, third row, third column). Although the 12 resulting topo-
logical cuboids (cf. Figure 19) are all valid, four of them contain
edges with a fairly small interior angle, which may cause prob-
lems in the subsequent parameterization step.

The reason for the occurrence of these small angles is
the highly non-convex shape of the object. The face pre-
segmentation step resolves this issue, fostering a split by a hori-
zontal plane in the middle of the solid (cf. Figure 20). The subse-
quent use of midpoint subdivision leads to two symmetrical sets
of 10 topological cuboids, which are visualized in Figure 21. The
midpoint subdivision requires again a suitable template MS3 (see
Figure 10, second row, first column). Clearly, the quality of this
decomposition improves upon the previous results.

Example 4. The shape of the considered solid resembles the
head of an hammer. We cut the hammer along a vertical plane

Figure 18: Solid is split into two topological cuboids using the
methods of [23] and [24]. The resulting shapes are not ideal due
to the highly curved cutting surface.

into two symmetrical pieces, thereby eliminating the hole for the
handle in order to make the object contractible. The object is
depicted in Figure 22 (top-left).

The extended segmentation algorithm (ESA) first splits off the
tip of the hammer, see Figure 22. The resulting piece contains
a vertex with valency 5. Therefore it is segmented further into
four smaller pieces (topological prisms with three-sided base sur-
faces) by using cutting loops that pass through the high-valent
vertex.

In the next step the remainder of the hammer is split into two
MS3. The bottom piece is a convex polyhedron with 10 tri-
valent vertices. Therefore the midpoint subdivision algorithm
can be applied directly to decompose this piece into 10 topolog-
ical cuboids with only planar and bi-linear faces.

While decomposing the bottom piece is easy, the midpoint
subdivision of the non-convex center piece is quite interesting.
Based on the segmentation of a template polyhedron (see Figure
10, sixth row, second column) it is segmented into 14 topological
cuboids, which are depicted in Figure 23. However, this results in
four sub-domains that contain an edge with a very small interior
angle.

A face pre-segmentation of the input solid resolves this issue.
After the first two splits into the tip, center and bottom piece,
the center piece is then subdivided by a plane into two smaller
MS3, which are shown in Figure 24. Finally those two solids can
be further decomposed by midpoint subdivision with the use of
template MS3 (see Figure 10, third row, second column). The
results are shown in Figures 1 and 25. The latter picture shows
the final multi-patch parameterization by NURBS volumes.

Example 5. Finally we combine the segmentation into con-
tractible solids (see [20]1) with the ESA. Given a solid with
several tunnels, we first perform cuts that connect them to the
nearest boundary, see Figure 26 (left). After the face pre-
segmentation step, the original non-convex edge is eliminated by
cutting through it (cf. line 5 of ESA). The two resulting solids,
which are depicted in Figure 26 (right), are further decomposed
into MS3 by continuing the steps of the ESA. This is visualized
in Figures 27 and 28.

1In the examples presented in [20], the tunnels were eliminated by cutting the
solid with suitably chosen planes. Here we use only segments of these planes
as cutting surfaces. This keeps the original solid connected, while the other ap-
proach would already subdivide the solid into simpler pieces.
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Figure 19: Midpoint subdivision with the use of a template MS3.

8. Conclusion and outlook

A representation of the computational domain as a bi– or
trivariate spline model is a prerequisite for IgA. However, the
standard within the CAD technology is to use boundary repre-
sentations instead. A conversion into a format suitable for IgA is
a challenging task, especially when dealing with volumetric do-
mains. The semi-automatic subdivision steps described in [23]
contribute to an isogeometric segmentation algorithm, where a
given solid object in boundary representation is transformed into
a collection of base solids and finally into topological cuboids.
A subsequent parameterization step leads to the desired IgA-
suitable domains. We presented several modifications of the ex-

Figure 20: Solid is split into two symmetrical halves after the
face pre-segmentation step.

Figure 21: Midpoint subdivision after the face pre-segmentation.

isting isogeometric segmentation algorithm, which improved the
shapes of the constructed sub-domains and simultaneously lead
to parameterized volumetric domains.

First, the face pre-segmentation step introduces artificial edges
in carefully chosen positions of the original solid, thereby in-
creasing the flexibility of the available cutting loops. As a result,
the need for strongly curved cutting surfaces is reduced substan-
tially. We obtain better-shaped solids and improve the perfor-
mance of the overall algorithm, especially by the reduced com-
plexity of the cutting surface construction.

Second, we use midpoint subdivision to decompose a given
domain into a collection of topological cuboids in one step, tak-
ing existing symmetries into account. However, this method can
only be applied to solids with certain properties. Midpoint sub-
division returns a collection of topological cuboids, if and only
if every vertex of the input solid possesses valency three. We
showed that the segmentation algorithm is capable of subdivid-
ing an input solid into a collection of midpoint subdivision suit-
able solids. While performing midpoint subdivision on a con-
vex polyhedron is straightforward, its application to more gen-
eral (possibly non-convex) domains requires special techniques.
We proposed a template mapping approach to resolve this issue.
As a by-product, we directly obtain the parameterization of the
base solids as volumetric multi-patch spline domains.

Despite these improvements, there are still limitations of the
isogeometric segmentation algorithm. First, due to the exponen-
tial growth of the number of possible cutting loops with the topo-
logical size of the input solid, our method is restricted to solids
of rather limited combinatorial size. Second, although the con-
structed solids will be a valid decomposition of the input domain,
their interfaces are not guaranteed to possess matching parame-
terizations. Thus new challenges arise when performing numeri-
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Figure 22: Segmentation of the hammer into MS3. The tip con-
tains a high-valent vertex and is segmented into four topological
prisms. The remainder is split into two MS3.

cal simulations. These can be dealt with by employing discontin-
uous Galerkin methods [34] or similar approaches for weak cou-
pling [35] of sub-domains in IgA. Alternatively, one may post-
process the solids to generate matching interfaces. Finally, the
segmentation and parameterization process relies on the choice
of certain user-defined parameters, which influence the quality
of the output. We are currently exploring how to use techniques
of machine learning to automatize this process.
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Figure 27: The final decomposition of the bottom part into MS3.

Figure 28: The final decomposition of the side part into MS3.
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