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Abstract

Total variation flow, total variation regularization and the taut string algo-
rithm are known to be equivalent filters for one-dimensional discrete signals.
In addition, the filtered signal simultaneously minimizes a large number of
convex functionals in a certain neighbourhood of the data. In this article we
study the question to what extent this situation remains true in a more general
setting, namely for data given on the vertices of a finite oriented graph and
the total variation being J(f) =

∑
i,j |f(vi)−f(vj)|. Relying on recent results

on invariant ϕ-minimal sets we prove that the minimizer to the corresponding
Rudin-Osher-Fatemi (ROF) model on the graph has the same universal mini-
mality property as in the one-dimensional setting. Interestingly, this property
is lost, if J is replaced by the discrete isotropic total variation. Next, we relate
the ROF minimizer to the solution of the gradient flow for J . It turns out
that, in contrast to the one-dimensional setting, these two problems are not
equivalent in general, but necessary and sufficient conditions for equivalence
are available.

1 Introduction

It is a well known fact that for one-dimensional discrete data total variation (TV)
regularization and TV flow are equivalent. More specifically, denote by

J(u) =

n−1∑

i=1

|ui − ui+1|

the total variation of u ∈ Rn, and let f ∈ Rn and α > 0 be given. Then, as was
shown in [23], the minimizer uα of the functional

1

2
‖f − u‖22 + αJ(u)

coincides with the solution to the Cauchy problem

u′(t) ∈ −∂J(u(t)),

u(0) = f,

∗clemens.kirisits@ricam.oeaw.ac.at
†otmar.scherzer@univie.ac.at
‡eric.setterqvist@univie.ac.at

1



at time t = α. On the other hand, it is known since [17] that uα can also be obtained
by means of the taut string algorithm, which reads as follows.

1. Identify the vector f ∈ Rn with a piecewise constant function on the unit
interval and integrate it to obtain the linear spline F .

2. Find the “taut string” Uα, that is, the element of minimal graph length in a
tube of width 2α around F with fixed ends:

Uα = arg min

{∫ 1

0

√
1 + U ′(x) dx : ‖U − F‖∞ ≤ α,U(0) = F (0), U(1) = F (1)

}

3. Differentiate Uα to obtain uα.

Problems which essentially can be modelled and solved by the taut string algorithm
appear in diverse applications. Examples include production planning, see e.g. [18],
and energy and information transmission, see e.g. [20] and [24]. A generalization of
the taut string algorithm for higher-dimensional data is proposed in [11]. Further
suggestions of generalizations of the taut string algorithm, in both discrete and
continuous settings, can be found in [22, Chap. 4.4].

It turns out that the taut string does not only have minimal graph length, but
actually minimizes every integral of the form

∫ 1

0

ϕ(U ′(x)) dx,

where ϕ : R → R is an arbitrary convex function, in the 2α-tube around F . Very
recently, this intriguing situation was studied in greater generality in [14, 15]. The
authors coined the term invariant ϕ-minimal for sets which, like the 2α-tube, have
an element that simultaneously minimizes a large class of distances. In addition
they characterized these sets in the discrete setting.

In this article we study total variation regularization and total variation flow in
a setting that contains the one outlined above as a special case. More specifically,
we consider data f as given on the vertices of a finite oriented graph G = (V,E)
together with the total variation

J(f) = sup
H∈B1

〈f, divH〉 =
∑

v,w

|f(v)− f(w)|. (1)

Here, the sum runs over all adjacent pairs of vertices v, w, the set B1 is the unit
ball with respect to the `∞-norm on the space of edge functions H : E → R, and
div denotes the graph divergence.

Our first result concerns the subdifferential of J . In Theorem 4 we prove that
∂J(f) is an invariant ϕ-minimal set for every f : V → R. It is noteworthy that, as
is shown in Example 1, this property is not shared by the discrete isotropic total
variation, which for f ∈ Rm×n reads

∑

i,j

√
(fi+1,j − fi,j)2 + (fi,j+1 − fi,j)2 (2)

and has been used, for instance, in [5].
Next we consider the Rudin-Osher-Fatemi (ROF) model [19] on the graph

min
u:V→R

1

2

∥∥f − u
∥∥2
2

+ αJ(u), α ≥ 0. (3)

From its dual formulation it follows that problem (3) is equivalent to

min
u∈f+α∂J(0)

‖u‖2 (4)
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and since, by Theorem 4, the set f +α∂J(0) is invariant ϕ-minimal, the `2-norm in
(4) can be replaced by

∑
v∈V ψ(u(v)) for any strictly convex function ψ : R → R.

More generally, as in the one-dimensional setting, the ROF minimizer uα simultane-
ously minimizes

∑
v∈V ϕ(u(v)) over f +α∂J(0) for every convex ϕ. See Proposition

5 and Theorem 6. We stress again that the minimizer of the isotropic ROF model
does not have this property. Despite its anisotropy model (3) has been used ex-
tensively for the problem of image denoising. This is in part due to the fact that,
in contrast to (2), J as given by (1) is submodular and for the minimization of
submodular functions many efficient algorithms are available, for instance, graph
cut algorithms [6, 7, 8, 12].

Finally, we examine the gradient flow for J and how it relates to the ROF model.
Such relations in higher dimensional settings are the subject of recent investigations.
In [3], discrete higher-dimensional variational methods and gradient flows for convex
one-homogeneous functionals, thereby covering total variation, are investigated and
sufficient conditions for their equivalence are provided. A sufficient condition for
the equivalence of TV regularization and TV flow in the plane with `1 anisotropy
is given in [16]. Considering the continuous setting with isotropic TV, it is shown
in [13] that TV regularization and TV flow coincide for radial data but in general
are non-equivalent.

Our results in this direction are the following. First, it follows from the fact that
the ROF minimizer uα solves (4) that

‖uα‖2 ≤ ‖u(α)‖2

holds for all α ≥ 0. Here u(α) denotes the solution to the total variation flow at time
t = α. Second, we adapt [16, Thm. 10] to the graph setting, which gives a sufficient
condition for equality of ROF and TV flow solutions. In addition, it shows that —
apart from being equal for one-dimensional graphs — uα and u(α) always coincide
at least until the time derivative of the latter changes for the first time. Note that
both ROF and flow solutions are continuous piecewise affine functions of α and t,
respectively, cf. [3, Thm. 4.6] or Propositions 8 and 11 below. In Propositions 15
and 16 we discuss conditions that are necessary and sufficient for equality of uα and
u(α). Lastly, we consider a 3 × 3 Cartesian graph and track both solutions for a
specific datum f . Apart from showing that on the graph ROF and flow solutions
are not equivalent in general, it also shows that the jump sets of both are not
monotonically decreasing with respect to α or t, respectively.

To summarize, problem (4) considered on the graph may be seen as a general-
ization of the taut string algorithm to higher dimensions since

• it is a minimization problem over the set f + α∂J(0) which in turn can be
seen as a higher-dimensional analogue of the set of derivatives of the elements
in the 2α-tube around F ,

• the solution uα minimizes
∑
v∈V ϕ(u(v)) over f + α∂J(0) for any convex

function ϕ,

• uα minimizes the corresponding ROF model (3). Further, if α is either suffi-
ciently small or sufficiently large, then uα is also the TV flow solution.

This article is organized as follows. In Section 2 we introduce the graph setting
and the total variation J . We also collect some of its properties and briefly discuss
the concept of invariant ϕ-minimal sets. Sections 3 and 4 are dedicated to the two
main problems considered in this paper, that is, total variation regularization and
total variation flow, respectively. In the final part of the paper, Section 5 that is,
we compare the flow and ROF solutions.
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2 The graph setting

2.1 The divergence operator and total variation on graphs

Consider a finite oriented graph (V,E). That is, both the vertex set V and the edge
set E are finite and if E contains the edge e = (v, w), then it cannot contain (w, v).
The edge (v, w) is interpreted as directed from v to w. Let RV and RE denote the
space of real-valued functions defined on the vertices and edges, respectively. We
consider `p-norms on RV according to

‖u‖p =

(∑

v∈V
|u(v)|p

)1/p

for 1 ≤ p <∞ and

‖u‖∞ = max
v∈V
|u(v)|.

Analogous `p-norms will be considered on RE . For α ≥ 0, denote by Bα the following
set of functions in RE :

Bα = {F ∈ RE : ‖F‖∞ ≤ α}. (5)

Given F ∈ RE , introduce the mapping div : RE → RV according to

(divF )(v) =
∑

w∈V :(w,v)∈E
F ((w, v))−

∑

w∈V :(v,w)∈E
F ((w, v)), (6)

i.e. the divergence at the vertex v can be thought about as the sum of the flows on
the incoming edges minus the sum of the flows on the outgoing edges. Introduce
further the natural scalar product on RV according to

〈g, h〉RV =
∑

v∈V
g(v)h(v).

The total variation of a function u ∈ RV is defined as:

J(u) = sup
H∈B1

〈u,divH〉RV . (7)

We can compute (7) using the following formula.

Proposition 1.

J(u) =
∑

e=(vi,vj)∈E
|u(vj)− u(vi)|. (8)

Proof. Recalling (6), we rewrite J(u) according to:

J(u) = sup
H∈B1

〈u,divH〉RV = sup
H∈B1

∑

v∈V
u(v)(divH)(v) =

= sup
H∈B1

∑

e=(vi,vj)∈E
(u(vj)− u(vi))H((vi, vj)).

(9)

Taking into account the definition (5) of Bα, we see that the supremum of (9) is
attained for H ∈ B1 if and only if

H((vi, vj)) ∈




{1} , u(vi) < u(vj),
[−1, 1] , u(vi) = u(vj),
{−1} , u(vi) > u(vj),

(10)
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giving

J(u) =
∑

e=(vi,vj)∈E
|u(vj)− u(vi)| .

Remark 1. Proposition 1 shows that J is independent of the orientation of edges,
even though the divergence is not. All subsequent results remain true regardless of
edge orientation, and also apply to simple undirected graphs once each edge has been
oriented arbitrarily.

2.2 Properties of the subdifferential

Definition 1. For every u ∈ RV the subdifferential ∂J(u) is defined as the set of
all elements u∗ ∈ RV such that

〈g − u, u∗〉RV + J(u) ≤ J(g) for all g ∈ RV . (11)

Since ∂J(u) is a closed, convex and non-empty subset of RV , we can highlight
one particular subgradient.

Definition 2. The element of minimal `2-norm in ∂J(u) will be referred to as the
minimal section of ∂J(u). It is denoted by ∂◦J(u), that is,

∂◦J(u) = arg min
u∗∈∂J(u)

‖u∗‖2.

Given a set Γ ⊂ RE , we denote by div Γ the image of Γ under the action of the
operator div, that is,

div Γ = {u ∈ RV : u = divH,H ∈ Γ}.

It turns out that the divergence of the following subset of B1

B1,u =



H ∈ RE : H((vi, vj)) ∈




{1}, u(vi) < u(vj),
[−1, 1] , u(vi) = u(vj),
{−1}, u(vi) > u(vj)



 , (12)

for a given u ∈ RV , is equal to ∂J(u).

Lemma 2.

1. ∂J(0) = divB1.

2. ∂J(u) = {u∗ ∈ ∂J(0) : 〈u, u∗〉RV = J(u)} for all u ∈ RV .

3. ∂J(u) = divB1,u for all u ∈ RV .

Proof. The functional J is the support function of the closed and convex set divB1 ⊂
RV and therefore ∂J(0) = divB1.

Turn next to item 2. Take u∗ ∈ ∂J(u), i.e. u∗ satisfies (11). Inserting g = 0 and
g = 2u in (11) give together that 〈u, u∗〉RV = J(u). This reduces (11) to

〈g, u∗〉RV ≤ J(g) for all g ∈ RV ,

i.e. u∗ ∈ ∂J(0) (take u = 0 in the definition (11) of the subdifferential ∂J(u)).
Hence, ∂J(u) ⊂ {u∗ ∈ ∂J(0) : 〈u, u∗〉RV = J(u)}. For the reverse direction, take
h ∈ {u∗ ∈ ∂J(0) : 〈u, u∗〉RV = J(u)}. We have

〈g − u, h〉RV + J(u) = 〈g, h〉RV ≤ J(g) for all g ∈ RV .

5



So, h ∈ ∂J(u) and we conclude that

∂J(u) = {u∗ ∈ ∂J(0) : 〈u, u∗〉RV = J(u)} = {u∗ ∈ divB1 : 〈u, u∗〉RV = J(u)}.

Regarding item 3, recall that J(u) = 〈u,divH〉RV for H ∈ B1 if and only if
H satisfies (10), i.e. H ∈ B1,u. In view of item 2, it then is clear that ∂J(u) =
divB1,u.

Remark 2. 1. Since, according to item 3 in Lemma 2, the set B1,u only depends
on sgn(u(vi)− u(vj)) for every edge (vi, vj) ∈ E, we have

∂J(u) = ∂J(w),

if and only if

sgn(u(vi)− u(vj)) = sgn(w(vi)− w(vj))

for each (vi, vj) ∈ E.

2. It now follows immediately that, if the subdifferentials of J at u and w coin-
cide, then they also coincide for every convex combination of u and w. That
is, ∂J(u) = ∂J(w) implies ∂J(λu+ (1− λ)w) = ∂J(u) for every λ ∈ (0, 1).

3. Lemma 2 also implies that the number of different subdifferentials of J is
finite. In particular,

∣∣{∂J(u) : u ∈ RV
}∣∣ ≤ 3 |E| .

This must not be confused with the fact that for any given u ∈ RV the subdif-
ferential ∂J(u) might have infinitely many elements.

We end this subsection by recalling the notion of invariant ϕ-minimal sets and
show that the subdifferential ∂J(u) is an example of such set.

Definition 3. A set Ω ⊂ Rn is called invariant ϕ-minimal if for every a ∈ Rn
there exists an element xa ∈ Ω such that

n∑

i=1

ϕ(xa,i − ai) ≤
n∑

i=1

ϕ(xi − ai) (13)

holds for all x ∈ Ω and all convex functions ϕ : R→ R.

In an invariant ϕ-minimal set Ω there exist for every a ∈ Rn an element xa ∈ Ω
which is the element of best approximation with respect to all generalized distances
dϕ : Rn × Rn → R given by

dϕ(x, y) =
n∑

i=1

ϕ(xi − yi).

One interesting property of invariant ϕ-minimal sets is the following. By con-
sidering the particular convex function ϕ(x) = |x|p, 1 ≤ p <∞, in (13) we obtain

n∑

i=1

|xa,i − ai|p ≤
n∑

i=1

|xi − ai|p

for all x ∈ Ω. Taking the p-th root and including the case p =∞, which follows by
limiting arguments, shows that the element xa satisfies

‖xa − a‖p ≤ ‖x− a‖p (14)
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for all x ∈ Ω and 1 ≤ p ≤ ∞. That is, xa is an element of best approximation of
a in Ω with respect to all `p-norms, 1 ≤ p ≤ ∞. The inequality (14) will be used
later on when analysing invariance properties of the ROF-minimizer for isotropic
TV in Subsection 3.2.

In order to show that the subdifferential ∂J(u) is invariant ϕ-minimal we recall
the following result in [14]:

Theorem 3. A bounded, closed and convex set Ω ⊂ Rn is invariant ϕ-minimal if
and only if Ω is a convex polytope where the affine hull of any face of Ω is a shifted
subspace of Rn spanned by vectors of the type ei − ej, i 6= j, where {ei}ni=1 denotes
the standard basis of Rn.

We are now ready to show:

Theorem 4. The subdifferential ∂J(u) is an invariant ϕ-minimal set.

Proof. Consider first ∂J(0). In [15, Thm. 2.4, Rem. 2.5], it was shown that the
bounded, closed and convex set divBα ⊂ Rn is invariant ϕ-minimal for all α ≥ 0.
So ∂J(0) = divB1 is an invariant ϕ-minimal set. Further, ∂J(0) is a convex polytope
with the structure of its faces specified by Theorem 3.

Take now a general u ∈ RV . We have ∂J(u) = S ∩ ∂J(0) where S = {u∗ ∈
Rn : 〈u∗, u〉RV = J(u)}, recall Lemma 2. Consider the halfspace Ŝ = {u∗ ∈ Rn :

〈u∗, u〉RV ≤ J(u)} bounded by S. Note that (i) ∂J(0) ⊂ Ŝ and (ii) S ∩ ∂J(0) =
∂J(u) 6= ∅ (the supremum of J(u) is attained). So, S is a supporting hyperplane of
∂J(0) and since ∂J(0) is a convex polytope it follows that ∂J(u) = S ∩ ∂J(0) is a
face of ∂J(0) and itself a convex polytope. Recall further that if F2 is a face of F1

which is a face of a convex polytope P , then F2 is a face of P , see e.g. [10, Chap.
3.1, Thm. 5]. Hence, every face of ∂J(u) has the structure specified by Theorem 3
and is therefore an invariant ϕ-minimal set.

Remark 3. As ∂J(u) is an invariant ϕ-minimal set, it follows that the minimal
section ∂◦J(u) not only has minimal `2-norm in ∂J(u), but satisfies

∑

v∈V
ϕ(∂◦J(u)(v)) = min

u∗∈∂J(u)

∑

v∈V
ϕ(u∗(v))

for every convex function ϕ : R→ R.

3 The ROF model on the graph

With the graph setting introduced, we now turn to an analogue of the Rudin-Osher-
Fatemi image denoising model on RV . Given f ∈ RV and α ≥ 0 we consider the
following minimization problem:

min
u∈RV

(
1

2
‖f − u‖22 + αJ(u)

)
. (15)

Throughout this article the unique solution to (15) will be denoted by uα.

3.1 Dual formulation and an invariance property of the ROF-
minimizer

Proposition 5. For every f ∈ RV and α ≥ 0 problem (15) is equivalent to

min
u∈f+divBα

‖u‖2. (16)
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Proof. The corresponding dual problem of (15) can be expressed as

min
w∈RV

(
1

2
‖f − w‖22 + (αJ)∗(w)

)
, (17)

where (αJ)∗ denotes the convex conjugate of αJ . For general results underlying the
derivation of (17) and the optimality conditions (18) and (19) below, see [9, Chap.
III, Prop. 4.1, Rem. 4.2]. Let uα and wα denote solutions to the primal problem
(15) and the dual problem (17) respectively. The optimality conditions are

wα ∈ ∂(αJ)(uα) = α∂J(uα) (18)

and

uα = f − wα. (19)

As

αJ(u) = α sup
H∈B1

〈u,divH〉RV = sup
h∈divBα

〈u, h〉RV

the conjugate function (αJ)∗ can be derived as

(αJ)∗(g) =

{
0, g ∈ divBα,
+∞, g /∈ divBα.

Taking into account the characterization of (αJ)∗ in the dual formulation (17) gives
that

wα = arg min
w∈divBα

‖f − w‖L2 .

That is, wα is the orthogonal projection of f on the closed and convex set divBα.
For the solution uα of the ROF minimization problem (15), we obtain due to

symmetry of divBα:

‖uα‖2 = ‖f − wα‖2 = min
w∈divBα

‖f − w‖2 = min
w∈divBα

‖f + w‖2 = min
u∈f+divBα

‖u‖2 .

Remark 4. Proposition 5 implies that the ROF-minimizer uα can be written as

uα = f + divFα, Fα ∈ Bα. (20)

The representation (20) will be used from time to time in the sequel.

Theorem 6. The ROF-minimizer uα satisfies

∑

v∈V
ϕ(uα(v)) = min

u∈f+divBα

∑

v∈V
ϕ(u(v)) (21)

for every convex function ϕ : R→ R.

Proof. In [15, Thm. 2.4, Rem. 2.5] it was shown that divBα is invariant ϕ-minimal,
recall Definition 3. From the above derivation of the dual formulation, we know
that uα is the `2-minimizer in the set f + divBα. Taken together, this gives that

∑

v∈V
ϕ(uα(v)) = min

u∈f+divBα

∑

v∈V
ϕ(u(v))

holds for every convex function ϕ : R→ R.
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3.2 Isotropic total variation on a Cartesian graph

In this subsection we specialize to graphs on a Cartesian grid representing a two-
dimensional discrete image of N × N uniformly sized pixels with pixel intensity
u = (u(vij))

N
i,j=1. The vertices represent the pixels and the edges connect adjacent

pixels, an example with N = 3 is given in Figure 1. In this setting, we will provide
some insight regarding the validity of Theorem 6 with respect to the specific form
of the total variation.

v13 v23 v33

v12 v22 v32

v21 v31v11

v12 v22 v32

v23

v21

v13

v11 v31

v33

Figure 1: A digital image with uniformly sized pixels and its representation on a
graph

For graphs on a Cartesian grid, the total variation (7) corresponds to discrete
total variation with `1 anisotropy:

J(u) =

N−1∑

i=1

N∑

j=1

∣∣u(v(i+1)j)− u(vij)
∣∣+

N∑

i=1

N−1∑

j=1

∣∣u(vi(j+1))− u(vij)
∣∣ .

Define now the ball Bα instead of (5) by

Bα =

{
F ∈ RE : ‖F‖ = max

1≤i,j≤N
CFij ≤ α

}
, (22)

where

CFij =
√
F ((v(i+1)j , vij))2 + F ((vi(j+1), vij))2, i, j = 1, ..., N − 1.

For the right and upper boundaries we have

CFiN = |F ((v(i+1)N , viN ))|, i = 1, ..., N − 1,

CFNj = |F ((vN(j+1), vNj))|, j = 1, ....N − 1,

CFNN = 0.

9



The support function of divB1, with B1 given by (22), can be shown to be equal to

J(u) =

N−1∑

i,j=1

√∣∣u(v(i+1)j)− u(vij)
∣∣2 +

∣∣u(vi(j+1))− u(vij)
∣∣2+

N−1∑

i=1

∣∣u(v(i+1)N )− u(viN )
∣∣+

N−1∑

j=1

∣∣u(vN(j+1))− u(vNj)
∣∣ .

(23)

This is the total variation used in e.g. [5] and can be viewed as one possible dis-
cretization of the isotropic total variation in the continuous setting. Note that it
is not obvious how to find an analogue of (23) and other isotropic total variation
measures on general graphs without a specific structure such as the Cartesian grid.

An example is now provided which shows that Theorem 6 does not hold when
considering the isotropic total variation (23).

Example 1. Consider a 2×2 Cartesian graph, analogous to the one shown in Figure

1, together with an image f with intensities f(v11) = 25, f(v21) = 25 − 3
√
2

2 + 1,
f(v12) = 0 and f(v22) = 10. Recall that the inequality (14) for a = 0 must hold
for uα if (21) holds. Let α = 1 and look for the `∞-minimizer g in f + divB1 with
minimal `2-norm. Taking into account the structure of B1, recall (22), it can be
shown that g = f + divG where G ∈ B1 is given by

G((v21, v11)) = G((v12, v11)) =
−1√

2
,

G((v22, v21)) = −G((v22, v12)) = −1,

and therefore

g(v11) = g(v21) = 25−
√

2, g(v12) = 1 + 1/
√

2, g(v22) = 10.

Consider next the edge function H ∈ B1 with

H((v21, v11)) = 0, H((v12, v11)) = H((v22, v21)) = −H((v22, v12)) = −1,

and let h = f + divH. We then have

h(v11) = 24, h(v21) = 25− 3
√

2/2, h(v12) = 2, h(v22) = 10.

Clearly, ‖h‖∞ > ‖g‖∞ and some further calculations show that ‖h‖2 < ‖g‖2. As
the ROF-minimizer u1 is the `2-minimizer in f + divB1, it is clear that u1 6= g.
Therefore, u1 does not satisfy (14) for a = 0 and therefore does not satisfy the
invariance property (21).

Remark 5. In the continuous setting it is known that an analogue of Theorem 6
holds for isotropic total variation, see [22, Thm. 4.46]. This can also be shown to
be the case for total variation with `1 anisotropy in view of [15, Thm. 5.3, Rem.
5.4].

3.3 Further properties of the ROF-minimizer

In this subsection we study further properties of the ROF-minimizer uα. We first
give an auxiliary result.

Lemma 7. Let 0 ≤ α1 < α2. If ∂J(uα1) = ∂J(uα2), then for every α ∈ (α1, α2)
the ROF-minimizer uα, is a convex combination of uα1

and uα2
. That is,

uα =
α2 − α
α2 − α1

uα1
+

α− α1

α2 − α1
uα2

, α1 < α < α2. (24)
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Proof. Denote the convex combination in (24) by c(α). It suffices to verify that
c(α) satisfies the optimality conditions (18) and (19), that is, f −c(α) ∈ α∂J(c(α)).
First, note that by item 2 in Remark 2 we have ∂J(c(α)) = ∂J(uα1

). Next, let
wαi = f − uαi , i = 1, 2. We now compute

f − c(α)

α
=

1

α

[
α2 − α
α2 − α1

wα1 +
α− α1

α2 − α1
wα2

]

=
α1

α

α2 − α
α2 − α1

wα1

α1
+
α2

α

α− α1

α2 − α1

wα2

α2
.

It is straightforward to check that the last expression is a convex combination of
wα1

/α1 and wα2
/α2. By optimality of uαi and the assumption that ∂J(uα1

) =
∂J(uα2), both wαi/αi lie in the same convex set ∂J(uα1). Therefore (f − c(α))/α
is in this set, too. We conclude that c(α) must be the ROF-minimizer uα.

Using the above result we can show the following properties of the ROF-minimizer.

Proposition 8. 1. Problem (15) is mean-preserving, that is

∑

v∈V
uα(v) =

∑

v∈V
f(v) for all α ≥ 0.

2. The function

α 7→ ‖uα‖2
is nonincreasing on [0,∞).

3. The solution uα is a continuous piecewise affine function with respect to α.
Its piecewise constant derivative ∂αuα exists everywhere except for a finite
number of values of 0 < α1 < ... < αN <∞. In particular,

uα(v) =
1

|V |
∑

w∈V
f(w), for all α ≥ αN and v ∈ V.

Proof. 1. As uα = f+divFα, Fα ∈ Bα, it is clear that
∑
v∈V uα(v) =

∑
v∈V f(v)

for all α ≥ 0.

2. From the dual formulation of the ROF model, we know that uα is the `2-
minimizer in the set f + divBα. Since f + divBα1 ⊂ f + divBα2 , α1 ≤ α2, it
then follows that α 7→ ‖uα‖2 is nonincreasing.

3. The continuity of uα can be shown with arguments similar to [1, Thm. 3.2,
Ex. 3.4]. The piecewise affine structure of uα has been shown in [3, Thm. 4.6].
However, since our proof relies on different arguments, we choose to include
it.

From Lemma 7 as well as Remark 2, items 2 and 3, we can derive two impor-
tant facts. These two facts, combined with continuity of the map α 7→ uα,
show that it must be piecewise affine on [0,∞). First, the subdifferential
∂J(uα) can only change a finite number of times. Second, in intervals where
it does not change, the minimizer uα is an affine function of α.

Finally, consider uα for α ≥ αN , where αN is the last time ∂J(uα) changes.
Let f̄ denote the averaged initial image f , i.e.

f̄(v) =
1

|V |
∑

w∈V
f(w), for all v ∈ V. (25)

11



For α ≥ C, where C > 0 is chosen large enough, it follows that f̄ ∈ f+divBα.
Clearly, f̄ is the `2-minimizer in f+divBα. Combined with the piecewise affine
structure of uα, we conclude that uα = f̄ for α ≥ αN .

In general there might be many edge functions Fα ∈ Bα such that uα = f +
divFα, but a partial characterization can be provided. The following lemma will
also be useful for the explicit computation of uα in Sec. 5.2.

Lemma 9. Suppose e = (vi, vj) ∈ E. If uα(vi) 6= uα(vj), then

Fα((vi, vj)) = α sgn(uα(vi)− uα(vj)), (26)

∂αFα((vi, vj)) = sgn(uα(vi)− uα(vj)). (27)

Proof. The optimality condition (18) together with the equality ∂J(u) = divB1,u
(recall Lemma 2, item 3) gives

Fα((vi, vj)) =

{
−α, uα(vi) < uα(vj),
α, uα(vi) > uα(vj).

(28)

As the ROF-minimizer uα depends continuously on α it follows that if uα(vi) <
uα(vj) then uα+t(vi) < uα+t(vj), t ∈ (−ε, ε), for ε > 0 small enough. Analogously,
if uα(vi) > uα(vj) then uα+t(vi) < uα+t(vj), t ∈ (−ε, ε), for ε > 0 small enough. In
view of (28) we then have

∂αFα((vi, vj)) =

{
−1, uα(vi) < uα(vj),

1, uα(vi) > uα(vj).

4 The TV flow on the graph

In this section we consider the gradient flow associated to J . That is, given an
initial datum f : V → R we want to find a function u : [0,∞)→ RV that solves the
Cauchy problem

u′(t) ∈ −∂J(u(t)) for a.e. t > 0,

u(0) = f.
(29)

The statements in the next theorem follow from general results on nonlinear evolu-
tion equations and semigroup theory. See [2, Chap. 4] for a detailed treatment and
[21, Sec. 2.1] for a brief introduction to the finite-dimensional setting.

Theorem 10. Solutions to problem (29) have the following properties.

1. For every f ∈ RV there is a unique solution and this solution depends con-
tinuously on f . In particular, if u1 and u2 are two solutions corresponding to
initial conditions f1 and f2, respectively, then

‖u1(t)− u2(t)‖2 ≤ ‖u1(s)− u2(s)‖2 for all t ≥ s ≥ 0.

2. The solution u lies in C([0,∞),RV ) ∩W 1,∞([0,∞),RV ) and satisfies

‖u′(t)‖2 ≤ ‖∂◦J(f)‖2 for a.e. t ≥ 0.

3. The solution is right differentiable everywhere. Its right derivative is right
continuous and satisfies

d+

dt
u(t) = −∂◦J(u(t)) for all t ≥ 0.

12



4. Define St(f) = u(t). Then, for every f ∈ RV , we have

St(Ss(f)) = St+s(f) for all t, s ≥ 0.

5. The function u(t) ∈ RV converges to a minimizer of J as t→∞.

In fact, Theorem 10 holds true for any convex real-valued functional which
admits a minimizer on RV . The solution to the TV flow in addition has the following
properties.

Proposition 11. 1. Problem (29) is mean-preserving, that is,

∑

v∈V
u(t)(v) =

∑

v∈V
f(v) for all t ≥ 0.

2. The functions

t 7→ ‖u(t)‖2 and t 7→
∥∥∥d

+

dt
u(t)

∥∥∥
2

are nonincreasing on [0,∞).

3. The solution u is piecewise affine with respect to t. More specifically, the
derivative u′(t) does not exist for only a finite number of times 0 < t1 <
· · · < tM and it is constant in between. It follows that a stationary solution is
reached in finite time:

u(t)(v) =
1

|V |
∑

w∈V
f(w) for all t ≥ tM and v ∈ V.

Proof. 1. Since the subdifferential of J consists entirely of divergences of edge
functions, for a.e. t ≥ 0 there is a H(t) ∈ RE such that

u′(t) = −divH(t). (30)

Summing this equation over all v ∈ V and using the fact that
∑
v∈V divH(v)

vanishes for every H ∈ RE gives

d

dt

∑

v∈V
u(t)(v) = 0 for a.e. t ≥ 0

and the assertion follows.

2. Take the inner product of equation (30) with u(t) and notice that, from the
characterization of the subdifferential in Lemma 2, it follows that

〈u(t),divH(t)〉RV = J(u(t)).

Therefore

−J(u(t)) = −〈u(t),divH(t)〉RV = 〈u(t), u′(t)〉RV =
1

2

d

dt
‖u(t)‖22

for a.e. t > 0, which shows that t 7→ ‖u(t)‖2 is nonincreasing. That t 7→
‖d+u(t)/dt‖2 is nonincreasing as well, follows from items 2 and 4 in Theorem
10.

13



3. As for the ROF-minimizer the piecewise affine behaviour has been shown in
[3, Thm. 4.6]. Our proof uses different arguments. According to item 3 in
Remark 2 the number of different values the right derivative of u can take is
finite. Since d+u/dt is also right continuous, there must be an ε > 0 for every
t0 ≥ 0 such that

d+

dt
u(t) = −∂◦J((u(t0)) for all t ∈ [t0, t0 + ε)

with d+u/dt = u′ on (t0, t0 + ε). This proves that t 7→ u(t) is piecewise affine
on [0,∞).

That d+u/dt only changes a finite number of times follows from the fact that,
if it changes, then its norm becomes strictly smaller. To see this let t̂ > 0 and
assume that d+u(t)/dt ≡ c is constant on (t̂ − ε, t̂) for some ε > 0 and that
d+u(t̂)/dt 6= c. We now have

J(u(t̂)) = lim
t→t̂−

J(u(t)) = lim
t→t̂−
〈u(t),−c〉 = 〈u(t̂),−c〉,

and therefore −c ∈ ∂J(u(t̂)). However, since −c = ∂◦J(u(t)) for t ∈ (t̂ −
ε, t̂) and the minimal section is the unique element of minimal norm in the
subdifferential, we must have ‖d+u(t)/dt‖2 > ‖d+u(t̂)/dt‖2.

Thus t 7→ u(t) is a continuous piecewise affine function with a finite number
of slope changes. Since, by item 5 in Theorem 10, u(t) is convergent, it must
reach its limit in finite time. Due to mean preservation, this limit has to be
the averaged initial datum.

Remark 6. The solution to the TV flow can be represented in a way similar to the
ROF-minimizer

u(t) = f + div(F (t)), (31)

where F (t) = −
∫ t
0
H(s)ds ∈ Bt and H(s) ∈ B1,u(s). Compare Remark 4. In

this case it follows directly from integration of (29) and the characterization of the
subdifferential in item 3 of Lemma 2. In addition F satisfies

F ′(t)((vi, vj)) = sgn(u(t)(vi)− u(t)(vj)), (32)

whenever u(t)(vi) 6= u(t)(vj) holds, which is the same as (27) in Lemma 9 for the
ROF-minimizer. However, property (26) does not hold in general for the TV flow.
Equations (31) and (32) will be used in Section 5.2 for computing u(t) for a specific
datum f .

5 Comparison of TV regularization and TV flow

In this section, various conditions for the equivalence of TV regularization and TV
flow on general graphs are provided and analysed. Then a study is done on a
particular graph where the solutions of the TV regularization and the TV flow are
explicitly computed and compared.

5.1 Equivalence of TV regularization and TV flow

We first provide a result concerning the norms of the solutions of the TV regular-
ization and the TV flow. Recall that f̄ denotes the averaged initial datum f , see
(25).
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Proposition 12. For every α > 0 let uα and u(α) be the ROF and TV flow
solutions, respectively, both corresponding to the same datum f ∈ RV . They satisfy

‖f̄‖2 ≤ ‖uα‖2 ≤ ‖u(α)‖2 ≤ ‖f‖2, for all α > 0.

It follows that in general uα reaches f̄ before u(t), that is, αN ≤ tM , see Propositions
8 and 11.

Proof. Both ‖uα‖2 and ‖u(α)‖2 are nonincreasing functions of α, recall property 2
in Propositions 8 and 11, and therefore bounded from above by ‖f‖2. On the other
hand, due to mean preservation, recall property 1 in Propositions 8 and 11, they
are bounded from below by ‖f̄‖2. It remains to show that ‖uα‖2 ≤ ‖u(α)‖2. To
see this, observe that both uα and u(α) lie in f + divBα with uα being the element
of minimal norm in this set according to (16).

The next proposition, which is an adaptation of [16, Thm. 10] to the graph
setting, gives a sufficient condition for equality of ROF and TV flow solutions.

Proposition 13. Let f ∈ RV and let u be the corresponding solution to the TV
flow (29). If there is an α > 0 such that

−〈u′(t), u(α)〉RV = J(u(α)) for a.e. t ∈ (0, α), (33)

then u(α) = uα.

Proof. The proof is analogous to the one of [16, Thm. 10]. We therefore omit it.

Corollary 14. The ROF and TV flow solutions always coincide in the interval
[0, t1], where t1 > 0 is, as discussed in Proposition 11, the first time the derivative
of the latter changes.

Proof. Recall that the flow solution satisfies

−u′(t) = ∂◦J(f) ∈ ∂J(u(t)), t ∈ [0, t1).

This implies by Lemma 2 that

〈∂◦J(f), u(t)〉 = J(u(t)), t ∈ [0, t1),

and since u is continuous in t

〈∂◦J(f), u(t1)〉 = J(u(t1)).

Therefore condition (33) is satisfied for every α ∈ [0, t1].

Remark 7. Combining Corollary 14 with Theorem 6 shows that the TV flow solu-
tion minimizes ∑

v∈V
ϕ(u(t)(v))

over f+divBt for every convex ϕ and at least for every t ∈ [0, t1]. Thus, the situation
encountered for one-dimensional signals, namely equivalence of TV flow and TV
regularization together with ϕ-minimality of the solution (recall the first paragraph
of Section 1), can be recovered in the more general setting of finite oriented graphs
at least on the intervals [0, t1] ∪ [tM ,∞).
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...v1 v2 vn

Figure 2: Graph corresponding to a one-dimensional space-discrete signal with n
pixels.

Remark 8. Condition (33) holds true, given any α > 0, for graphs of the type
displayed in Figure 2 corresponding to one-dimensional space-discrete signals. This
follows directly from the inclusion

∂J(u(α1)) ⊂ ∂J(u(α2)), α1 ≤ α2, (34)

which applies in this setting. The derivation of (34) can be done with the following
arguments. Consider a pair of adjacent pixels vi and vi+1. In [23, Prop. 4.1], it
is shown that if u(α)(vi) = u(α)(vi+1) then u(β)(vi) = u(β)(vi+1) for any β ≥ α.
This fact together with the continuity of u(α) implies that B1,u(α1) ⊂ B1,u(α2) (recall
(12) for the definition of B1,u). Taking into account the characterization of the
subdifferential given by item 3 in Lemma 2, (34) then follows.

Two necessary and sufficient conditions, in a general graph setting, concerning
the equivalence of TV flow and TV regularization will now be provided. The first
one is formulated in terms of the TV flow u(α) for a given α > 0.

Proposition 15. Given α > 0,

u(α) = uα

if and only if

− 1

α

∫ α

0

u′(t)dt ∈ ∂J(u(α)). (35)

Proof. We can express u(α) = f +
∫ α
0
u′(t)dt. Recalling the optimality conditions

(18) and (19) for the ROF-minimizer uα, it follows that u(α) = uα if and only if
− 1
α

∫ α
0
u′(t)dt ∈ ∂J(u(α)).

Remark 9. The above proposition gives that u(α) = uα if and only if the average
time derivative 1

α

∫ α
0
u′(t)dt is in −∂J(u(α)). Compare with the pointwise inclusion

u′(t) ∈ −∂J(u(t)) which holds for a.e. t > 0. Note further that condition (35) is
strictly weaker than (33).

For the entire interval α ≥ 0, we have the following necessary and sufficient
condition for equivalence. It is formulated in terms of the ROF solution operator
defined by Tα(f) = uα.

Proposition 16. The identity

uα = u(α)

holds for all α ≥ 0, if and only if

Tt(Ts(f)) = Tt+s(f) (36)

for all t, s ≥ 0.

Proof. Let uα = u(α) for all α ≥ 0. It then follows from property 4 in Theorem 10
that Tt(Ts(f)) = Tt+s(f) for all t, s ≥ 0.

Start now with the assumption Tt(Ts(f)) = Tt+s(f) for all t, s ≥ 0. As the TV
flow has an analogous property and the solutions to TV regularization and TV flow
always coincide for the interval [0, t1], recall Corollary 14, it is then immediate that
they coincide for all α ≥ 0.
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Figure 3: Graph structure (left) and pixel intensities (right) of the initial datum f .

5.2 TV denoising on a particular graph

In this subsection TV regularization and TV flow are studied for the particular
graph G = (V,E) and datum f given by Figure 3 on the interval 0 ≤ α, t ≤ 4.

5.2.1 TV regularization

For the ROF-minimizer uα = f + divFα, where Fα ∈ Bα, we have for any v ∈ V ,

f(v)− deg(v)α ≤ uα(v) ≤ f(v) + deg(v)α, (37)

where deg(v) denotes the degree of v, that is, the number of edges incident to v.
Using (37) it is straightforward to show that

sgn(uα(vij)− uα(vkl)) = sgn(f(vij)− f(vkl)) ∈ {±1} (38)

for every edge except (v32, v22) and 0 ≤ α ≤ 4. From Lemma 9, it then follows that

Fα((vij , vkl)) = α sgn(f(vij)− f(vkl)),

for all (vij , vkl) ∈ E\ {(v32, v22)} and 0 ≤ α ≤ 4.
Consider now the special edge (v32, v22) on 0 ≤ α ≤ 4. Using the knowledge of

Fα on the other edges, uα(v22) and uα(v32) are given by

uα(v22) = f(v22) + Fα((v32, v22)) + Fα((v23, v22))− Fα((v22, v12))− Fα((v22, v21))

= 18 + Fα((v32, v22)) + 3α,

and

uα(v32) = f(v32)− Fα((v32, v22)) + Fα((v33, v32))− Fα((v32, v31))

= 20− Fα((v32, v22)),

on 0 ≤ α ≤ 4. Recall further that uα is the `2-minimizer in the set f + divBα,
cf. Proposition 5, and that Fα((v32, v22)) only appears in the terms uα(v22) and
uα(v32). Minimizing (uα(v22))2+(uα(v32))2 subject to the constraint Fα((v32, v22)) ∈
[−α, α] then gives

Fα((v32, v22)) =





α, 0 ≤ α ≤ 2/5,
(2− 3α)/2, 2/5 ≤ α ≤ 2,

−α, 2 ≤ α ≤ 4.

The function Fα is now determined on all edges and uα can then be computed on
all vertices. The results can be seen in Figure 4.
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0 ≤ α ≤ 2/5:

−α α

−α −α

−α α

−α

α

−α

α

−α

−α

100 + α 18 + 4α 20− α

100− α
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200− 2α 200− 2α

2α

2/5 ≤ α ≤ 2:

−α
2−3α

2

−α −α

−α α

−α

α

−α

α

−α

−α

100 + α 19 + 3α
2

19 + 3α
2

100− α

100 + α

200− 2α

200− 2α 200− 2α

2α

2 ≤ α ≤ 4:

−α −α

−α −α
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−α

α
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100− α
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200− 2α

200− 2α 200− 2α

2α

Figure 4: The evolution of the ROF-minimizer uα (defined on the vertices) and the
function Fα (defined on the edges) on the interval 0 ≤ α ≤ 4.

5.2.2 TV flow

For the TV flow u(t) = f + div(F (t)), where F (t) ∈ Bt according to Remark 6, we
have an analogous inequality to (37),

f(v)− deg(v)t ≤ u(t)(v) ≤ f(v) + deg(v)t (39)

for all v ∈ V . Using (39), we obtain

sgn(u(t)(vij)− u(t)(vkl)) = sgn(f(vij)− f(vkl)) ∈ {±1} (40)

for any edge (vij , vkl) ∈ E\ {(v32, v22)} and 0 ≤ t ≤ 4. Recall Remark 6 and
conclude from (40) that

F ′(t)((vij , vkl)) = sgn(f(vij)− f(vkl))

for all (vij , vkl) ∈ E\ {(v32, v22)} and 0 < t < 4. Hence,

F (t)((vij , vkl)) = t sgn(f(vij)− f(vkl)),

for all (vij , vkl) ∈ E\ {(v32, v22)} and 0 ≤ t ≤ 4.
Turn next to the computation of F (t)((v32, v22)) on 0 ≤ t ≤ 4. Knowledge of

F (t) on the other edges gives

u(t)(v22) = 18 + 3t+ F (t)((v32, v22)), (41)

and

u(t)(v32) = 20− F (t)((v32, v22)), (42)

on 0 ≤ t ≤ 4. From (41) and (42), together with F (t) ∈ Bt, follow the inequalities

u(t)(v22) ≤ 18 + 4t < 20− t ≤ u(t)(v32), 0 ≤ t < 2/5.

Recalling Remark 6, we then obtain

F ′(t)((v32, v22)) = sgn(u(t)(v32)− u(t)(v22)) = 1, 0 < t < 2/5,

and therefore

F (t)((v32, v22)) = t, 0 ≤ t ≤ 2/5.
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0 ≤ t ≤ 2/5:
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−t
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100 + t

200− 2t
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Figure 5: The evolution of the TV flow u(t) (defined on the vertices) and the
function F (t) (defined on the edges) on the interval 0 ≤ t ≤ 4.

Turn now to the interval 2/5 ≤ t ≤ 4. Note that F can be written as F (t) =

−
∫ t
0
H(s)ds, where H(s) ∈ B1,u(s), recall Remark 6. We can now estimate

F (t)((v32, v22)) = F (2/5)((v32, v22))−
∫ t

2/5

H(s)((v32, v22))ds

≥ 2/5− (t− 2/5)

= 4/5− t

for t ≥ 2/5. This inequality together with (41) and (42) give

u(t)(v32) ≤ 96/5 + t < 94/5 + 2t ≤ u(t)(v22), 2/5 < t ≤ 4.

We conclude, recalling Remark 6 again, that

F ′(t)((v32, v22)) = sgn(u(t)(v32)− u(t)(v22)) = −1, 2/5 < t < 4.

From the continuity of F then follows

F (t)((v32, v22)) = 4/5− t, 2/5 ≤ t ≤ 4.

The function F (t) is now determined on all edges which enables the computation
of u(t) on all vertices. The results can be seen in Figure 5.

5.2.3 Comments

We now comment on the findings which are summarized in Figures 4 and 5. First,
note that u(α) = uα for 0 ≤ α ≤ 2/5 but u(α) 6= uα for 2/5 < α ≤ 4. So in higher-
dimensional graph settings TV regularization and TV flow are not equivalent. In
particular, as the provided example is a graph on a two-dimensional Cartesian grid,
this implies that discrete TV regularization and discrete TV flow with `1 anisotropy
are distinct image filters.

The necessary and sufficient condition for equivalence of TV regularization and
TV flow in Proposition 16 gives that the TV regularization in general does not
possess the semigroup property (36). This is in contrast to the situation for the TV
flow, recall property 4 in Theorem 10.

Studying Figure 4, note that ‖∂αuα1
‖2 < ‖∂αuα2

‖2 for α1 ∈ (2/5, 2) and α2 ∈
(2, 4). Hence, ‖∂αuα‖2 is in general not decreasing with respect to the parameter
α. This is again in contrast to the situation for the TV flow, recall property 2 in
Proposition 11.
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Figure 6: Graph structure (left) and pixel intensities (right) of the initial datum f̃ .

For the TV regularization, note that

sgn(uα(v32)− uα(v22)) =





1, 0 ≤ α < 2/5,
0, 2/5 ≤ α < 2,
−1, 2 ≤ α ≤ 4.

That is, the jump between uα(v22) and uα(v32) disappears for 2/5 ≤ α ≤ 2 but
appears again, with reversed sign, for 2 < α ≤ 4. For the TV flow, we have

sgn(u(t)(v32)− u(t)(v22)) =





1, 0 ≤ t < 2/5,
0, t = 2/5,
−1, 2/5 < t ≤ 4.

Here the jump between u(t)(v22) and u(t)(v32) disappears at t = 2/5 and then a
jump with reversed sign appears for 2/5 < t ≤ 4. By the jump sets of uα and
u(t), we denote the set of all edges e = (vij , vkl) ∈ E such that sgn(uα(vij) −
uα(vkl)) ∈ {±1} respectively the set of all edges e = (vij , vkl) ∈ E such that
sgn(u(t)(vij)− u(t)(vkl)) ∈ {±1}. The provided example shows that the jump sets,
in higher-dimensional graph settings, can grow with respect to α or t. Given one-
dimensional graphs (as given by Figure 2), however, it can be shown that the jump
sets are nonincreasing, see [23, Prop. 4.1 and 4.2].

Consider the slightly different initial datum f̃ given by Figure 6. Note that
f̃(vij) = f(vij) except for v22 where f̃(v22) = 20. By doing analogous derivations
as in the previous example for 0 ≤ α ≤ 4, results according to Figure 7 are obtained.
A jump is created in the resulting images uα = u(α), 0 < α ≤ 4, between the vertices
v22 and v32 which is not present in the initial datum f̃ . In higher-dimensional graph
settings, the jump set of an image resulting from TV regularization or TV flow can
therefore strictly contain the jump set of the initial datum. Note that this cannot
happen for one-dimensional graphs as the jump sets then are nonincreasing. On
the other hand, in the continuous anisotropic setting this phenomenon is known to
occur, see [4, Rem. 4] and [16, Ex. 1].

6 Conclusion

In this article we have studied and compared TV regularization and TV flow for
functions defined on the vertices of a finite oriented graph. Our motivation was the
discrete one-dimensional setting, where the two problems are known to be equiv-
alent and their solution minimizes a large class of convex functionals in a certain
neighbourhood of the data [17, 23, 14].
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Figure 7: uα = u(α) (defined on the vertices) and Fα = F (α) (defined on the edges)
for 0 ≤ α ≤ 4.

It turns out that in the graph setting this situation can only be recovered for
α, t ∈ [0, t1] ∪ [tM ,∞), the reason being that on the complement (t1, tM ) the ROF
and flow solution are in general different. Here t1 and tM are the first and last
times, respectively, the time derivative of the flow solution changes.

In addition we have shown that for every α ≥ 0 the ROF-minimizer uα simul-
taneously minimizes all functionals of the form

u 7→
∑

v∈V
ϕ(u(v))

over the set f+α∂J(0), where ϕ : R→ R is convex but otherwise arbitrary. In doing
so we have relied on a recent characterization from [14, 15] of invariant ϕ-minimal
sets, of which the subdifferential of J is one example. We have also constructed
a simple example showing that the discrete isotropic total variation does not have
this property.
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