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Abstract We consider the construction of a spline map (a volumetric deformation)
that transforms a template, which is given in the domain, into a target shape. More
precisely, the domain is equipped with a set of surface patches (the template skele-
ton) and target patches for some of them (which are called the constraining patches)
are specified. The constructed spline map approximately transforms the constraining
patches into the associated target patches. Possible applications include isogeomet-
ric segmentation and parameterization of the computational domain. In particular,
the approach should be useful when performing isogeometric segmentation and pa-
rameterization for a large class of computational domains possessing similar shapes.
We present a solution approach, which is based on least-squares fitting. In order to
deal with the influence of the parameterization, the well-established approaches of
point and tangent distance minimization are employed for the iterative solution of
the resulting nonlinear optimization problems. Additionally, we enrich the approach
with spline space refinement. The efficiency and performance of the approach are
investigated experimentally. The proposed template mapping approach is also ap-
plied to a case of industrial interest, as well as to a volumetric example.

1 Introduction

In this paper, we focus on the template mapping problem. The problem consists
of the construction of a spline map (a volumetric deformation) that transforms the
template domain into the target domain. The template map is constructed taken into
account restrictions on mapping certain surface patches from the template domain:
the template map transforms these surfaces (the constraining patches) into other
predefined surfaces (the target patches).
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The template mapping possesses applications in isogeometric segmentation and
parameterization (see [28, 39]). These two steps are essential as preprocessing steps
for NURBS-based numerical simulation, i.e., for isogeometric analysis (IGA) [19].
Consequently, they have attracted substantial interest from the scientific community.
We summarize some of the related literature:

IGA-suitable spline parameterizations of swept volumes are described in pa-
per [1]. The paper [7] analyzes aspects of parameterization quality for geometric
modeling in IGA. Solid modeling and domain parameterization using trivariate T-
splines is discussed in [8, 25, 35].

The papers [14, 36] describe optimization based techniques for planar and volu-
metric domain parameterization in IGA. High-quality constructions for multi-patch
NURBS parameterizations are introduced in [40]. The paper [9] uses inverse har-
monic mappings for planar domain parameterization using truncated hierarchical
B-splines (THB-splines), while [31] employs Powell–Sabin spline representations
and [26] uses the Teichmüller mapping.

Unstructured spline spaces for IGA on manifolds are introduced in [30] (see
also [21] for G1 smooth discretizations). The conversion of the boundary represen-
tation (B-Rep) models into domain parameterizations for IGA is addressed in [2],
while the construction of multi-patch parameterizations is discussed in [6]. Scaled
boundary parameterizations for IGA are considered in [3]. The recent paper [17]
adopts elliptic grid generation principles for IGA applications. Another approach to
the computation of IGA-suitable planar parameterizations via PolySquare-enhanced
domain partition is investigated in [38]. An approach for constructing low-rank pa-
rameterizations of planar domains is proposed in [27]. The paper [37] focuses on
generating high-quality high-order Bézier triangular and tetrahedral elements for
IGA on triangulations. The recent paper [16] gives an overview of isogeometric
segmentation and parameterization and provides additional references.

The present paper is devoted to the creation of a template mapping, which should
be a useful tool when solving the isogeometric domain segmentation and parame-
terization problem for a large class of computational domains possessing similar
shapes and equivalent topologies. Such classes occur naturally in engineering, e.g.,
when one is trying to identify the optimal design for a specific application. In this
setting it appears to be a promising approach to transfer a pre-defined segmentation
and parameterization from a (simplified) master domain (the “template”) to each
particular instance of the domain.

We solve the template mapping problem by applying an iterative procedure,
which is based on least-squares fitting. In particular, we minimize an objective func-
tion that involves several terms representing the geometric error, smoothing and reg-
ularization.

For computational purposes, we need to discretize the objective function. The
standard method to discretize the geometric error term is the point distance min-
imization (PDM) error term [18]. The optimization procedure based on the PDM
error term is equivalent to an alternating optimization method. Though this is quite
robust and leads to significant improvements of the initial results, it is also known to
have a low rate of convergence. Another approach, which employs the tangent dis-
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tance minimization (TDM) error terms [4], is a Gauss–Newton-type method, thus
providing quadratic convergence for zero-residual problems.

The method of squared distance minimization (SDM), which was introduced in
[29], provides an alternative to the above-mentioned discretization methods for the
geometric error terms (see [5] and the references cited therein). The SDM error
terms are curvature-dependent, thus requiring C2 smoothness, and the method lacks
clear theoretical advantages with respect to the TDM method. A detailed discussion
of the SDM method is therefore beyond the scope of the present paper.

In this paper, we adapt the PDM/TDM methods to the template mapping prob-
lem. In addition, we enrich the iterative approach with spline space refinement. Be-
sides various other observations that we obtain during the experimental study, we
also demonstrate that the local (adaptive) spline space refinement used instead of the
global (uniform) refinement helps to save computational resources. The local refine-
ment allows achieving a similar accuracy of the results with significantly reduced
computational effort.

The rest of the paper is organized as follows. Sect. 2 presents the basic notation,
definitions, formulates the template mapping problem and shortly describes possi-
ble applications to isogeometric segmentation and parameterization. In Sect. 3, the
template mapping problem is discretized. We give a detailed description of the pre-
sented iterative approach for the template mapping problem in Sect. 4. The results
of the experimental study are presented in Sect. 5. Finally, Sect. 6 summarizes the
paper by formulating conclusions and identifying directions for future work.

2 Template Mapping Problem

In this section, we introduce the basic notation and definitions. Before formulating
the template mapping problem in dimension independent form, possible applica-
tions to isogeometric segmentation and parameterization are shortly described.

2.1 Template Mapping for Isogeometric Segmentation and
Parameterization

Our interest in the template mapping originated in its possible applications to iso-
geometric segmentation and parameterization. To clarify the practical meaning of
the theoretical concepts, which will be introduced below, we first summarize our
approach to isogeometric segmentation and parameterization.

Assume that we have a B-Rep model of the computational domain, which we
need to parameterize for the purpose of applications of IGA. If the domain is too
complicated to be parameterized as a single patch, it needs to be segmented into
quadrilateral or hexahedral subdomains (patches) that can be parameterized sepa-
rately (multi-patch parameterization) in subsequent steps.
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More precisely, we consider a template domain, described by a B-Rep model,
which is topologically equivalent to the original computational domain (target do-
main). It is assumed that a segmentation of this domain can be defined in a natural
way and subdomains can be parameterized easily using some standard technique
(for example, Coons patches). If, in addition, we have a map that deforms the tem-
plate domain into B-Rep of the original computational domain, we arrive at a multi-
patch parameterization of the original computational domain.

2.2 Template Skeleton and Target Patches

Let us assume that Ω̂ is a domain with piecewise smooth boundary in Rd (d = 2
or d = 3). We call this domain the template domain. In the template domain Ω̂ ,
the surface patches Γ̂ k, k ∈ K = {1,2, . . . ,M}, are given. Each of these patches is
parameterized as

γ̂k : (0,1)d−1→ Γ̂ k.

The surfaces Γ̂ k, k∈K∗= {1,2, . . . ,N}, N <M, are called the constraining patches,
and the remaining ones (k ∈K \K∗) are referred to as the free patches. The union
of the constraining and free patches forms the template skeleton Γ̂ :

Γ̂ =
⋃

k∈K
Γ̂ k.

Note that in the rest of the paper we use the notion surface to denote curves
(d = 2) or two-dimensional surfaces (d = 3). In addition, we use hats (ˆ) for the
symbols that are related to the template domain or skeleton.

Each constraining patch Γ̂ k corresponds to the target patch Γ k ⊂ Rd (k ∈ K∗).
The target patches Γ k are parameterized as

γk: (0,1)d−1→ Γ k.

We assume that the topological structure of the intersection of the constraining
patches Γ̂ k ⊂ Γ̂ matches that of the target patches Γ k.

2.3 Template Map

Our aim is to construct the template map

s : Ω̂ → Rd

that satisfies the requirements

s◦ γ̂k◦ %k (t) =γk (t), t ∈ (0,1)d−1, (1)
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Ω̂

Γ̂

Γs : Ω̂ → Rd

s. t. s(Γ̂) = Γ

?

Fig. 1 The template mapping problem: find the map (a volumetric deformation) s that transfers
the template skeleton (red and green, left) in such a way that the constraining patches (red, left) are
transformed into the target patches (red, right). The mapping of the free patches (green, left) is not
constrained

for k ∈K∗. Here %k: (0,1)d−1→ (0,1)d−1 are the reparameterizations of the con-
straining patches Γ̂ k. In general, the reparameterization functions %k can be chosen
in different ways but they should always be bijective and regular. The requirements
(1) ensure that the template map s transforms each constraining patch Γ̂ k to the
corresponding target patch Γ k, k ∈K∗. We emphasize that the requirements (1) are
formulated for the constraining and target patches only. For application purposes,
the template map s is also supposed to be injective and regular in Ω̂ .

The surfaces Γ̃ k parameterized as

γ̃k : (0,1)d−1→ Γ̃ k : t̂ 7→ s◦ γ̂k◦ %k (t̂)

are called the mapped (transformed) constraining patches (for k ∈ K∗) or the
mapped (transformed) free patches (for k ∈K). We expect that (cf. (1))

γk (t)≈ γ̃k(t), t ∈ (0,1)d−1,

is valid for each target patch Γ k and the corresponding mapped constraining patch
Γ̃ k (k ∈K∗).

A schematic description of the template mapping problem is presented in Fig. 1.

2.4 Variational Formulation of the Template Mapping Problem

We construct the template map s satisfying the constraints (1) by solving a nonlinear
optimization (the least-squares) problem [22]. Indeed, we define and minimize the
least-squares objective function:
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F = ∑
k∈K∗

‖ γk −γ̃k‖2
L2([0,1]d−1)

+Q(s)→min . (2)

The term Q in the objective function stands for the smoothing and regularization.
This term involves functionals known as the quality measures. For futher informa-
tion the interested reader is referred to [9, 14], where these measures are applied in
the context of isogeometric domain parameterization.

3 Discretization

In Sect. 2 we formulated the template mapping problem in an abstract way. A proper
template map is expected to satisfy certain requirements. In this section, the template
mapping problem is discretized.

3.1 Spline Approximation of the Template Map

We assume that the template map s is a spline function represented in a hierarchical
spline space as a linear combination of the spline basis functions τ`j defined by
coefficients c`j ∈ Rd :

s(u) =
L

∑̀
=1

J`

∑
j=1

c`jτ
`
j (u), u ∈ Ω̂ . (3)

Here the upper index ` stands for the hierarchical level, L denotes the total number
of levels of refinement, and J` is the numbers of spline basis functions of level `.
For the simplicity of notation, all the coefficients c`j are collected in one matrix

c = (. . . ,c`j, . . .) ∈ Rd×n,

where n = ∑L
`=1 J` is the number of hierarchical spline basis functions in all levels.

3.2 Discretization of Geometric Input Data

The target patches Γ k are discretized by sampling points {pk
i }i∈I corresponding to

the initial parameter values {tk
i }i∈I:

pk
i =γ

k (tk
i ),

where tk
i ∈ (0,1)d−1 and I is an index set.
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For the purpose of the closest point computation (see Sect. 3.3), we also dis-
cretize the constraining patches Γ̂ k, k ∈K∗. Each constraining patch is discretized
by sampling points {p̂k

ı̂ }ı̂∈Î corresponding to the parameter values {t̂k
ı̂ }ı̂∈Î:

p̂k
ı̂ = γ̂

k(t̂k
ı̂ ),

where t̂k
ı̂ ∈ (0,1)d−1 and Î is an index set. These sampled points are used for the

initialization of the closest point computation. The number of points sampled on
the constraining patches is expected to be much larger then the number of points
sampled on the target patches (|Î| � |I|).

In the rest of the paper we assume that ı̂ ∈ Î, i ∈ I and k ∈K∗.

3.3 Discrete Representation of the Reparameterization Functions

Let us assume we have the template map s. For each target patch Γ k and each sam-
pled point pk

i , the reparameterization function %k defines the parameter value t̂k,∗
i

such that the mapped point p̃k,∗
i = s◦ γ̂(t̂k,∗

i ) is the closest point to the point pk
i from

all the points on the mapped constraining patch Γ̃ k:

t̂k,∗
i := arg min

t̂∈(0,1)d−1
‖pk

i − s◦ γ̂k(t̂)‖.

In this way, the reparameterization functions %k are represented discretely by the
optimal parameter values {t̂k,∗

i }:

%k: (0,1)d−1→ (0,1)d−1 : t̂k
i 7→ t̂k,∗

i .

The optimal parameter values are expected to ensure the difference vectors
pk

i − s◦ γ̂k(t̂k,∗
i ) to be parallel to the unit normal vectors at the points pk

i on the
target patch Γ k (the parameter optimality constraint). The points p̃k,∗

i = γ̃k(t̂k,∗
i ) are

called the closest points (or foot points) of the points pk
i on the mapped constraining

patch Γ̃ k.

3.4 Discretized Optimization Problem

Let {pk
i } be a discrete set of points sampled on each target patch Γ k. The objective

function defined by (2) is discretized as

F̃ = ∑
k

∑
i

ek
i + Q̃, (4)
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where ek
i = mint̂∈(0,1)d−1 ‖pk

i − γ̃k(t̂)‖2 are the squared orthogonal distances be-
tween the points pk

i and the mapped target patch Γ̃ k, and Q̃ is a discretized smooth-
ing and regularization term. The smoothing and regularization term is added to the
objective function in order to avoid situations when this linear system becomes sin-
gular and self-overlappings appear in the resulting map.

We minimize the objective function F̃ with respect to the reparameterization
functions %k and the coefficients c:

F̃ →min
%k,c

. (5)

This nonlinear least-squares problem is a separable and constrained optimization
problem. Indeed, the reparameterization functions %k and the coefficients c can be
treated as two separate groups of optimization variables, and the optimization prob-
lem can be formulated as the minimization of the objective function (4) with respect
to the coefficients c, i.e.

F̃ →min
c
,

subject to the parameter optimization constraints (see Sect. 3.3). For the solution of
this optimization problem we will apply an iterative procedure presented in the next
section.

4 Iterative Solution Procedure

Our aim is to minimize the objective function (4) with respect to the coefficients
of the discretized template map, and the reparameterization functions. We apply an
iterative procedure for the solution of this optimization problem. In this section, we
give a general outline of the procedure as well as describe its steps in detail.

4.1 General Outline of the Procedure

As it was mentioned in Sect. 3.4, the optimization problem (5) is separable. There-
fore, we treat the unknown coefficients c of the map s and the reparameterization
functions %k in separate steps. The outline of the iterative procedure for the template
mapping problem solution is the following:
Step 1: Discretization and initialization
Step 2: Control point computation
Step 3: Closest point computation
Step 4: Checking termination and refinement criteria:

(4a) Termination criterion
(4b) Refinement criterion

Step 5: Spline space refinement
In the next sections we will describe all the steps in detail.
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4.2 Step 1: Discretization and Initialization

We assume the target patches Γ k are discretized by sampled points {pk
i } (see

Sect. 3.2). In addition, we also construct the initial version of the template map s.
The initial template map is defined by initial tensor-product spline basis and initial
values of the coefficients c.

As the initial map for the iterative procedure, we use the identity map. This
choice is suitable in cases when the constraining patches are quite similar to the
target patches. Another possibility is to execute one iteration of the control point
computation step (Sect. 4.3) with a simplified objective function (in order to obtain
a simpler quadratic optimization problem).

4.3 Step 2: Control Point Computation

Suppose that the template map s defined by (3) is an initial map, or the current map
generated in the previous iteration of the procedure. In this step, we minimize the
objective function F̃ with respect to the coefficients c. Clearly, the new values of the
coefficients c define an updated map s.

For the discretization of the squared orthogonal distances (error terms) ek
i in the

discretized objective function (4) we implemented and examined the point distance
minimization (PDM) and the tangent distance minimization (TDM) procedures (see
e.g. [34] and references therein). The error terms ek

i in the PDM are expressed as

ek
PDM,i = ‖pk

i − γ̃k(t̂k
i )‖2,

while in the TDM procedure they are approximated as

ek
TDM,i =

[(
pk

i − γ̃k(t̂k
i )
)>
·Nk

i

]2

,

where Nk
i are the unit normal vectors at the points pk

i on the target patch Γ k. Both
PDM and TDM procedures can be combined together. Then the squared orthogonal
distances are expressed as

ek
i ≈ ωPDMek

PDM,i +ωTDMek
TDM,i,

where ωPDM and ωTDM are the weights controlling the influence of PDM and TDM
errors terms.

The template map coefficients c are obtained from the linear system arising af-
ter the differentiation of the objective function (4) with respect to unknown coeffi-
cients c,

∂ F̃
∂c

= 0.
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In our implementation, the smoothing and regularization term is assumed to be

Q̃ = ωrQ̃r +ωuQ̃u, (6)

where ωr and ωu are user-defined non-negative weights for Tikhonov regularization
term

Q̃r(c) =
L

∑̀
=1

J`

∑
j=1
‖c`j− c`j‖2

and the discretized uniformity functional Q̃u (see [9]), while c`j are the coefficients
from the previous iteration.

The uniformity and the parametric length functionals [9] are quadratic. However,
the rest of the quality measures mentioned in Sect. 2.4 are non-quadratic function-
als. They are expressed as integrals of squares of functions depending on the first
and second derivatives of the map. The objective functions involving non-quadratic
functionals can be minimized using Gauss–Newton-type methods [22].

4.4 Step 3: Closest Point Computation

In this step, we change (update) the parameter values {t̂k
i } to the parameter values

{t̂k,∗
i } in such a way that the mapped points p̃k

i = s ◦ γ̂k(t̂k,∗
i ) are the closest points

(see Sect. 3.3) to the corresponding points pk
i on the target patch Γ k. Taking into

account the discretization of the constraining patches (see Sect. 3.2), the initial pa-
rameter values are computed as

t̂k,∗
i := argmin

ı̂
‖pk

i − p̃k
ı̂ ‖,

where p̃k
ı̂ = s◦ γ̂k(t̂k

ı̂ ).
The initial parameter values are improved by applying Newton steps:

t̂k,∗
i := t̂k,∗

i +∆ t̂k,∗
i ,

where

∆ t̂k,∗
i =

(
pk

i − s◦ γ̂k(t̂k
i )
)>
·
(

su1 ◦ γ̂k(t̂k
i )
)

‖su1 ◦ γ̂k(t̂k
i )‖2

in planar (d = 2) case, and

∆ t̂k,∗
i =

[
‖su1 ◦ γ̂k(t̂k

i )‖ (su1su2)◦ γ̂k(t̂k
i )

(su1su2)◦ γ̂k(t̂k
i ) ‖su2 ◦ γ̂k(t̂k

i )‖

]−1




(
pk

i − s◦ γ̂k(t̂k
i )
)>
·
(

su1 ◦ γ̂k(t̂k
i )
)

(
pk

i − s◦ γ̂k(t̂k
i )
)>
·
(

su2 ◦ γ̂k(t̂k
i )
)
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(Step 1)

Map
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criterion

(Step 4a)
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criterion

(Step 4b)

Spline space
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(Step 5)

satisfied

not satisfied satisfied

not satisfied

Fig. 2 The iterative approach for template mapping problem

in volumetric (d = 3) case.

4.5 Step 4: Checking Termination and Refinement Criteria

Steps 2 and 3 are repeated iteratively until a certain termination criterion is satisfied,
e.g., the prescribed accuracy is achieved or the maximal number of iterations is
reached. The procedure also terminates if the template map s becomes unacceptably
irregular. We monitor the determinant of the Jacobian at certain points in Ω̂ and
terminate the procedure if the percentage of points with negative values of Jacobian
determinant exceeds a prescribed threshold.

In addition, the proposed approach for the template mapping problem can be
enriched with the refinement of the spline space in which the template map s is
represented. After several PDM/TDM iterations the accuracy of the results can be
estimated and, if necessary, the spline space can be refined before executing another
series of PDM/TDM iterations. As an indicator for the spline space refinement, the
difference of the error in two successive iterations can be used: the spline space is
refined whenever the error no longer changes significantly.

The flowchart representing the iterative approach is depicted in Fig. 2. The ef-
fectiveness of the approach combining PDM/TDM iterations and the spline space
refinement will be demonstrated in Sect. 5. The details on the spline space refine-
ment step will be given in the next section.

4.6 Step 5: Spline Space Refinement

The standard tensor-product constructions of the multivariate splines provide the
possibility of the global (uniform) refinement only. This means that the insertion of
a new knot into one of the knot vectors refines the entire column or row of cells
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in the mesh. In order to overcome this, various generalizations of tensor-product
splines were proposed (see [11] and the references cited therein).

In our implementation of the approach, the local refinement is based on THB-
splines [11, 12], which form another basis for the space of hierarchical splines
[10, 15, 24]. In addition to the possibility of the local refinement, the THB-
splines possess numerous nice mathematical properties. Compared to the hierarchi-
cal splines introduced in [24], THB-splines form a non-negative partition of unity
and have the same of a smaller support. In addition, THB-splines are linearly inde-
pendent and strongly stable with respect to the maximum norm [13].

In order to select hierarchical mesh cells that should be refined, various strategies
can be applied. We can mention the absolute threshold and relative threshold ap-
proaches [23]. In the first strategy, the points where the error exceeds a user-defined
threshold are marked for the refinement, while the latter approach marks a certain
percentage of points with the largest errors.

The size of the refined area and, consequently, the size of the corresponding
THB-spline basis can be affected by properly adjusting the extension parameter [23].

As we will see in computational experiments, the local refinement of the spline
space allows to significantly reduce the amount of computational resources, which
are required in the case of the global refinement.

5 Experimental Study

In this section we set up a test example and use it to analyze and compare different
versions of the considered approach for the template mapping problem in terms of
the accuracy and computational complexity (the amount of required computational
resources). The experimental study consists of four experiments. In one of them, we
apply the approach to a case of industrial interest. An experiment demonstrating the
approach applicability to volumetric cases is also presented.

5.1 Implementation Details

The template skeleton and target patches, which will be used in Experiments 1 and 2
of our experimental study, are presented in Fig. 3. For simplicity, in the first two
experiments we analyze the template skeleton without free patches (all the patches
are constraining). The template skeletons and the target patches of industrial and
volumetric examples will be introduced in Sects. 5.4 and 5.5.

The iterative procedure is initialized by defining an initial map and sampling
points pk

i on each target patch Γ k. In our experiments, as the initial map we use
the identity map defined in a space of tensor-product B-splines of bi-degree (3,3)
(in planar cases) or tri-degree (3,3,3) (in volumetric case). The B-spline basis is
defined using uniform knot vectors with 11 inner knots in each direction.
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Fig. 3 Target patches (left) and constraining patches (right) used in Experiments 1 and 2

On each target patch in planar examples (Experiments 1–3), we sample 200
points corresponding to the parameters uniformly distributed on the unit interval.
For the closest point computation, we discretize each constraining patch Γ̂ k by sam-
pling 104 points. Then, we map these points using the template map s. From all
these mapped points we find an initial closest point on the target patch Γ k for each
point pk

i . An initial closest point then is improved by executing two Newton steps
(Sect. 4.4).

The selection of appropriate weights ωr and ωu of the Tikhonov regularization
term and the uniformity functional in the discretized objective function (4) is one
of the main challenges of the proposed approach. These weights affect both the
accuracy and quality of the final result (see e.g. [23] for the detailed discussion)
and, therefore, they should be selected very carefully. In Experiments 1, 2 and 4
we will only apply the Tikhonov regularization with the weight ωr = 2× 10−2. In
Experiment 3, additionally we will use the uniformity functional with the weight
ωu = 2×10−2.

In our experiments, the hierarchical mesh cells for the local refinement are
marked using the absolute threshold strategy with the threshold of the pointwise
maximal L2-error being constant and equal to 10−5. The marked cells then are re-
fined using the dyadic cell refinement.

The accuracy of the results is measured using the squared l2-error:

El2 = ∑
k

∑
i
‖pk

i − p̃k
i ‖2.

Before the error estimation, the closest point computation (parameter optimization)
step is executed.

All the steps of the examined approach have been implemented in G+SMO (Ge-
ometry + Simulation modules) C++ library for IGA [20]. This library includes an
efficient implementation of the THB-splines.
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Fixed parameterization PDM TDM

s s s

Fig. 4 The template mapping obtained after 20 iterations of different approaches: fixed parameter-
ization (left), PDM (center) and TDM (right) (Experiment 1)
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Fig. 5 Squared l2-errors (left) and the percentage of points with negative values of the Jacobian
determinant (right) (Experiment 1)

Table 1 Squared l2-errors and the percentage of points with negative values of the corresponding
map Jacobian determinant obtained after 20 iterations of the procedure with fixed parameterization
and PDM/TDM procedures with the closet point computation step (Experiment 1)

l2-error Non-regular points

Fixed parameterization 4.16585×10−3 2.0969 %
PDM 4.03419×10−4 0.3552 %
TDM 1.76909×10−4 0.0000 %

5.2 Experiment 1: Comparison of PDM and TDM

In the first experiment, we are going to demonstrate that the closest point com-
putation (parameter optimization) step (Step 3) is an essential component of the
approach. Moreover, we compare convergence rates of the procedures and the reg-
ularity of the resulting template maps.

In Fig. 4 we demonstrate the template mapping results obtained using procedure
with the fixed parameterization, as well as the approach based on PDM or TDM
with the parameter optimization step. In this experiment, the template map s is con-
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structed in the initial tensor-product spline space (the spline space refinement is not
applied).

From Fig. 4 we can see that the resulting map s obtained using the fixed parame-
terization has self-overlappings. To estimate the regularity of the template map s, we
computed the determinant of the map Jacobian at 106 points sampled in the para-
metric domain. The squared l2-errors obtained during 20 iterations of the procedure
as well as the percentage of points with negative values of the Jacobian determinant
are presented in Fig. 5 (see also Table 1 for the corresponding numerical values after
the last of 20 iterations). The most accurate results were obtained using the approach
based on TDM. The PDM with the closest point computation step produced slightly
less accurate results.

In the case of the procedure with fixed parameterization, the percentage of non-
regular points (points with negative values of Jacobian determinant) exceeds 2%.
The closest point computation in PDM procedure reduces this percentage to around
0.36%. In the map produced by the procedure based on TDM, we do not identify
non-regular points at all.

Clearly, the approach benefits from the closest point computation (parameter op-
timization) step. Therefore, we will use the closest point computation in the rest
of this study. Moreover, since TDM seems to have clear advances with respect to
PDM, we limit ourselves to TDM in the remaining experiments.

5.3 Experiment 2: Comparison of the Global and Local Spline
Space Refinement Strategies

The goal of the second experiment is to compare the global and local spline space
refinement strategies (see Sect. 4.6) in terms of the accuracy of the results and the
amount of the required computational resources.

In this experiment, the spline space refinement is done after each single TDM
iteration. The template mapping results are presented in Fig. 6. By using the same
map regularity testing procedure as in Experiment 1, we do not identify any points
with negative values of the Jacobian determinant. From Fig. 7 (left) we see that the
number of degrees of freedom (the size of the spline space) grows exponentially
if the spline space is refined globally. In case of the local spline space refinement,
this number grows only linearly. This observation is expected and complies with the
results obtained in [23].

From Fig. 7 (right) we also see that the local refinement leads to a similar accu-
racy of the results when using significantly coarser spline spaces (with much fewer
degrees of freedoms in the spline map representation). Consequently, in order to
achieve a similar accuracy, the local refinement strategy requires much less addi-
tional computational resources (computational time and memory) in comparison
with the global one.
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Fig. 6 The template mapping obtained after three iterations of global refinement (top) or seven
iterations of local refinement (bottom) of the initial spline space (Experiment 2)
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of degrees of freedom (right) obtained during the global and local refinement of the spline space
(Experiment 2)
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5.4 Experiment 3: Industrial example

In this experiment, the presented approach is applied to two cases corresponding to
the target patches, which represent the profiles of twin screw compressor rotors with
four (male rotor) and six (female rotor) lobes (Fig. 8, top), see [32, 33] for additional
details. The corresponding template skeletons are depicted in Fig. 8 (bottom). In this
case, the template skeletons contain not only constraining patches but free ones too.

By this experiment we aim to demonstrate the approach applicability to the cases
with industrial input and, in addition, investigate the possibility to combine series of
TDM iterations and the local spline space refinement. We combine TDM procedure
with local refinement of the spline space, i.e., the spline space refinement iteration
is executed after each series of five TDM iterations. In addition to Tikhonov regu-
larization (ωr = 2×10−2), the uniformity functional with the weight ωu = 2×10−2

is also used in this experiment. The identity map is used for the initialization of the
iterative procedure.

The knot configurations in parametric and physical domains are exhibited in
Figs. 9 and 10. The maps presented in these figures have no non-regular points.
In addition, Fig. 11 demonstrates how the errors change after each iteration of TDM
procedure. We see that after several iterations error decay slows down. The refine-
ment of the spline space helps to speed up the convergence and obtain more accurate
final results. We have already demonstrated in Experiment 2 that the local refine-
ment strategy allows saving computational resources in comparison with the global
one.

5.5 Experiment 4: Volumetric example

So far, we applied the template mapping approach for the planar (d = 2) cases only.
In the last experiment, we demonstrate the approach applicability to volumetric (d =
3) cases. The input data and the results are presented Fig. 12.

The set of the target patches consists of four faces from a rectangular hexahedron
and a patch made by extruding and rotating a curve from Experiments 1 and 2
(Fig. 3). Correspondingly, the set of template patches consists four faces from a
rectangular hexahedron and a one-sheeted hyperboloid (cylindrical patch made by
extruding and rotating a circle).

In Fig. 12 we demonstrate how the mapped templa+te patches match the target
patches. The target patches were mapped using a volumetric template map obtained
after two series of ten TDM iterations combined with one iteration of the adaptive
spline space refinement. The initial template map is represented by 6,859 degrees
of freedom, while after one iteration of the local refinement this number increased
to 12,248. In case of the global spline space refinement, we would need 42,875
degrees of freedom. The map produced by the iterative procedure has no non-regular
points.
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Fig. 8 Target patches (top) and template skeletons (bottom) used in Experiment 3. The target
patches represent the profiles of a male rotor (left) and a female rotor (right) in a twin screw
compressor. The template skeletons contain both the constraining patches (black) and free patches
(green)

s s

Fig. 9 The template mapping obtained after 20 iterations using TDM (Experiment 3)
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Fig. 10 The template mapping obtained after 20 iterations using TDM combined with three itera-
tions of local refinement of the spline space (Experiment 3)
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Fig. 11 Squared l2-errors obtained by combining TDM and spline space refinement (Experi-
ment 3): the profiles of twin screw compressor male rotor (left) and female rotor (right)
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Fig. 12 Volumetric example of the template mapping (Experiment 4). Top row: target patches
(left), template patches (middle), target patches and mapped template patches (right). Bottom row:
hierarchical mesh after one iteration of adaptive spline space refinement (left) and squared l2-errors
(right)

We also compared the convergence speed of procedures with and without spline
space refinement. From Fig. 12 (bottom, right) we see that the local spline space re-
finement iteration, executed when the decay of the error already is slow, can slightly
speed up the convergence. Although in this case the speedup is not extremely high,
already first TDM iteration after spline space refinement gives the results, which
are more accurate in comparison to those obtained after the last iteration of TDM
procedure without spline space refinement. Therefore, this experiment once again
confirm that the adaptive spline space refinement allows reducing the number of
required iterations and, consequently, the amount of computational resources.

6 Concluding Remarks

We introduced the template mapping problem and presented an iterative adaptive
approach for solving it. Based on the results of the experimental investigation, we
arrive at the following conclusions:

• The closest point computation (parameter optimization) is beneficial for solving
the template mapping problem. The iterative procedure based on TDM converges
faster than the procedure based on PDM.
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• In comparison with the global refinement of the spline space, the local refinement
allows achieving the similar accuracy with significantly less amount of compu-
tational resources.

• The iterative minimization of the objective function can be efficiently combined
with the spline space refinement.

• The approach is applicable to volumetric data. This is very important from the
practical point, in view of applications to isogeometric segmentation and param-
eterization.
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