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Abstract. Given a grid in Rd, consisting of d bi-infinite sequences of hyper-

planes (possibly with multiplicities) orthogonal to the d axes of the coordinate
system, we consider the spaces of tensor-product spline functions of a given

degree on a multi-cell domain. Such a domain consists of finite set of cells

which are defined by the grid. A piecewise polynomial function belongs to
the spline space if its polynomial pieces on adjacent cells have a contact ac-

cording to the multiplicity of the hyperplanes in the grid. We prove that the

connected components of the associated set of tensor-product B-splines, whose
support intersects the multi-cell domain, form a basis of this spline space. More

precisely, if the intersection of the support of a tensor-product B-spline with

the multi-cell domain consists of several connected components, then each of
these components contributes one basis function. In order to establish the

connection to earlier results, we also present further details relating to the

three-dimensional case with single knots only.
A hierarchical B-spline basis is defined by specifying nested hierarchies of

spline spaces and multi-cell domains. We adapt the techniques from [12] to
the more general setting and prove the completeness of this basis (in the sense

that its span contains all piecewise polynomial functions on the hierarchical

grid with the smoothness specified by the grid and the degrees) under certain
assumptions on the domain hierarchy.

Finally, we introduce a decoupled version of the hierarchical spline basis

that allows to relax the assumptions on the domain hierarchy. In certain situ-
ations, such as quadratic tensor-product splines, the decoupled basis provides

the completeness property for any choice of the domain hierarchy.

1. Introduction

Hierarchical tensor-product splines were introduced by Forsey and Bartels [11]
as a tool for adaptive surface modeling. About ten years later, Kraft [18] defined a
basis and a quasi-interpolation operator for these spline spaces. At the same time,
these splines were used for adaptive surface fitting [15].

Since the advent of isogeometric analysis (IGA), which was established in 2005
as a new approach to bridge the gap between analysis and design in engineering
applications [6], there is a renewed interest in adaptive and hierarchical techniques
for tensor-product splines.

The early approaches to adaptive refinement in IGA were based mostly on T-
splines [1, 10]. These originated more recently than hierarchical B-splines in geo-
metric modeling [27]. It was observed, however, that hierarchical B-splines possess
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2 DOMINIK MOKRIŠ, BERT JÜTTLER, AND CARLOTTA GIANNELLI

a number of useful theoretical and practical properties that make them well-suited
for numerical simulation based on IGA [28]. It has been shown that

• these adaptive splines can be equipped with a simple basis that provides
the partition of unity and improves the sparsity properties [13];
• this basis is strongly stable with respect to the L∞ norm [14];
• and these functions can be implemented efficiently using standard data

structures [16].

There is a growing number of papers on hierarchical methods in IGA [5, 19, 26].
A new kind of splines has been introduced recently [9], known as LR-splines

(LR stands for “locally refined”). The use of this new approach in the application
context, as well as its comparison with existing local refinement methods, are still
at a preliminary stage.

Simultaneously, adaptive and locally refined spline spaces were considered from
an algebraic viewpoint. The general goal is to determine the dimension of the spline
space (which contains all piecewise polynomial functions of a certain degree and
smoothness) and to construct its basis, given a certain partition of the domain into
axis-aligned boxes. In the rich literature on this topic [7, 8, 20, 21, 22, 23, 24]
several valuable contributions for various cases have been described .

Under certain conditions, the hierarchical spline basis spans the entire space of
all piecewise polynomial functions of the given degree and smoothness that are de-
fined on the underlying grid (which may possess T-joints) and is therefore complete.
Such conditions were first studied in [12] for the bivariate case of uniform degrees,
dyadic refinement and maximal smoothness. Based on the algebraic framework (ho-
mology techniques) described in [23], a number of recent manuscripts and preprints
presented several generalizations. We mention the recent article [2] that addresses
the three-dimensional case and the follow-up preprints [4, 3].

The present paper introduces a different approach. It is based on the observation
that the completeness of the hierarchical spline space can be studied without using
advanced results from algebraic homology, but employing solely standard methods
from the theory of tensor-product spline functions. The simple approach presented
in this paper allows sufficient conditions to be derived for complete hierarchical
spline spaces in any dimension, and for any smoothness (which does not have to be
the same for all grid hyperplanes) and any degree.

The remainder of this paper consists of three main sections and an appendix.
First we analyze dimensions and bases of tensor-product spline spaces on multi-cell
domains in Section 2. The third section is devoted to the completeness of the hier-
archical B-spline basis in the most general case. Finally, in Section 4 we introduce
the decoupled hierarchical basis that allows to relax — and in some situations even
to eliminate — the constraints on the considered domain hierarchy. The appendix
analyzes the dimensions of tensor-product spline spaces in the trivariate case with
single knots.

2. Splines on multi-cell domains

This section derives a basis for tensor-product splines on multi-cell domains.
After presenting the necessary definitions, we will prove that this spline space is
spanned by a basis consisting of all connected components of the tensor-product
B-splines whose support intersects the multi-cell domain. More precisely, if the
intersection of the support of a tensor-product B-spline with the multi-cell domain
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consists of several connected components, then each of them contributes one basis
function.

2.1. Tensor-product B-splines. Given a positive integer d that specifies the di-
mension of the space, we consider the d–dimensional space Rd with coordinates
x = (x1, . . . , xd). In addition, we consider d bi-infinite strictly increasing sequences
of numbers

(gi,j)j∈Z , gi,j < gi,j+1,

for i = 1, . . . , d, which will be called the nodes. Using these sequences of nodes we
define the grid G to consist of grid hyperplanes

Gi,j = {x ∈ Rd | xi = gi,j}
with associated multiplicities mi,j , which do not need to be the same for all the
hyperplanes in the grid.

In addition, we choose a degree p = (p1, . . . , pd), where all pi are positive integers.
We denote the set of tensor-product B-splines defined on this grid by B. More
precisely, these tensor-product B-splines are products of d univariate B-splines with
the variables xi that are defined by the bi-infinite knot vectors

(. . . , gi,j−1, . . . , gi,j−1︸ ︷︷ ︸
mi,j−1 times

, gi,j , . . . , gi,j︸ ︷︷ ︸
mi,j times

, gi,j+1, . . . , gi,j+1︸ ︷︷ ︸
mi,j+1 times

, . . . ),

where each knot appears as often as specified by the multiplicity of the associated
hyperplane. These tensor-product B-splines are well-defined and continuous if the
multiplicities satisfy

(2.1) 1 ≤ mi,j ≤ pi.
In the sequel we will denote the tensor-product B-splines β ∈ B simply as B-splines.

We consider d indices j1, . . . , jd ∈ Z. The closed set

(2.2)
d

X
i=1

[gi,ji−1, gi,ji ],

which is the Cartesian product of d closed intervals between adjacent nodes, is
called a cell of the grid. The set of all cells will be denoted by C and we use c ∈ C
to denote an individual cell.

Consider a cell c ∈ C. We define the set of all B-splines whose support includes
this cell,

(2.3) Bc = {β ∈ B | c ⊂ suppβ},
where the symbol supp denotes the support of a function, i.e.,

supp g = {x ∈ Rd | g(x) 6= 0}.
In the case of B-splines, this is an open set, provided that the multiplicity of each
knot is at most the degree as assumed in (2.1).

Example 2.1. Figure 1 shows an example of a set Bc. We consider biquadratic
B-splines on a uniform grid with all multiplicities equal to 1. The cell c is shown in
gray. The support of each basis function consists of 3× 3 cells; the basis functions
that belong to the set Bc are represented by the small circles in the centers of their
supports, which coincide with their Greville points.
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Figure 1. The set Bc for biquadratic B-splines with single knots.
The small circles correspond to Greville points representing the
functions in Bc with respect to the gray cell c.

Consider a polynomial f of multi-degree p, i.e., f is a polynomial with the vari-
ables xi, where the degree with respect to xi is at most pi. We denote the linear
space of all such polynomials by Πp(Rd).

When restricting f and Πp(Rd) to this cell, we obtain the linear space

Πp(c) :=
{
f |c | f ∈ Πp(Rd)

}
.

The restriction f |c can be expressed as a linear combination of the tensor-product
B-splines in Bc,

(2.4) f |c(x) =
∑

β∈Bc
λβc (f |c)β|c(x), x ∈ c,

where λβc (f |c) is the coefficient of β ∈ Bc in the local representation of the poly-
nomial f on the cell c. Note that f is a polynomial defined on Rd, whereas f |c is
defined on c only.

Example 2.2. Consider again the example of biquadratic splines in Figure 1.
Each cell c ∈ C is influenced by nine basis functions from Bc and each biquadratic
polynomial on this cell can be uniquely represented as a linear combination of these
nine functions.

2.2. Contact of polynomial pieces. We denote the partial derivatives of a poly-
nomial f by

∂ji f :=
∂jf

∂(xi)j
.

Given a polynomial f |c on a cell c, we define its partial derivatives by considering
its canonical extension to Rd,

∂ji (f |c) := (∂ji f)|c,
thereby avoiding the need to consider one-sided limits at the boundary of c.

Consider two cells c, c′ ∈ C. There exist indices ji, j
′
i ∈ Z such that

c =
d

X
i=1

[gi,ji , gi,ji+1] and c′ =
d

X
i=1

[gi,j′i , gi,j′i+1].
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The intersection of these cells is an axis-aligned box whose dimension is at most d.
If the intersection is non-empty, then it can be written as

(2.5) c ∩ c′ =
d

X
i=1

[gi,ai , gi,bi ],

where ai = max{ji, j′i} and bi = min{ji, j′i}+ 1. Note that the i–th interval (where
i = 1, . . . , d) in the Cartesian product degenerates to a single point if ji = j′i + 1 or
j′i = ji + 1.

Definition 2.3. Consider two polynomials f, f ′ of degree p and two cells c, c′ ∈ C,
thus f |c ∈ Πp(c) and f ′|c′ ∈ Πp(c′). We say that the polynomial f |c on the cell c
and the polynomial f ′|c′ on the cell c′ have a contact on c∩c′ (and write f |c ∼ f ′|c′)
if

(2.6) ∀x ∈ c ∩ c′ : (∂j11 · · · ∂jdd f |c)(x) = (∂j11 · · · ∂jdd f ′|c′)(x)

is satisfied for all

(2.7) ji = 0, . . . , pi −min{mi,ai ,mi,bi}, i = 1, . . . , d,

where c∩c′ has the form (2.5) (or is empty) and mi,ai and mi,bi are the multiplicities
of the grid hyperplanes Gi,ai and Gi,bi , respectively.

In particular, any two polynomials on disjoint cells have a contact, since c ∩ c′
is empty in this case. The relation ∼, which acts on pairs of polynomials and cells,
is symmetric and reflexive, but not transitive.

The order of the contact depends on the given multiplicity of the grid hyper-
planes: the higher the multiplicity, the smaller the number of derivatives that have
to agree.

Note that if ai < bi holds for some coordinate direction i in the representation
(2.5) of the (nonempty) intersection c∩c′ (namely, when ji = j′i), then the equation
(2.6) is even satisfied for all positive integers ji, since we can differentiate the
equations obtained for the ranges of indices ji specified in (2.7) with respect to xi.

From now on we will use the notation

β|c∩ c′ 6= 0

to express the fact that the B-spline β does not vanish identically on c ∩ c′, i.e.,

∃x ∈ c ∩ c′ : β(x) 6= 0.

The contact between two polynomials on different cells can be characterized
easily with the help of the B-spline coefficients.

Lemma 2.4 (Contact Characterisation Lemma (CCL)). The two polynomials f |c
and f ′|c′ that were considered in Definition 2.3 have a contact on c∩ c′ if and only
if

(2.8) ∀β : β|c∩ c′ 6= 0⇒ λβc (f |c) = λβc′(f
′|c′).

Proof. This can be proved by extending the univariate blossoming argument to
the tensor-product setting (see, e.g., [25, Section 7.1]; the extension would proceed
analogously to the similar generalization for multivariate Bézier surfaces, which is
outlined in [25, Section 9.7]). Indeed, the two polynomials have a contact if and only
if the associated values of their blossoms (which then correspond to the B-spline
coefficients) agree.
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Alternatively, one may prove this observation with the help of the tensor-product
Bernstein-Bézier (BB) representation of the two polynomials with respect to the as-
sociated cells. The values and derivatives that characterize the contact are uniquely
determined by the two subsets of the BB coefficients (determining sets) of both
polynomials. The polynomials have a contact if and only if the coefficients of the
determining set of f |c can be generated by applying a certain bijective linear map-
ping to the coefficients of the determining set of f ′|c′ . On the other hand, the subset
of the B-spline coefficients considered in (2.8) is linked to each of the coefficients
of the two determining sets by two other bijective linear mappings that can be
found via knot insertion. Due to the bijectivity of all mappings, choosing the same
B-spline coefficients considered in (2.8) for both polynomials is the only possibility
to obtain a contact.

In order to keep this paper concise, we do not present the technical details of
either proof. �

Example 2.5. We consider the bivariate case with double horizontal knots and
single vertical knots in Figure 2. There are sixteen bicubic B-splines whose supports
intersect each cell (a). Considering two cells that are different from each other, there
are four possibilities of a contact between polynomials.

• The cells are disjoint and all polynomials have a contact (not shown).
• The cell share a vertical edge (b). All values and derivatives of order 0 or 1

with respect to x1 and of any order with respect to x2 have the same value
on the vertical edge.
• The cells share a horizontal edge (c). All values and derivatives of any order

with respect to x1 and of order 0, 1, or 2 with respect to x2 have the same
value on the horizontal edge.
• The cells share a grid point (d). All values and derivatives of order 0 and 1

with respect to x1 and of order 0, 1, or 2 with respect to x2 have the same
value at the grid point.

2.3. Piecewise polynomials on multi-cell domains. We consider a finite sub-
set M ⊂ C which we will call a multi-cell domain. More precisely, the set M
contains a finite number of cells of the form (2.2). Furthermore, we will use the
abbreviation

M =
⋃
M =

⋃

c∈M
c

for the subset of Rd occupied by the cells from M . The set M is a closed and
bounded subset of Rd. To simplify the notation it will be often also called multi-
cell domain, whenever confusion is improbable.

Definition 2.6. Given a multi-cell domain M ⊂ C we define the disconnected
space (also called the space of piecewise polynomials) by

P(M) = {s = (sc)c∈M | sc ∈ Πp(c)}.
Thus any piecewise polynomial s ∈ P(M) is a collection of polynomials sc, one

for each cell c ∈ M . Each of these polynomials sc is actually the restriction of a
globally defined polynomial s̄c ∈ Πp(Rd) to the corresponding cell, i.e., sc = s̄c|c
— see the end of Subsection 2.1. However, we will not need to refer to the globally
defined polynomials s̄c throughout the paper.
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(a)

(b) (c) (d)

Figure 2. (a) The 16 bicubic B-splines in Bc related to the case of
double horizontal and single vertical knots; (b) – (d) three possibil-
ities of a contact. The B-splines whose supports intersect the first
and second cell are depicted by solid symbols ( ,�) and by squares
(�,�), respectively. The support of any B-spline represented by a
solid square (�) intersects both cells.

Note that these polynomials may take different values at the grid lines. There-
fore, it is generally impossible to define a continuous function ŝ on M such that
ŝ|c = sc for all c ∈M .

Nevertheless, each sc can be represented in the B-spline basis as observed in (2.4):

sc(x) =
∑

β∈Bc
λβc (sc)β|c(x), x ∈ c, c ∈M.

Definition 2.7. We consider a multi-cell domain M and the associated discon-
nected space P(M). The spline space on M is defined by

(2.9) S(M) = {s ∈ P(M) | ∀c, c′ ∈M : sc ∼ sc′}.
For s ∈ S(M) we define s̃ :M→ R so that

s̃(x) = sc(x), if x ∈ c and c ∈M.

This function is well-defined (single-valued), since any two polynomial pieces sc
and sc′ meet at least continuously along the intersection c ∩ c′ of any two neigh-
bouring cells. By using the characteristic functions χc of the cells c ∈ M , we may
express it in terms of the basis functions as follows:

(2.10) s̃(x) =
∑

c∈M

∑

β∈Bc
λβc (sc)β(x)χ?c(x), x ∈M,
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with the normalized characteristic functions

χ?c(x) =





χc(x)∑
k∈M χk(x)

, if x ∈M,

0, otherwise.

Note that the characteristic functions need to be normalized in order to obtain the
correct values also on grid hyperplanes.

Strictly speaking, the elements of S(M) are |M |–tuples of polynomials, where
|M | is the number of cells in M . In order to keep the notation simple, we will use
the same notation for the actual spline functions s̃.

That is, we will consider the elements of S(M) simultaneously as |M |–tuples of
polynomials and as piecewise polynomial functions defined on M. Consequently,
we will simply write s instead of s̃, and we will denote the linear space of all piece-
wise polynomial functions on M with the required contacts between the polynomial
segments as S(M).

Definition 2.8. Consider a basis function β ∈ B. Its coefficient graph Γβ is defined
as follows.

• The vertices of Γβ are the cells c ∈M such that c ⊂ suppβ.
• Two vertices c and c′ are connected by an edge if β|c∩ c′ 6= 0.

The set of connected components of this graph will be denoted by K(Γβ).

If there is no overlap of β with M then both the coefficient graph Γβ and the
set K(Γβ) of connected components are empty.

We use the notation
c εΓβ

to express the fact that the cell c is a vertex of the coefficient graph Γβ . Similarly,
when considering a connected component Φ ∈ K(Γβ) — which is a subgraph of Γβ
— all cells c satisfying c εΦ are exactly the vertices of Φ.

Example 2.9. We consider again the biquadratic case. Figure 3 shows a multi-cell
domain consisting of eight cells (a), the supports of three basis functions β1, β2 and
β3 (b), together with their coefficient graphs (c). The coefficient graphs of β2 and
β3 have only one connected component, while the coefficient graph of β1 possesses
two of them.

Proposition 2.10. Consider a piecewise polynomial s ∈ P(M). It is contained

in the spline space S(M) if and only if the coefficients satisfy λβc (sc) = λβc′(sc′)
for all basis functions β ∈ B and for all c and c′ belonging to the same connected
component of Γβ.

Proof. Consider a piecewise polynomial s ∈ S(M) and a basis function β ∈ B.
Assume there exist c, c′ in the same connected component such that λβc (sc) 6=
λβc′(sc′). Then there exist two vertices k and k′, k ∩ k′ 6= ∅, in this connected

component such that λβk(sk) 6= λβk′(sk′). According to CCL (Lemma 2.4), sk and
sk′ do not have a contact and therefore s does not belong to S(M).

On the other hand, if all coefficients λβc (sc) associated to any β ∈ B for all cells c
belonging to one connected component of Γβ take the same value, then all sc have a
contact by CCL (Lemma 2.4). Since the cells in these connected components cover
M , we may conclude that s ∈ S(M). �
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c1

c3 c4 c5

c2

c6 c7 c8

(a) multi-cell domain

β1

β2

β3

(b) three examples of B-splines βi

c1 c2

c3 c4

c6 c7
c8

β1 β2 β3

(c) coefficient graphs associated with βi, i = 1, 2, 3

Figure 3. A multi-cell domain with eight cells (a), the supports
of three biquadratic B-splines (b) and the associated coefficient
graphs (c).

2.4. Spline bases on multi-cell domains.

Definition 2.11. For every β ∈ B and every connected component Φ ∈ K(Γβ) we
define the function

βΦ(x) =
∑

c εΦ

β(x)χ?c(x).

The set of all these functions is denoted by

∆ =
⋃

β∈B
{βΦ | Φ ∈ K(Γβ)}.

Theorem 2.12. The set ∆ — when restricted to M — forms a locally linearly
independent basis of S(M).

Proof. Consider s ∈ S(M). First, we prove that s can be obtained as a linear
combination of functions from ∆. Since, according to Definition 2.8, the vertices of
Γβ are the cells c ∈M that are contained in the support of β, equation (2.10) can
be rewritten as follows:

(2.11) s(x) =
∑

β∈B

∑

c εΓβ

λβc (sc)β(x)χ?c(x) =
∑

β∈B

∑

Φ∈K(Γβ)

∑

c εΦ

λβc (sc)β(x)χ?c(x),

where x ∈ Rd. In virtue of Proposition 2.10, for each β ∈ B and for each Φ ∈ K(Γβ),
all the coefficients λβc (sc) have to be the same for all c εΦ. We will denote this



10 DOMINIK MOKRIŠ, BERT JÜTTLER, AND CARLOTTA GIANNELLI

Figure 4. The support of a bicubic B-spline that violates the
assumption of Corollary 2.13 with respect to the domain consisting
of all the gray cells.

coefficient by ΛβΦ(s). Thus, we may rewrite (2.11) as

s(x) =
∑

β∈B

∑

Φ∈K(Γβ)

ΛβΦ(s)
∑

c εΦ

β(x)χ?c(x)

︸ ︷︷ ︸
=βΦ∈∆

.

Second, we prove the local linear independence of the functions. Consider an
open subset X ⊂ M and a linear combination of functions βΦ ∈ ∆ that do not
vanish on X, which is equal to zero on X. For each βΦ we consider a cell c εΦ,
that has a nonempty intersection with X. Clearly, βΦ does not vanish on c. More-
over, the restrictions of all functions βΦ to this cell are either zero or equal to the
restrictions of mutually different tensor-product B-splines β ∈ B. From the local
linear independence of functions β ∈ B we then obtain that the coefficient of βΦ

in the linear combination is zero. Repeating this for all functions βΦ, we conclude
that the functions βΦ are locally linearly independent. This also implies the linear
independence of ∆. �

Corollary 2.13. If for each β the intersection of its support with the multi-cell
domain M is connected, then the functions in

BM = {β ∈ B | suppβ ∩M 6= ∅},
when restricted to M, form a basis of S(M).

Proof. Indeed, if this condition is satisfied, then each coefficient graph in Theo-
rem 2.12 has either one connected component or it is empty. �

Example 2.14. The condition concerning the connected sets in Corollary 2.13
means that there is no situation like the one shown in Figure 4 for bicubic B-splines
on a grid with single knots.

Appendix A analyzes the case of trivariate spline spaces with single knots, which
has been discussed in Berdinsky et al. [2]. We show that their result (which, how-
ever, is limited to a special class of multi-cell domains) is a special case of Corol-
lary 2.13.
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3. Hierarchical splines

We now use the notation introduced in the previous section in a hierarchical
setting to define a hierarchical spline space and a certain hierarchical basis. Sub-
sequently, we prove that this hierarchical basis spans the entire hierarchical spline
space.

3.1. Hierarchies of tensor-product spline spaces. In order to define a hier-
archical tensor-product spline space, we need to introduce a hierarchy of tensor-
product spline spaces and a hierarchy of domains.

First, we consider the spline spaces. Given a maximal level N , we consider a
sequence of grids G`, ` = 0, . . . , N, with associated degrees p` = (p`1, . . . , p

`
d) where

we assume that the degrees do not decrease,

p` ≤ p`+1, that is p`i ≤ p`+1
i , i = 0, . . . , d, ` = 0, . . . , N − 1.

Each grid hyperplane G`i,j ∈ G` has an associated multiplicity m`
i,j that satisfies

the assumption (2.1) level by level.
We assume that the grids are nested in the following sense: every grid hyperplane

in G` is also present in G`+1 and its multiplicity in the higher level is at least equal
to the previous multiplicity plus the increase of the degree in the corresponding
coordinate direction.

Based on the sequence of grids and degrees, we now define on each grid G` the
set of tensor-product B-splines B` of degree p`. The spans of the B-splines define
the spline spaces

V` = spanB`, ` = 0, . . . , N.

Under the previous assumptions concerning non-decreasing degrees and nested
grids, the linear spaces spanned by the B-splines are nested, i.e.,

V` ⊆ V`+1, ` = 0, . . . , N − 1.

For each level `, the grid G` and the degrees p` allow to apply the theory from
Section 2. Thus, if we are given a multi-cell domain M ` with respect to the grid
G`, we may define a spline space S`(M `). Note that the restriction of V` to M` is
contained in this spline space,

V`|M` ⊆ S`(M `).

The connected components of the B-splines from B` with respect to the multi-cell
domain

M` =
⋃

c∈M`

c

form a basis of this space according to Theorem 2.12.
In addition, we consider a nested sequence of domains

(3.1) Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN = ∅,
which will be called the domain hierarchy. We assume that these domains satisfy
the following.

Assumption 3.1. Each set

Ω0 \ Ω`+1, ` = 0 . . . N − 1,
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Figure 5. Hierarchical mesh consisting of cells from three levels.

can be represented as a multi-cell domain with respect to the grid G`. More precisely,
we assume that there exists a multi-cell domain M ` ⊆ C`, which is a finite set of
cells of the grid G`, satisfying

Ω0 \ Ω`+1 =M`.

For convenience, we define

M−1 = ∅.
The sets

M` = Ω0 \ Ω`+1

were denoted as rings in [12], because, conceptually, they represent the domain
Ω0 with the “hole” Ω`+1. We will also adopt this concept. However, the above
assumption concerning the shape of the rings is actually weaker than the one in [12],
where each Ω` was assumed to be a multi-cell domain of level max(0, `− 1).

Note that these rings are also nested,

Ω0 =MN−1 ⊇MN−2 ⊇ · · · ⊇ M0 ⊇M−1 = ∅.

Example 3.2. Figure 5 shows a hierarchical mesh. The corresponding domains
are shown in Figure 6 and the associated rings are depicted in Figure 7. As already
mentioned, Assumption 3.1 does not require the boundary of each Ω` to be aligned
with the knots lines associated to the previous level `−1, as it was assumed in [12].
For instance, the small L-shaped subdomain at level 2 on the bottom right corner
of the mesh was disallowed in [12].

Based on the sequences of function spaces and domains, we are now able to define
the hierarchical spline space, provided that the restriction of a function to each of
the multi-cell domains M` belongs to the corresponding spline space S`(M `):

Definition 3.3. The hierarchical spline space H is given by

H = {h : Ω0 → R | ∀` : h|M` ∈ S`(M `)}.

According to this definition, a function is contained in the hierarchical space
if it is a piecewise polynomial function on the hierarchical grid defined by the
nested grids and domains, where the individual polynomial segments meet with the
smoothness specified by the degrees and the multiplicities of the grid hyperplanes.
Note that this is more general than just requiring that

h|M` ∈ V`|M` .
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(a) Ω0 (b) Ω1

(c) Ω2

Figure 6. Domains Ω0, Ω1 and Ω2 associated with the mesh in
Figure 5. Grid lines from level 0, 1, 2 are depicted as solid, dashed,
and dotted lines, respectively

(a) M0 (b) M1

(c) M2

Figure 7. Rings associated with the mesh in Figure 5.

3.2. The basis of the hierarchical spline space. Recall that we have defined a
tensor-product spline basis B` on each grid G`. Similarly to (2.3) we consider the
B-splines whose support intersects the ring M`:

B`M` := {β ∈ B` | suppβ ∩M` 6= ∅}.
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Based on the definition of the rings, we again use the selection procedure from [12],
which slightly generalizes the earlier method proposed by Kraft in [18] by also
allowing for coinciding subdomain boundaries.

Definition 3.4. The hierarchical basis K is defined as

K =
N−1⋃

`=0

K`

with

K` = {β ∈ B`M` | suppβ ∩M`−1 = ∅}.
Thanks to the local linear independence of the bases K` ⊂ B`, it can be shown

that the set K of hierarchical B-splines is linearly independent, see [18] or [28].
Now we are able to formulate the main result of this paper.

Theorem 3.5. If the assumption of Corollary 2.13 is satisfied for each level `, i.e.,
if for any ` = 0, . . . , N − 1, and any β ∈ B` the set suppβ ∩M` is connected, then
the hierarchical spline basis K from Definition 3.4 spans the entire space H.

Proof. The proof is very similar to the proof of Theorem 20 in [12]. Nevertheless,
in order to make this paper self-contained, we repeat it here in a shorter form.

The proof consists of two steps. First, we show that there exist N functions
h` ∈ spanB`M` , ` = 0, . . . , N − 1, such that

(3.2) h`|M` =

(
h−

`−1∑

i=0

hi

)
∣∣
M` .

This can be proved by induction with respect to `. In each step, the right hand
side of (3.2) can be shown to belong to S`(M `), hence Corollary 2.13 implies the
existence of h`.

Second, it can be shown by analyzing the right-hand side of equation (3.2) that
h`|M`−1 = 0. Therefore, the local linear independence of the B-splines implies that
h` ∈ spanK`.

Finally, by rewriting (3.2) for ` = N − 1, we obtain

h|MN−1 =
N−1∑

i=0

hi|MN−1 ,

which concludes the proof, sinceMN−1 = Ω0, hi ∈ spanKi, and
⋃N−1
i=0 Ki = K. �

The assumptions of Theorem 3.5 are satisfied if each subdomain Ω` is either
sufficiently small or sufficiently large with respect to the supports of the B-splines
at the previous level. This condition is slightly weaker than the assumptions of
Theorem 20 in [12].

Example 3.6. Consider the case where all the degrees (at all levels and in all
coordinate directions) are equal to p and all the multiplicities of hyperplanes are
equal to 1. In this case, when considering dyadic refinement only, a sufficient
condition for the assumptions of Theorem 3.5 to be satisfied is that there is a finite
set I such that

Ω` =
⋃

i∈I
Ω`i , where

(
Ω`i
)◦ ∩

(
Ω`j
)◦

= ∅ for i, j ∈ I, i 6= j
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Ωℓ
0 Ωℓ

1

Figure 8. A domain Ω` = Ω`0 ∩Ω`1 that satisfies the assumptions
of Theorem 3.5 for p = 3 as specified in Example 3.6. We show the
interior of Ω0 \ Ω` (dark gray cells), Ω`0 and Ω`1 (light gray cells),
the offset of Ω0 \ Ω`0 at distance 1 (thick black line) and a box of
2 × 2 cells containing Ω`1 (hatched light gray cells). The dashed
lines represent the grid G`−1.

(that is, the interiors of the sets Ω`i are mutually disjoint) and each Ω`i is such that
either

• Ω0 \Ω`i admits an offset1 at distance (p−1)/2 with respect to the grid G`−1

or
• Ω`i is contained in a box consisting of (p− 1)× · · ·× (p− 1) cells of the grid
G`−1.

Figure 8 provides a bivariate example.

4. The decoupled hierarchical basis

We introduce a decoupling mechanism, which is inspired by the so-called trunca-
tion introduced in [13]. It can be suitably exploited in order to relax the assump-
tions of Theorem 3.5.

We consider the representation of a B-spline β with respect to the next (i.e.,
finer) level in the spline hierarchy. For each connected component of β we define
a decoupled basis function. This function collects the contributions of those func-
tions of the next level whose supports have an overlap with a particular connected
component of the support of the original B-spline β, restricted to the associated
multi-cell domain M`.

More precisely, we consider the representation of a B-spline β ∈ B` with respect
to the basis B`+1 at the next level given by

β =
∑

γ∈B`+1

c`+1
γ (β)γ,

1The offset to a domain and its admissibility have been defined in [12] for the case d = 2 and

they are defined in Appendix A for d = 3. The latter definition extends to any dimension d.



16 DOMINIK MOKRIŠ, BERT JÜTTLER, AND CARLOTTA GIANNELLI

with certain coefficients c`+1
γ (β) ∈ R, which are determined by the knot insertion

algorithm. The function β possesses an associated coefficient graph Γ`β with respect

to the multi-cell domain M `, see Definition 2.8. We consider the connected com-
ponents K(Γ`β) of the coefficient graph and use each of them to define a decoupled
function.

Definition 4.1. For each connected component Φ ∈ K(Γ`β) we define a decoupled
basis function

δΦ(β) =
∑

γ∈B`+1: supp γ∩(
⋃

Φ) 6=∅
c`+1
γ (β)γ, Φ ∈ K(Γ`β),

where
⋃

Φ =
⋃
c εΦ c denotes the union of the cells that are vertices of Φ. If the

support of each function γ ∈ B`+1 intersects at most one of the sets
⋃

Φ, then so
do the functions δΦ(β). We say that the decoupling is feasible if this condition is
satisfied for all β ∈ B` and for all levels `.

If the decoupling is feasible, then the restriction of the decoupled basis function
δΦ(β) to the multi-cell domainM` is identical to the function βΦ that was defined
in Definition 2.11. Consequently, the decoupled functions inherit the properties of
these functions. In particular, Theorem 2.12 implies the following result.

Corollary 4.2. If the decoupling is feasible, then the functions from the set

(4.1) D`
M` := {δΦ(β) |Φ ∈ K(Γ`β), β ∈ B`M`},

when restricted to M`, form a locally linearly independent basis of S`(M `).

Generally, the feasibility of the decoupling depends on the choice of the domains
Ω`, ` = 0, . . . , N . For certain classes of spline spaces V`, ` = 0, . . . , N − 1, however,
the decoupling is always feasible. We introduce the following definition.

Definition 4.3. A sequence of nested spline spaces (V`)N−1
`=0 is said to possess the

unconstrained completeness property (UCP) if the decoupling is feasible at all levels
and for any choice of the domains Ω`.

UCP is automatically granted if the support of each function of level ` + 1 is
contained in 2 × 2 × · · · × 2 cells of the grid of level `. Indeed, if this condition
is satisfied, then for any choice of the multi-cell domain M `, the intersection of
the support of a finer function with this multi-cell domain is connected. Special
instances of this situation will be presented in Examples 4.5 and 4.6 below.

Corollary 4.4. The functions contained in

(4.2) D =
N−1⋃

`=0

{δΦ(β) ∈ D`
M` | supp δΦ(β) ∩M`−1 = ∅}

form a basis of the space H, which was introduced in Definition 3.3, provided that
the decoupling is feasible at all levels. In particular, if the sequence of nested spline
spaces has the unconstrained completeness property, then this is true for any choice
of the domain hierarchy (3.1).

Proof. The result can be derived by generalizing the proof of Theorem 3.5. This
can be done by simply replacing B`M` by D`

M` throughout the original proof. �



ON THE COMPLETENESS OF HIERARCHICAL TENSOR-PRODUCT B-SPLINES 17

UCP should be quite useful when designing refinement algorithms that maintain
the completeness property. Typically, the refinement is guided by an error estimator
that selects the cells that need to be refined. Without UCP, further cells have to
be added in order to maintain the completeness of the hierarchical space. This is
no longer needed when using hierarchies with UCP and the decoupled hierarchical
basis D of the spline space.

A sufficient condition for UCP is the following. For any choice of Ω`+1 and
for any basis function β ∈ B` the support of any basis function γ ∈ B`+1 with
supp γ ⊆ suppβ intersectsM` in a connected set. Finally, we present two examples
of hierarchies with UCP.

Example 4.5. UCP is satisfied when considering only single knots at all levels and
using a refinement strategy that splits every cell of level ` in p`1 × . . . × p`d cells of
level `+ 1.

Example 4.6. When considering dyadic refinement, where every cell of level ` is
split into 2d cells of level `+ 1, UCP is satisfied if the multiplicities are chosen such
that the inequalities

3m`
i,j ≥ p`i + 1

hold for all levels, for i = 1, . . . , d and for j ∈ Z.

Both examples include quadratic tensor-product splines with dyadic refinement.
Special cases of both examples are shown in Figure 9. The B-splines β are decoupled
into two basis functions δΦ(β) and δΨ(β) associated to the connected components
Φ,Ψ ∈ CC(Γβ). The finer subdomain is the region covered by the finer grid,
whereas the coarser subdomain contains the entire mesh.

5. Closure

We analyzed dimensions and bases of multivariate tensor-product spline func-
tions on a multi-cell domain. Based on these results, by a slight generalization of the
techniques from [12], we derived a simple sufficient condition for the completeness
of a hierarchical spline space. More precisely, this condition guarantees that any
piecewise polynomial functions on the given hierarchical grid can be represented in
the hierarchical tensor-product B-spline basis. In addition, we proposed the new
concept of the decoupled hierarchical basis that allows to relax — and in the case of
hierarchies with UCP even to eliminate — the conditions on the domain hierarchy
that are required to guarantee the completeness.

Future work will focus on formulas for the dimensions of hierarchical spline
spaces, which are currently only given implicitly by the number of active tensor-
product B-splines, and on applications of multivariate hierarchical B-splines, in
particular in isogeometric analysis.

Appendix A. The case trivariate with uniform knots and maximal
smoothness

We consider Corollary 2.13 for spline spaces on multi-cell domains in three-
dimensional space with maximal smoothness (i.e., all the multiplicities are equal to
one). For simplicity, we consider uniform knots only, but all results remain valid
in the non-uniform case. We derive formulas that give the number of B-splines,
provided that the intersections of their supports with the multi-cell domains are
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supp δΦ(β)

supp δΨ(β)

supp β

supp δΨ(β)

supp δΦ(β)

supp β

Φ

Ψ

Φ

Ψ

Figure 9. Two bivariate spline hierarchies with UCP. Top left:
bicubic splines with single knots and triadic refinement. Top right:
biquintic splines with double knots and dyadic refinement. Both
pictures show the support of a B-spline β (solid black line) and
of two decoupled basis functions δΦ(β) and δΨ(β) (red and blue
regions) that are derived from the connected components Φ,Ψ of
the coefficient graph of β. Bottom: the associated coefficient
graphs.

connected. We show that the results by Berdinsky et al. [2] are a special case of
this more general analysis.

Multi-cell domains and their properties have been studied in digital geometry
[17]. However, most of the existing results are limited to simple polyhedra, i.e.,
multi-cell domains without kissing vertices and edge segments (see Subsection A.3
below), since these polyhedra are preferred in the relevant applications.

A.1. Dilations, offsets, and types of edges and vertices. Each of the basis
functions of tri-degree p = (p, p, p), where p is a positive integer, can be identified
with

• the centroid of the central cell of its support if p is even,
• the intersection of eight cells in the middle of the support if p is odd.

In order to derive the number of basis functions that have a support with a non-
empty intersection withM, we define the notion of dilation of a multi-cell domain.
Moreover, we consider the so-called combinatorial volume, which is related to the
number of cells and grid points of a multi-cell domain. The combinatorial volume
of a multi-cell domain is then equal to the number of the basis functions of the
spline space. Recall that the notion of a multi-cell domain refers both to a set M
of cells and to the subset M of R3 that is occupied by them.
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Definition A.1. The dilationM(q) of a multi-cell domainM, defined for any even
value of q, is recursively obtained as

M(q) :=

{
M, if q = 0,

M(q−2) ∪N(M(q−2)), for q ≥ 2,

where N(M(q−2)) is the offset region of thickness 1 to M(q−2), i.e., the set of all

the cells c ∈ C that are contained in R3 \M(q−2) and that share a vertex, an edge
or a face with M(q−2).

Clearly, the dilations of a multi-cell domain are again multi-cell domains. A
related notion is the following.

Definition A.2. The offset of the multi-cell domain M at distance q/2 is the set

(A.1) F (q)(M) :=

{
x ∈ R3 | inf

r∈M
max
i=1,...,d

(|ri − xi|) =
q

2

}
,

where r = (r1, . . . , rd) is a point that belongs to the multi-cell domain M.

The right-hand side of (A.1) is the set of points in Hausdorff distance q/2 (with
respect to maximum metric) from M. Geometrically, it is a generalization of the
notion of the offset curve as defined in [12] to create a surface in three dimensions.

Note that the offset is defined for any nonnegative value of q, while the dilation
is defined for even values only.

Dilations and offsets are closely related. For even values of q, the boundary of
the dilation M(q) is a subset of the offset F (q)(M). This characterization can be
extended to odd values of q also, but we do not need it in this paper.

Definition A.3. The offset F (q)(M) is said to be admissible, or, equivalently, M
is said to admit an offset at distance q

2 , if either

• q = 0 holds or if
• F (q−1)(M) is admissible and all connected components of F (q)(M) are

homeomorphic to a closed surface in R3 (i.e., to an embedded 2–manifold
in 3–space).

Example A.4. The multi-cell domain shown in Figure 10 admits an offset at
distance 1

2 but not at distance 2
2 = 1. Indeed, F (2)(M) is not homeomorphic to a

closed surface.

Finally, we introduce another notion, which will be used to count the basis
functions that are not identically zero on a multi-cell domain.

Definition A.5. The q-th combinatorial volume of a multi-cell domain M is de-
fined as

ω(q)(M) :=

{
number of cells of M(q), if q is even;

number of grid points of M(q−1), if q is odd.

By grid points we mean the intersections of three grid hyperplanes.

A multi-cell domain can be characterized by various quantities. Its boundary
consists of planar patches that consist of several faces (each belonging to only one
cell). These patches meet in edges that consist of edge segments (each being incident
to two or four faces). The edges meet in vertices. We consider
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(a) domain (b) offset surface

Figure 10. (a) Example of a multi-cell domain that is admissible
for q = 1 but not for q = 2. (b) The non-admissible offset surface
at distance 2.

• the number of cells z ,
• the number of boundary faces f ,
• the number of convex edge segments ecvx, of non-convex edge segments encx

and of kissing edge segments eksg (see Table 1) on the boundary,

Table 1. The types of boundary edges of a multi-cell domain.

convex edge non-convex edge kissing edge
(cvx) (ncx) (ksg)

• the number of vertices of type i, where i = 1, . . . , 21 according to Table 2,
that will be denoted by vi.

In addition, we use upper indices to denote the number of these quantities for

the dilation M(q). For instance, z(q), e
(q)
cvx and v

(q)
i denote the number of cells,

convex edge segments, and vertices of type i of the dilationM(q). Clearly, z = z(0)

etc.
Finally, we introduce the vertex term

v(q) = (v
(q)
1 − 2v

(q)
3 − 6v

(q)
4 − 3v

(q)
5 − v(q)

6 − v(q)
7

− 2v
(q)
9 − 2v

(q)
10 + 4v

(q)
13 − v

(q)
14 + v

(q)
15 + 3v

(q)
16 + 2v

(q)
18 + 2v

(q)
19 + v

(q)
20 )

and the edge term

e(q) = e(q)
cvx − e(q)

ncx − 2e
(q)
ksg.

Again we shall omit the index (q) for q = 0, i.e., we write v = v(0), e = e(0) and
f = f (0). Note that if eK = v4 = v19 = 0 (see Subsection A.3) then v(q) is equal to
T from Theorem 8.6 in [17].
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Table 2. The types of vertices of a multi-cell domain, up to rota-
tions and symmetries and ordered by the number of incident cells.
The configurations marked by ?, ◦ and + do not correspond to
vertices, since they are located within edges, within patches and
in the interior of the multi-cell domain, respectively.

1 2? 3 4 5 6 7

8◦ 9 10 11 12? 13 14

15 16 17? 18 19 20 21+

A.2. The dimension of the spline space. We derive the number of B-splines
whose support intersects a given multi-cell domain and we specify it in terms of
the quantities that characterise the domain M. Lemma A.6 gives the formula for
these quantities for the dilated domains M(q) including the combinatorial volume
ω(q)(M) when q is even, while Lemma A.7 allows us to compute the combinatorial
volume when q is odd. The dimension of the spline space is then described in
Theorem A.8.

Lemma A.6. If the multi-cell domain M admits an offset at distance q/2, where
q is even, then the vertex term v(q), the edge term e(q), the number of faces f (q)

and the number of cells z(q) of the dilated multi-cell domain M(q) satisfy

(A.2) v(q) = v, e(q) = e+
3q

2
v, f (q) = f + qe+

3q2

4
v, z(q) = z+

q

2
f +

q2

4
e+

q3

8
v.

Moreover, the formula for z(q) is valid even if M admits an offset at distance q−1
2

only.

Proof. Formulas (A.2) can be verified by induction (with respect to even values of
q) using Table 3. Given the dilation M(q) of a multi-cell domain M, the table
specifies how the number of each kind of feature (i.e., faces, edge segments of the
three types, and vertices of the 21 types) of the dilation M(q+2) depends on the
numbers of miscellaneous features in M(q), provided that the offset at distance
(q + 2)/2 is admissible (except for the case of cells where we need only offset at
distance (q + 1)/2 to be admissible). This table can be derived by a careful case-
by-case analysis. �

Lemma A.7. The number of grid points g(M) of a multi-cell domain M is equal
to

g(M) = z +
f

2
+
e

4
+
v

8
.
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Table 3. Numbers of cells, faces, convex/non-convex/kissing edge
segments and vertices of the various types of the dilation M(q+2)

that are contributed by each cell, face, edge segment and vertex of
M(q). The proof of Lemma A.6 is based on this information.

dilation M(q+2)

cell face edge vertex

cvx ncx ksg 1 3 4 5 6 7 9 10 11 13 14 15 16 18 19 20

m
u

lt
i-

ce
ll

d
o
m

a
in

M
(q

)

ce
ll

1

fa
ce

1 1

ed
g
e cvx 2 2 1

ncx -2 -2 1

ksg -4 -4 2

v
er

te
x

1 1 3 3 1

3 -2 -6 -4 2 2

4 -6 -18 -6 12 6

5 -3 -9 -3 6 3

6 -1 -3 -2 1 1

7 -1 -3 -3 1 1

9 -2 -6 -3 3 1

10 -2 -6 -2 4 2

11 -1 -1 1 1

13 4 12 -12 4

14 -1 -3 -1 2 1

15 1 3 -3 1

16 3 9 -9 3

18 2 6 -6 2

19 2 6 -6 2

20 1 3 -3 1

Lemma A.7 can be proved by inspecting various cases similarly to Lemma A.6.
Based on the previous two lemmas and on Corollary 2.13, we are now able to

formulate the main result of this appendix.

Theorem A.8. Consider a multi-cell domain M that admits an offset at distance
(p − 1)/2, where p is a non-negative integer. Then the p–th combinatorial volume
of M — and therefore also the dimension of S(M) — is equal to

(A.3) ω(p)(M) = z +
p

2
f +

p2

4
e+

p3

8
v.

Proof. For even values of p we have that

ω(p)(M) = z(p)

and thus (A.3) follows from Lemma A.6.
For odd values of p, we obtain ω(p)(M) = g(M(p−1)). Using Lemma A.7, we

obtain

(A.4) g(M(p−1)) = z(p−1) +
1

2
f (p−1) +

1

4
e(p−1) +

1

8
v(p−1).

Using Lemma A.6, Equation (A.4) implies (A.3). This is where we need the as-
sumption regarding the admissibility of the offset at distance p−1

2 .
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p
p′

M

M

supp β

s′

Figure 11. If the coefficient graph of a basis function β has two
connected components, then shrinking suppβ (single hatching)
gives a cube s′ (double hatching) that touches the boundary of
M (solid light gray) in at least two disjoint sets of points. The
center of s′ (black dot) belongs to a self–intersetion of a certain
offset (thick solid black line).

According to Corollary 2.13, the combinatorial volume is equal to the dimension
of S(M), since the combinatorial volume is equal to the cardinality of BM and the
admissibility of the offset implies the assumption of the Corollary. Indeed, if there
is a basis function whose coefficient graph has at least two connected components,
then we may “shrink” its support to a cube s′ constisting of p′× p′× p′ times cells,
where p′ ≤ p− 1 is as small as possible, and so that this cube still “touches” cells
from two components (that is, it contains two points from two different components
but (s′)◦∩M◦ = ∅, see Figure 11 for a bivariate analogy). The center of s′ belongs

a self-intersection of the offset at distance p′

2 and thus the offset at distance p−1
2 is

not admissible. �

A.3. The case of topological manifolds with boundaries. The remainder of
this appendix relates our result to the dimension formula of Berdinsky et al. [2].

Lemma A.9. For any multi-cell domain M we have that

(A.5) c+ f
p

2
+ (ecvx − encx − 2eksg)

p2

4
+ v

p3

8
=

= c(p+ 1)3 − fitl p(p+ 1)2 + (eitl − eksg)p2(p+ 1)+

+ (−v4 + v7 + v11 + v12 + 3v13 + v15 + 2v16 + v18 + v19 − v21)p3.

where fitl and eitl are the number of internal faces and internal edges (faces and
edges of cells that are contained in the interior of M), respectively.

Proof. We compare the coefficients of the powers of p on both sides of the equation.
p0: We have c = c.
p1: We need to prove that

(A.6) 6c = 2fitl + f.
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This equation is satisfied since each cell has six faces and all internal faces belong
to two cells.
p2: We need to prove that

(A.7) 3c− 2fitl + eitl − eksg =
1

4
(ecvx − encx − 2eksg).

Consider the two identities

4f = 2ecvx + 2encx + 4eksg + 2eflt

4fitl = 2encx + 4eitl + eflt.

where eflt is the number of flat edges, i.e., edges within patches of the boundary
of the multi-cell domain (shared by two co-planar boundary faces). These two
identities imply

−4fitl + 2f + 4eitl − 4eksg = ecvx − encx − 2eksg.

Dividing by four and using again (A.6) leads to (A.7).
p3: We need to prove that

(A.8) 8(c−fitl+eitl−eksg+(−v4+v7+v11+v12+3v13+v15+2v16+v18+v19−v21)) =

= (v1−2v3−6v4−3v5−v6−v7−2v9−2v10+4v13−v14+v15+3v16+2v18+2v19+v20).

Each cell has eight vertices, thus

(A.9) 8c = v1 + 2v2 + 2v3 + 2v4 + 3v5 + 3v6 + 3v7 + 4v8 + 4v9

+ 4v10 + 4v11 + 4v12 + 4v13 + 5v14 + 5v15 + 5v16 + 6v17 + 6v18 + 6v19 + 7v20 + 8v21.

Similarly, each face has four vertices, hence

4fitl = v2 + v5 + 2v6 + 4v8 + 3v9 + 3v10 + 2v11 + 2v12 + 5v14 + 4v15 + 3v16

+ 7v17 + 6v18 + 6v19 + 9v20 + 12v21.

Moreover, each edge has two vertices, thus

(A.10) 2eitl = v8 + v14 + 2v17 + v18 + 3v20 + 6v21

and

(A.11) 2eksg = v3 + v5 + 3v7 + 2v11 + 2v12 + 6v13 + v15 + 3v16 + v18.

A suitable linear combination of (A.9)–(A.11) gives (A.8). �

Corollary A.10. Consider a multi-cell domain M with eksg = 0, v4 = 0 and

v19 = 0 that admits an offset at distance p−1
2 . Then

(A.12)

V(p)(M) = c+ f
p

2
+ (ecvx − encx)

p2

4
+ (v1 − v6 − 2v9 − 2v10 − v14 + v20) =

= c(p+ 1)3 − fitlp(p+ 1)2 + eitlp
2(p+ 1)− v21p

3.

Proof. Since eksg = 0, there are no vertices that are incident to a kissing edge, i.e.,

v3 = v5 = v7 = v11 = v12 = v13 = v15 = v16 = v18 = 0.

Substituting these values into (A.5) gives (A.12). �
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Equation (A.12) shows that the result of [2, Corollary 8] is a special case of
Theorem A.8. Note that a multi-cell domain with eksg = v4 = v19 = 0 is called a
topological manifold with boundary in [2].
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13. C. Giannelli, B. Jüttler, and H. Speleers, THB–splines: the truncated basis for hierarchical
splines, Comput. Aided Geom. Design 29 (2012), 485–498.

14. , Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput.

Math. (2013), to appear.
15. G. Greiner and K. Hormann, Interpolating and approximating scattered 3D-data with hierar-

chical tensor product B-splines, Surface Fitting and Multiresolution Methods (A. Le Méhauté,
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