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Abstract
We study the C1-smooth isogeometric spline space over trilinearly parameterized volumet-
ric two-patch domains. Recently, the structure of this space was experimentally analyzed
in [5] by numerically computing a basis and the dimension of this space. In this work, we
develop the theoretical framework to explore the C1-smooth isogeometric space. Amongst
others, we use the framework to prove the numerically obtained dimension from [5] and to
describe a simple explicit basis construction which consists of locally supported functions.

Keywords: Isogeometric analysis, C1-continuity, geometric continuity, volumetric
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1. Introduction
Isogeometric Analysis (IGA) is an efficient instrument for a variety of engineering prob-

lems, as it facilitates discretization spaces of high order smoothness [2, 7, 13]. These dis-
cretization spaces have beneficial aspects especially when solving high order partial differ-
ential equations (PDEs). For example, C1-smooth isogeometric spline spaces, as considered
in this paper, can be used to solve fourth order PDEs such as the biharmonic equation,
e.g. [1, 6, 14, 27], the Kirchhoff-Love shell problem, e.g. [3, 21, 22, 23], the Navier-Stokes-
Korteweg equation [10] or the Cahn-Hilliard equation, e.g. [8, 9, 24].

The construction of C1-smooth isogeometric spline spaces over multi-patch geometries,
which are needed to describe complex physical domains, is a challenging problem, and is
the task of current research, see e.g. [4, 15, 20, 28] and the mentioned references therein.
The strategy followed there (and in this paper) is based on the concept of geometric
continuity [12, 26], which provides a framework for the design of Cs-smooth (s ≥ 0)
isogeometric spline spaces. It uses the fact that an isogeometric function is Cs-smooth on
a multi-patch domain if and only if the associated multi-patch graph surface is Gs-smooth,
cf. [11].
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The goal of this paper is the theoretical investigation of the space of globally C1-smooth
isogeometric spline functions on trilinearly parameterized volumetric two-patch domains
and the construction of a simple, explicitly given and locally supported basis for this space.
So far, the study of C1-smooth isogeometric spline spaces for two-patch and multi-patch
domains is mostly limited to the case of bivariate functions. On the one hand, we will
follow a similar approach as in [14, 19], where C1-smooth spline spaces over bilinearly
parameterized two-patch and multi-patch domains were considered and extend it to the
case of trilinearly parameterized two-patch domains. On the other hand, our work will be
based on the development of similar tools as introduced and used in [6, 15, 16, 17] for the
investigation of bivariate C1-smooth isogeometric spline spaces over the more general class
of so-called analysis-suitable G1 multi-patch parameterizations. This class of geometries
includes the subclass of bilinearly parameterized multi-patch domains and is exactly the
one which allows the design of bivariate C1-smooth isogeometric spline spaces with optimal
approximation properties [6]. Similar to [14, 15, 16, 19], we will generate basis functions
which possess an explicit representation and a small local support.

The trivariate case of smooth spline spaces was considered in [5, 25, 29]. The approach
in [29] explored tricubic splines on unstructured hexahedral meshes. The constructed spline
spaces are C2-smooth inside regular regions, C1-continous across interfaces separating regu-
lar and irregular regions but only C0-smoooth in the vicinity of extraordinary vertices. The
method in [25] used a sweeping approach to generate from bivariate C1-smooth isogeomet-
ric spaces specific trivariate ones. In [5], the entire space of C1-smooth isogeometric spline
functions on trilinearly parameterized two-patch domains was studied. More precisely, the
space was numerically analyzed, which provided results on the dimension of the space ob-
tained by interpolation. Furthermore, a basis construction for spline degree p = 3, 4, for
regularity r = 1 within the single patches and for homogeneous C1-boundary conditions
was presented. The single basis functions were implicitly described by solving a (small)
homogeneous system of linear equations.

In the present work, we theoretically verify the experimentally obtained dimension
results from [5]. For this purpose, we develop a full theoretical framework to analyze
the space of C1-smooth isogeometric spline functions on trilinearly parameterized two-
patch domains. This also allows us to generate basis functions possessing a simple explicit
representation with a small local support. In addition, the construction of this basis works
uniformly for arbitrary degree p ≥ 3, regularity 1 ≤ r ≤ p − 1 within the single patches
and is not restricted to any boundary conditions. Such a basis is an important first step
towards the extension to the case of volumetric multi-patch domains by following a similar
approach as in [14, 15] for bivariate spaces.

The remainder of the paper is organized as follows. Section 2 introduces the considered
class of trilinearly parameterized volumetric two-patch domains and describes the space
of C1-smooth isogeometric spline functions over these domains. In Section 3, we develop
the theoretical framework to investigate the C1-smooth isogeometric spline space. This
includes amongst others the decomposition of the C1-smooth space into the direct sum
of two simpler subspaces as well as the introduction of tools such as the trace and the
transversal derivative of a C1-smooth isogeometric function. In Section 4, the dimension
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Figure 1: The two-patch domain Ω with the two trilinearly parameterized subdomains Ω(L),Ω(R),
which are joined at the common interface Γ and their defining vertices.

of the space of C1-smooth isogeometric spline functions is computed. In addition, a basis
of the space is constructed, which consists of only locally supported functions possessing a
simple explicit representation. Finally, we conclude the paper in Section 5.

2. The space VF of C1-smooth isogeometric functions
We describe the concept of C1-smooth isogeometric functions on trilinearly parameter-

ized volumetric two-patch domains.

2.1. The trilinear two-patch geometry mapping F

Let Π(q1,q2) and Π(q1,q2,q3) be the space of bivariate and trivariate polynomials on [0, 1]2
and [0, 1]3 of bidegree (q1, q2) ∈ Z2

≥0 and tridegree (q1, q2, q3) ∈ Z3
≥0, respectively. We con-

sider a two-patch domain Ω = Ω(L)∪Ω(R), which consists of two nondegenerate hexahedral
volumetric subdomains Ω(L) and Ω(R) that share a common face Γ. Both subdomains are
described by trilinear, regular parameterizations F (S) : [0, 1]3 → Ω(S), S ∈ {L,R}, which
form the two-patch geometry mapping

F = (F (L), F (R)) ∈ Π(1,1,1) × Π(1,1,1).

The two-patch domain Ω is fully determined by 12 vertices v0, . . . ,v11, which are given
by

v0 = F (L)(0, 0, 1), v1 = F (L)(1, 0, 1), v2 = F (L)(0, 1, 1), v3 = F (L)(1, 1, 1),

v4 = F (S)(0, 0, 0), v5 = F (S)(1, 0, 0), v6 = F (S)(0, 1, 0), v7 = F (S)(1, 1, 0),
S ∈ {L,R}, and

v8 = F (R)(0, 0, 1), v9 = F (R)(1, 0, 1), v10 = F (R)(0, 1, 1), v11 = F (R)(1, 1, 1),

see Fig. 1. This ensures that the common face Γ is parameterized by

F (L)(ξ1, ξ2, 0) = F (R)(ξ1, ξ2, 0), (ξ1, ξ2) ∈ [0, 1]2.
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2.2. The C1-smooth isogeometric space VF

Let Sp,rk denote the space of spline functions on [0, 1] of degree p ≥ 3 and regularity 1 ≤
r ≤ p− 1 with respect to the open knot vector

T p,rk = (0, 0, . . . , 0︸ ︷︷ ︸
(p+1)−times

, τ1, τ1, . . . , τ1︸ ︷︷ ︸
(p−r)−times

, . . . , τk, τk, . . . , τk︸ ︷︷ ︸
(p−r)−times

, 1, 1, . . . , 1︸ ︷︷ ︸
(p+1)−times

),

where 0 < τi < τi+1 < 1 for all 1 ≤ i ≤ k − 1 and k is the number of different inner
knots. Note that the space Sp,rk contains spline functions which are at least Cr-smooth. In
addition, we denote by Np,r

i , i = 0, . . . , p+k(p− r) the corresponding B-splines of Sp,rk and
by P the trivariate tensor-product spline space

P = Sp,rk ⊗ Sp,rk ⊗ Sp,rk .

Furthermore, let Np,r
i1,i2 = Np,r

i1 N
p,r
i2 , i1, i2 = 0, . . . , p+ k(p− r) and Np,r

i1,i2,i3 = Np,r
i1 N

p,r
i2 N

p,r
i3 ,

i1, i2, i3 = 0, . . . , p+ k(p− r), be the tensor-product B-splines of the tensor-product spline
spaces Sp,rk ⊗ Sp,rk and Sp,rk ⊗ Sp,rk ⊗ Sp,rk , respectively. Note that we also have F (S) ∈ P3

since the geometry mappings F (S), S ∈ {L,R}, are trilinearly parameterized.
We are interested in the space VF of C1-smooth isogeometric functions on Ω (with

respect to the two-patch geometry F and spline space P), i.e.

VF = [(P × P) ◦ F−1] ∩ C1(Ω).

Let DF = (β, γ, α(R), α(L)) be the quadruple of the four bivariate polynomials β, γ, α(R)

and α(L) given by

β(ξ1, ξ2) = λ det
(
∂2F

(L)(ξ1, ξ2, 0), ∂3F
(L)(ξ1, ξ2, 0), ∂3F

(R)(ξ1, ξ2, 0)
)
,

γ(ξ1, ξ2) = λ det
(
∂1F

(L)(ξ1, ξ2, 0), ∂3F
(L)(ξ1, ξ2, 0), ∂3F

(R)(ξ1, ξ2, 0)
)
,

α(R)(ξ1, ξ2) = λ det
(
∂1F

(R)(ξ1, ξ2, 0), ∂2F
(R)(ξ1, ξ2, 0), ∂3F

(R)(ξ1, ξ2, 0)
)
,

and
α(L)(ξ1, ξ2) = λ det

(
∂1F

(L)(ξ1, ξ2, 0), ∂2F
(L)(ξ1, ξ2, 0), ∂3F

(L)(ξ1, ξ2, 0)
)
,

respectively, where λ ∈ R≥0 is determined by minimizing the term

||α(L) + 1||2L2 + ||α(R) − 1||2L2 .

Note that the two geometry mappings F (L) and F (R) satisfy

β ∂1F
(L)|ξ3=0 − γ ∂2F

(L)|ξ3=0 + α(R) ∂3F
(L)|ξ3=0 − α(L) ∂3F

(R)|ξ3=0 = 0. (1)

Since F (L) and F (R) are trilinear, regular parameterizations, we obtain that

(β, γ, α(R), α(L)) ∈ Π(3,2) × Π(2,3) × Π(2,2) × Π(2,2),
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with α(R) > 0 and α(L) < 0. The space VF can be characterized by
VF = GDF

◦ F−1,

where GDF
is the space given by

GDF
=

{
f = (f (L), f (R)) ∈ P2 : f (L)|ξ3=0 = f (R)|ξ3=0 and

β ∂1f
(L)|ξ3=0 − γ ∂2f

(L)|ξ3=0 + α(R) ∂3f
(L)|ξ3=0 − α(L) ∂3f

(R)|ξ3=0 = 0
}
,

cf. [5, 11]. This means that an isogeometric function φ belongs to the space VF if and only
if the two corresponding functions f (S) = φ ◦ F (S), S ∈ {L,R}, satisfy

f (L)|ξ3=0 = f (R)|ξ3=0 (2)
and

β ∂1f
(L)|ξ3=0 − γ ∂2f

(L)|ξ3=0 + α(R) ∂3f
(L)|ξ3=0 − α(L) ∂3f

(R)|ξ3=0 = 0. (3)
Note that φ ∈ VF is equivalent to the condition that the two associated graph surfaces are
G1-smooth [11].
Remark 1. In [5], DF was called geometric gluing data with respect to the two-patch
geometry F and GDF

was called glued spline space with respect to the geometric gluing
data DF .
Lemma 2. There exist bivariate functions β(S), γ(S), S ∈ {L,R}, such that

β = β(R) α(L) − β(L) α(R) and γ = −γ(R) α(L) + γ(L) α(R). (4)
Proof. One possible choice of the functions is

β(R) = β

2α(L) , β(L) = − β

2α(R) , γ(R) = − γ

2α(L) and γ(L) = γ

2α(R) .

Remark 3. The functions β(S) and γ(S) in (4) are not uniquely determined. For most
configurations of the trilinearly parameterized subdomains Ω(L) and Ω(R) the functions β(S)

and γ(S) can be selected e.g. as bilinear polynomials, see Section 4.
Lemma 2 allows us to rewrite equation (3):

Lemma 4. An isogeometric function φ belongs to the space VF if and only if the two
corresponding functions f (S) = φ ◦ F (S), S ∈ {L,R}, satisfy equation (2) and

∂3f
(L)|ξ3=0 − β(L)∂1f0 − γ(L)∂2f0

α(L) = ∂3f
(R)|ξ3=0 − β(R)∂1f0 − γ(R)∂2f0

α(R) (5)

with
f0 = f (L)|ξ3=0 = f (R)|ξ3=0. (6)

Proof. It remains to show that equations (3) and (5) are equivalent. We can rewrite
equation (3) with use of (4) and (6) as
α(R)∂3f

(L)|ξ3=0−β(L)α(R)∂1f0−γ(L)α(R)∂2f0 = α(L)∂3f
(R)|ξ3=0−β(R)α(L)∂1f0−γ(R)α(L)∂2f0.

A division by α(R)α(L) on both sides of the equation yields equation (5).
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3. Decomposition of the space VF

The space VF can be decomposed into the direct sum

VF = V
Ω\Γ

F ⊕ V Γ
F

with the subspaces

VΩ\Γ
F = {φ ∈ VF : f (S)(ξ1, ξ2, ξ3) = (φ ◦ F (S))(ξ1, ξ2, ξ3) =

p+k(p−r)∑

i1=0

p+k(p−r)∑

i2=0

p+k(p−r)∑

i3=2
d

(S)
i1,i2,i3N

p,r
i1,i2,i3(ξ1, ξ2, ξ3), d(S)

i1,i2,i3 ∈ R, S ∈ {L,R}}

and

VΓ
F = {φ ∈ VF : f (S)(ξ1, ξ2, ξ3) = (φ ◦ F (S))(ξ1, ξ2, ξ3) =

(7)p+k(p−r)∑

i1=0

p+k(p−r)∑

i2=0

1∑

i3=0
d

(S)
i1,i2,i3N

p,r
i1,i2,i3(ξ1, ξ2, ξ3), d(S)

i1,i2,i3 ∈ R, S ∈ {L,R}}.

Clearly, the space VΩ\Γ
F can be described as

VΩ\Γ
F = {φ = (f (L), f (R)) ◦ F−1 : f (S)(ξ1, ξ2, ξ3) =

p+k(p−r)∑

i1=0

p+k(p−r)∑

i2=0

p+k(p−r)∑

i3=2
d

(S)
i1,i2,i3N

p,r
i1,i2,i3(ξ1, ξ2, ξ3), d(S)

i1,i2,i3 ∈ R, S ∈ {L,R}},

which implies that dimVΩ\Γ
F is given by

dimVΩ\Γ
F = 2(p+ 1 + k(p− r))2(p− 1 + k(p− r)),

and that the collection of functions

{φSi1,i2,i3}i1,i2=0,...,p+k(p−r);i3=2,...,p+k(p−r);S∈{L,R} (8)

with

φSi1,i2,i3(x) =




(Np,r
i1,i2,i3 ◦ (F (S))−1)(x) if x ∈ Ω(S),

0 otherwise,

form a basis of VΩ\Γ
F . To characterize the space VΓ

F we need the following lemma:
Lemma 5. Let φ ∈ VΓ

F . The functions f (S) = φ ◦ F (S), S ∈ {L,R}, can be represented as

f (S)(ξ1, ξ2, ξ3) = f0(ξ1, ξ2)
(
Np,r

0 (ξ3) +Np,r
1 (ξ3)

)
+
(
β(S)(ξ1, ξ2)∂1f0(ξ1, ξ2) +

(9)
γ(S)(ξ1, ξ2)∂2f0(ξ1, ξ2) + α(S)(ξ1, ξ2)f1(ξ1, ξ2)

)
τ1

p
Np,r

1 (ξ3),

with f0 as given in equation (6) and

f1 = ∂3f
(L)|ξ3=0 − β(L)∂1f0 − γ(L)∂2f0

α(L) = ∂3f
(R)|ξ3=0 − β(R)∂1f0 − γ(R)∂2f0

α(R) . (10)
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Proof. Recall Lemma 4. We define functions f0, f1 : [0, 1]2 → R as in equation (6) and
(10), respectively. Then, the partial derivatives ∂3f

(S)|ξ3=0, S ∈ {L,R}, can be written as

∂3f
(S)|ξ3=0 = β(S)∂1f0 + γ(S)∂2f0 + α(S)f1.

Taylor approximation of f (S) at (ξ1, ξ2, ξ3) = (ξ1, ξ2, 0) leads to

f (S)(ξ1, ξ2, ξ3) = f (S)(ξ1, ξ2, 0) + ∂3f
(S)(ξ1, ξ2, 0)ξ3 +O(ξ2

3) =

f0(ξ1, ξ2) +
(
β(S)(ξ1, ξ2)∂1f0(ξ1, ξ2) +

γ(S)(ξ1, ξ2)∂2f0(ξ1, ξ2) + α(S)(ξ1, ξ2)f1(ξ1, ξ2)
)
ξ3 +O(ξ2

3),

which is equal to (9) by using the fact that f (S) is a spline function with a representation
shown in (7).

We obtain:

Theorem 6. The space VΓ
F is equal to

VΓ
F =

{
φ = (f (L), f (R)) ◦ F−1 : f (S) is given by (9), f0, f1 : [0, 1]2 → R

such that f (S) ∈ P , S ∈ {L,R}
}
.

Proof. On the one hand if φ ∈ VΓ
F , then clearly f (S) = φ ◦ F (S) ∈ P , S ∈ {L,R},

and Lemma 5 ensures that the functions f (S) possess a representation (9) with functions
f0, f1 : [0, 1]2 → R. On the other hand if the functions f (S), S ∈ {L,R}, possess a
representation (9) then conditions (2) and (5) are fulfilled which implies by means of
Lemma 4 and the fact f (S) ∈ P that φ = (f (L), f (R)) ◦ F ∈ VF . Since f (S) possess a
representation of the form shown in (7) we also obtain that φ ∈ VΓ

F .

The dimension and basis of the space VΓ
F will be explored in the next section. But

before, let us study the functions f0 and f1 from the representation (9). For this purpose
we will use a vector d, which is transversal to Γ. This vector was already introduced in [6]
for the case of planar two-patch domains and can be extended in a straightforward way to
the case of volumetric two-patch domains. Let F0(ξ1, ξ2) = F (L)(ξ1, ξ2, 0) = F (R)(ξ1, ξ2, 0).
Then, we define the vector d = d(L) = d(R) on Γ as

d(S) ◦ F0 =
(
∂1F0, ∂2F0, ∂3F

(S)|ξ3=0

)
·
(
− β(S),−γ(S), 1

)T 1
α(S) , S ∈ {L,R}.

The vector d is well-defined, i.e. d(L) = d(R), since the equation

α(L)α(R)d(L) ◦ F0 − α(L)α(R)d(R) ◦ F0 = 0

is equivalent to the system of equations (1) and (4). Furthermore, d is transversal to Γ,
since

det
(
∂1F0, ∂2F0,d

(S) ◦ F0
)

= 1
α(S) det

(
∂1F0, ∂2F0, ∂3F

(S)|ξ3=0
)

= 1
λ
6= 0.
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Let us consider the directional derivative of φ ∈ VΓ
F from side S with respect to d at Γ, i.e.

∇(S)φ · d ◦ F0, which is equal to
(
∂1f

(S)|ξ3=0, ∂2f
(S)|ξ3=0, ∂3f

(S)|ξ3=0

)
·
(
∂1F0, ∂2F0, ∂3F

(S)|ξ3=0

)−1
· d ◦ F0 =

(
∂1f

(S)|ξ3=0, ∂2f
(S)|ξ3=0, ∂3f

(S)|ξ3=0

)
·
(
− β(S),−γ(S), 1

)T 1
α(S) =

∂3f
(S)|ξ3=0 − β(S)∂1f

(S)|ξ3=0 − γ(S)∂2f
(S)|ξ3=0

α(S) .

Since φ is C1-smooth on Ω, equation (5) is satisfied and therefore we get

∇(L)φ · d ◦ F0 = ∇(R)φ · d ◦ F0 = ∇φ · d ◦ F0.

It follows:

Corollary 7. Let φ ∈ VΓ
F , and consider the associated representation (9) from the function

f (S) = φ ◦ F (S), S ∈ {L,R}. The function f0 is the trace of the function φ at Γ, i.e.

f0 = φ ◦ F0,

and the function f1 is the directional derivative of the function φ with respect to the
transversal direction d at Γ, i.e.

f1 = ∇φ · d ◦ F0.

4. Dimension and basis of the space VΓ
F

Below, we restrict ourselves to the generic case of trilinearly parameterized two-patch
domains Ω introduced in [5], which can be seen as the case valid with probability 1. For
this we assume that

• the common interface Γ is nonplanar,

• the functions β, γ, α(R) and α(L) possess full bidegrees (3, 2), (2, 3), (2, 2) and (2, 2),
respectively,

• the functions β and γ do not have roots at the values (τi, τj), i, j = 1, . . . , k, where
τi and τj are the inner knots of the spline space Sp,rk , and that

• the greatest common divisor of the two functions α(R) and α(L) is a constant function.

Note that any trilinearly parameterized two-patch domain, which does not satisfy these
assumptions, can be transformed into one fulfilling the assumptions by just slightly dis-
turbing some of the values of the vertices v0, . . . ,v11.

By investigating the functions β, γ, α(R) and α(L), we obtain:

8



Lemma 8. There exist bilinear polynomials β(S), γ(S), S ∈ {L,R} (i.e. β(S), γ(S) ∈ Π(1,1))
such that

β = β(R) α(L) − β(L) α(R) and γ = −γ(R) α(L) + γ(L) α(R), (11)
with

β(S)(ξ1, ξ2) =
det

(
v7 − v5,v4 − v6, ∂3F

(S)(ξ1, ξ2, 0)
)

vol
and

γ(S)(ξ1, ξ2) =
det

(
v7 − v6,v5 − v4, ∂3F

(S)(ξ1, ξ2, 0)
)

vol
,

(12)

where
vol = det

(
v5 − v4,v6 − v4,v7 − v4

)
. (13)

In addition, the biquadratic function α(S), S ∈ {L,R}, possesses the form

α(S)(ξ1, ξ2) = λ · vol
(
δ(S)(ξ1, ξ2)− ξ1γ

(S)(ξ1, ξ2)− ξ2β
(S)(ξ1, ξ2)

)
, (14)

where δ(S), S ∈ {L,R}, is a bilinear function (i.e. δ(S) ∈ Π(1,1)) given by

δ(S)(ξ1, ξ2) =
det

(
v5 − v4,v6 − v4, ∂3F

(S)(ξ1, ξ2, 0)
)

vol
. (15)

Proof. This can be shown by symbolic computation.

Remark 9. The value vol defined in (13) is the volume of the rectangular solid spanned
by the three vectors v5 − v4,v6 − v4 and v7 − v4, where v4,v5,v6 and v7 are the four
vertices of the common interface, see Fig. 1.

Lemma 8 allows us to study the space VΓ
F in more detail and to construct a basis. For

this, we need some additional functions. Let Rp,r+1
i : [0, 1]→ R, i = 0, . . . , p+k(p− r−1),

be the function defined by

Rp,r+1
i (ξ) = 1

ti+p − ti
Np−1,r
i−1 (ξ)− 1

ti+p+1 − ti+1
Np−1,r
i (ξ), (16)

where ti are the knots with respect to the spline space Sp,r+1
k . Here and in the following of

the paper, we set the term 1
ti+p−ti or

1
ti+p+1−ti+1

to be zero, if the corresponding denominator
is equal to zero. For these cases, which only happen for i = 0 for the first term and
i = p + k(p − r − 1) for the second term, we also assume that the B-splines Np,r−1

−1 and
Np,r−1
p+k(p−r−1) are given as zero functions.
Moreover, we define the functions φΓ,0

i1,i2 , i1, i2 ∈ {0, . . . , p + k(p − r − 1)} and φΓ,1
j1,j2 ,

j1, j2 ∈ {0, . . . , p− 2 + k(p− r − 2)}, as the isogeometric functions

((f (L), f (R)) ◦ F−1)(x)
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with f (S), S ∈ {L,R}, given in (9), and

f0(ξ1, ξ2) = Np,r+1
i1,i2 (ξ1, ξ2) and f1(ξ1, ξ2) = p

λ · volR
p,r+1
i1 (ξ1)Rp,r+1

i2 (ξ2) (17)

for φΓ,0
i1,i2 , and

f0(ξ1, ξ2) = 0 and f1(ξ1, ξ2) = Np−2,r
j1,j2 (ξ1, ξ2) (18)

for φΓ,1
j1,j2 .

Clearly, the supports of the functions φΓ,0
i1,i2 and φΓ,1

j1,j2 are inherited by the B-splines
Np−1,r
i , Np,r+1

i1,i2 and Np−2,r
j1,j2 used in (16), (17) and (18), respectively. Therefore, except for

r = p − 1 in case of φΓ,0
i1,i2 and for p − 2 ≤ r ≤ p − 1 in case of φΓ,1

j1,j2 , the functions φΓ,0
i1,i2

and φΓ,1
j1,j2 possess a small local support. For the excluded cases, the B-splines Np−1,r

i ,
Np,r+1
i1,i2 and Np−2,r

j1,j2 are just Bernstein polynomials defined on the interval [0, 1] or on the
unit square [0, 1]2, and hence the resulting functions φΓ,0

i1,i2 and φΓ,1
j1,j2 possess independent

of the selected number k of inner knots a support over the entire interface Γ.
Lemma 10. The functions φΓ,0

i1,i2, i1, i2 ∈ {0, . . . , p + k(p − r − 1)} and φΓ,1
j1,j2, j1, j2 ∈

{0, . . . , p− 2 + k(p− r − 2)}, belong to the space VΓ
F .

Proof. Thanks to Theorem 6, it is sufficient to prove that φΓ,0
i1,i2 ◦ F (S), φΓ,1

j1,j2 ◦ F (S) ∈ P ,
S ∈ {L,R}. In case of φΓ,1

j1,j2 , this can be easily seen by considering the representation (9)
of the function f (S) = φΓ,1

j1,j2 ◦ F (S). In case of φΓ,0
i1,i2 , it remains to show that the second

term of the representation (9) of the function f (S) = φΓ,0
i1,i2 ◦ F (S), i.e.

(β(S)(ξ1, ξ2)∂1f0(ξ1, ξ2) + γ(S)(ξ1, ξ2)∂2f0(ξ1, ξ2) + α(S)(ξ1, ξ2)f1(ξ1, ξ2))τ1

p
Np,r

1 (ξ3)

belongs to the space P , or simply

β(S)(ξ1, ξ2)∂1f0(ξ1, ξ2) + γ(S)(ξ1, ξ2)∂2f0(ξ1, ξ2) + α(S)(ξ1, ξ2)f1(ξ1, ξ2) ∈ Sp,rk ⊗ Sp,rk , (19)

since the first term of (9) trivially belongs to P .
Let us first recall the well-known recursion formula

Np,r+1
i (ξ) = ξ − ti

ti+p − ti
Np−1,r
i−1 (ξ) + ti+p+1 − ξ

ti+p+1 − ti+1
Np−1,r
i (ξ), (20)

and the well-known derivative relation
(
Np,r+1
i (ξ)

)′
= p

(
1

ti+p − ti
Np−1,r
i−1 (ξ)− 1

ti+p+1 − ti+1
Np−1,r
i (ξ)

)
. (21)

By means of Lemma 8 and definition (17), we get

β(S)(ξ1, ξ2)∂1f0(ξ1, ξ2) + γ(S)(ξ1, ξ2)∂2f0(ξ1, ξ2) + α(S)(ξ1, ξ2)f1(ξ1, ξ2) =

β(S)(ξ1, ξ2)
(
Np,r+1
i1 (ξ1)

)′
Np,r+1
i2 (ξ2) + γ(S)(ξ1, ξ2)Np,r+1

i1 (ξ1)
(
Np,r+1
i2 (ξ2)

)′
+

p δ(S)(ξ1, ξ2)Rp,r+1
i1 (ξ1)Rp,r+1

i2 (ξ2)− ξ1p γ
(S)(ξ1, ξ2)Rp,r+1

i1 (ξ1)Rp,r+1
i2 (ξ2)−

ξ2p β
(S)(ξ1, ξ2)Rp,r+1

i1 (ξ1)Rp,r+1
i2 (ξ2).
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Definition (16) and relation (21) lead to

β(S)(ξ1, ξ2)
(
Np,r+1
i1 (ξ1)

)′
Np,r+1
i2 (ξ2) + γ(S)(ξ1, ξ2)Np,r+1

i1 (ξ1)
(
Np,r+1
i2 (ξ2)

)′
+

p δ(S)(ξ1, ξ2)Rp,r+1
i1 (ξ1)Rp,r+1

i2 (ξ2)− ξ1γ
(S)(ξ1, ξ2)Rp,r+1

i1 (ξ1)
(
Np,r+1
i2 (ξ2)

)′−

ξ2β
(S)(ξ1, ξ2)

(
Np,r+1
i1 (ξ1)

)′
Rp,r+1
i2 (ξ2).

Using again definition (16) and the fact that the linear function ξ can be rewritten as
ξ = ξ − c+ c for all constants c ∈ R, this is equal to

β(S)(ξ1, ξ2)
(
Np,r+1
i1 (ξ1)

)′
Np,r+1
i2 (ξ2) + γ(S)(ξ1, ξ2)Np,r+1

i1 (ξ1)
(
Np,r+1
i2 (ξ2)

)′
+

p δ(S)(ξ1, ξ2)Rp,r+1
i1 (ξ1)Rp,r+1

i2 (ξ2)− γ(S)(ξ1, ξ2)
(

ξ1 − ti1
ti1+p − ti1

Np−1,r
i1−1 (ξ1)+

ti1+p+1 − ξ1

ti1+p+1 − ti1+1
Np−1,r
i1 (ξ1) + ti1

ti1+p − ti1
Np−1,r
i1−1 (ξ1)− ti1+p+1

ti1+p+1 − ti1+1
Np−1,r
i1 (ξ1)

)(
Np,r+1
i2 (ξ2)

)′−

β(S)(ξ1, ξ2)
(
Np,r+1
i1 (ξ1)

)′
(
ξ2 − ti2
ti2+p − tj

Np−1,r
i2−1 (ξ2) + ti2+p+1 − ξ2

ti2+p+1 − ti2+1
Np−1,r
i2 (ξ2)+

ti2
ti2+p − tj

Np−1,r
i2−1 (ξ2)− ti2+p+1

ti2+p+1 − ti2+1
Np−1,r
i2 (ξ2)

)
.

With the help of the recurrence relation (20), this can be simplified to

p δ(S)(ξ1, ξ2)Rp,r+1
i1 (ξ1)Rp,r+1

i2 (ξ2)− γ(S)(ξ1, ξ2)
(

ti1
ti1+p − ti1

Np−1,r
i1−1 (ξ1)−

ti1+p+1

ti1+p+1 − ti1+1
Np−1,r
i1 (ξ1)

)(
Np,r+1
i2 (ξ2)

)′ − β(S)(ξ1, ξ2)
(
Np,r+1
i1 (ξ1)

)′ ·
(

ti2
ti2+p − ti2

Np−1,r
i2−1 (ξ2)− ti2+p+1

ti2+p+1 − ti2+1
Np−1,r
i2 (ξ2)

)
,

which finally implies condition (19).

Theorem 11. A basis of the space VΓ
F is given by the collection of functions

{φΓ,0
i1,i2 , φ

Γ,1
j1,j2}i1,i2∈{0,...,p+k(p−r−1)};j1,j2∈{0,...,p−2+k(p−r−2)}. (22)

Proof. Since φΓ,0
i1,i2 , φ

Γ,1
j1,j2 ∈ VΓ

F , compare Lemma 10 and the set of functions φΓ,0
i1,i2 and φΓ,1

j1,j2
are linearly independent by definition, it remains to prove that each function φ ∈ VΓ

F

can be represented as a linear combination of the functions φΓ,0
i1,i2 and φΓ,1

j1,j2 . For this
purpose, we first show that for an isogeometric function φ ∈ VΓ

F the function f0 from
the representation (9) has to belong to the space Sp,r+1

k ⊗ Sp,r+1
k , and if f0 = 0, then the

function f1 has to belong to the space Sp−2,r
k ⊗ Sp−2,r

k .
Let φ ∈ VΓ

F . Note that the functions f (S) = φ ◦ F (S), S ∈ {L,R}, have to fulfill
equation (3), and it holds that f0 = f (L)|ξ3=0 = f (R)|ξ3=0, compare Lemma 5. Since the
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functions β and γ do not have roots at the values (τi, τj), i, j = 1, . . . , k, see the assumptions
in the beginning of this section, we obtain that f0 ∈ Sp,r+1

k ⊗Sp,r+1
k . Moreover, when f0 = 0

in the representation (9), then equation (10) simplifies to

f1 = ∂3f
(L)|ξ3=0

α(L) = ∂3f
(R)|ξ3=0

α(R) .

Since ∂3f
(L)|ξ3=0, ∂3f

(R)|ξ3=0 ∈ Sp,rk ⊗ Sp,rk and hence α(R)∂3f (L)|ξ3=0
α(L) ,

α(L)∂3f (R)|ξ3=0
α(R) ∈ Sp,rk ⊗

Sp,rk , we obtain f1 ∈ Sp−2,r
k ⊗ Sp−2,r

k by using the fact that α(L) and α(R) are biquadratic
polynomials with a greatest common divisor of bidegree (0, 0).

Now, we are ready to show that each function φ ∈ VΓ
F can be written as a linear

combination

φ(x) =
p+k(p−r−1)∑

i1=0

p+k(p−r−1)∑

i2=0
µΓ,0
i1,i2φ

Γ,0
i1,i2(x) +

p−2+k(p−r−2)∑

j1=0

p−2+k(p−r−2)∑

j2=0
µΓ,1
j1,j2φ

Γ,1
j1,j2(x) (23)

with factors µΓ,0
i1,i2 , µ

Γ,1
j1,j2 ∈ R. Let φ ∈ VΓ

F and consider the associated representation (9)
from the function f (S) = φ ◦ F (S), S ∈ {L,R}. Since f0 ∈ Sp,r+1

k ⊗ Sp,r+1
k , the function f0

can be written as

f0(ξ1, ξ2) =
p+k(p−r−1)∑

i1=0

p+k(p−r−1)∑

i2=0
µ0
i1,i2N

p,r+1
i1,i2 (ξ1, ξ2)

with factors µ0
i1,i2 ∈ R. Computing

φ̃(x) = φ(x)−
p+k(p−r−1)∑

i1=0

p+k(p−r−1)∑

i2=0
µ0
i1,i2φ

Γ,0
i1,i2(x)

leads to a function φ̃ ∈ VΓ
F , whose spline functions f̃ (S) = φ̃ ◦ F (S), S ∈ {L,R}, possess a

representation (9) with f̃0 = 0 and f̃1 ∈ Sp−2,r
k ⊗ Sp−2,r

k . Let µ1
j1,j2 ∈ R be the factors such

that

f̃1(ξ1, ξ2) =
p−2+k(p−r−2)∑

j1=0

p−2+k(p−r−2)∑

j2=0
µ1
j1,j2N

p−2,r
j1,j2 (ξ1, ξ2),

then we have that

φ̃(x)−
p−2+k(p−r−2)∑

j1=0

p−2+k(p−r−2)∑

j2=0
µ1
j1,j2φ

Γ,1
j1,j2(x) = 0.

This implies that φ can be written as a linear combination (23) with the factors µΓ,0
i1,i2 = µ0

i1,i2

and µΓ,1
j1,j2 = µ1

j1,j2 .

We directly obtain the following two corollaries:
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Figure 2: The generic two-patch domain Ω considered in Example 15.

Corollary 12. The collections of functions (8) and (22) form a basis of the space VF .

Corollary 13. It holds that

dimVΓ
F = (p− 1 + k(p− r − 2))2 + (p+ 1 + k(p− r − 1))2,

and hence

dimVF = 2(p+ 1 + k(p− r))2(p− 1 + k(p− r))︸ ︷︷ ︸
dimVΩ\Γ

F

+

(p− 1 + k(p− r − 2))2 + (p+ 1 + k(p− r − 1))2
︸ ︷︷ ︸

dimVΓ
F

.

Remark 14. The dimension results match with the ones in [5], where they were numeri-
cally shown for the specific choice of r = 1, i.e.

dimVΓ
F = 2 + 2k + 13k2 − 10 k(1 + k) p + 2 (k + 1)2 p2.

There, it was also demonstrated that the dimension does not change when the generic case
of a planar interface is considered.

Example 15. We consider the generic trilinearly parameterized two-patch domain Ω vi-
sualized in Fig. 2, which is defined by the 12 vertices

v0 =
(

0, 0, −6
5

)
, v1 =

(10
9 ,

1
10 ,
−32
31

)
, v2 =

( 1
25 ,

16
15 ,
−19
20

)
, v3 =

(16
15 ,

14
15 ,
−9
10

)
,

v4 =
( 1

17 ,
1
20 ,

2
15

)
, v5 =

(13
15 ,

1
15 ,

2
25

)
, v6 =

( 1
12 ,

14
15 ,

1
15

)
, v7 =

(18
19 ,

17
18 ,

2
25

)
,

v8 =
( 1

10 ,
1
15 ,

33
35

)
, v9 =

(16
15 ,

1
13 ,

51
50

)
, v10 =

( 1
15 ,

14
15 ,

34
35

)
, v11 =

(26
25 ,

34
35 ,

21
20

)
.
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According to Lemma 8, we obtain

vol = 1086607
21802500 ,

β(L)(ξ1, ξ2) = 93(33064760−8289039 ξ2)+ξ1 (306334976+105798337 ξ2)
2425306824 ,

β(R)(ξ1, ξ2) = −260(6954233+1471621 ξ2)+ξ1 (134969134+8058829 ξ2)
2373149688 ,

γ(L)(ξ1, ξ2) = ξ1 (2768879480−6732851123 ξ2)+93(−52469680+63462141 ξ2)
39168705207600 ,

γ(R)(ξ1, ξ2) = −260(−9716185+702889 ξ2)+ξ1 (101861470+754743721 ξ2)
114979102383600 ,

α(L)(ξ1, ξ2) = ξ2
1 (−2768879480+6732851123 ξ2)−10 ξ1 (−9052554324+8193890948 ξ2+105798337 ξ2

2)
486631800000 +

93(−5003665200+905234209 ξ2+82890390 ξ2
2)

486631800000 ,

α(R)(ξ1, ξ2) = −ξ2
1 (101861470+754743721 ξ2)+ξ1 (45101336050−23570690651 ξ2−80588290 ξ2

2)
476166600000 +

260(1062421461+187459313 ξ2+14716210 ξ2
2)

476166600000 .

We choose for the degree p = 4, for the regularity r = 1 and for the number of inner
knots k = 3. Due to Corollary 13, we get

dimVF = dimVΩ\Γ
F + dimVΓ

F = 4704 + 157.

Theorem 11 provides us a basis for the resulting space VF , which is given by the functions

{φΓ,0
i1,i2 , φ

Γ,1
j1,j2}i1,i2∈{0,...,10};j1,j2∈{0,...,5}.

Figure 3 illustrates two instances of basis functions, namely the functions φΓ,0
5,5 and φΓ,1

2,2 ,
and show that the basis functions possess a small local support.

Remark 16. Bivariate C1-smooth isogeometric spline spaces over the class of analysis-
suitable G1 two-patch parameterizations (which also includes the subclass of bilinearly
parameterized two-patch domains) enjoy optimal approximation properties, cf. [6]. This
observation was based on the fact that the traces and transversal directional derivatives
along the common interface can be chosen independently from a univariate spline space of
degree p and of degree p− 1, respectively.

In contrast, in our case for the trivariate C1-smooth space VF , the traces (i.e. the
function f0) and the transversal directional derivatives (i.e. the function f1) along the
interface Γ can be only selected independently from a tensor-product spline space of bide-
gree (p−1, p−1) and of bidegree (p−2, p−2), respectively, which suggests at least a slight
reduction of the approximation power. The restricted choice of the transversal directional
derivatives f1 was already demonstrated in the proof of Theorem 11 by showing that f0 = 0
implies f1 ∈ Sp−2,r

k ⊗ Sp−2,r
k . Similarly, it could be shown for the traces f0 that f1 = 0

would lead to f0 ∈ Sp−1,r+1
k ⊗ Sp−1,r+1

k . The detailed study of the approximation power of
the space VF is beyond the scope of the paper and deserves further investigation.
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Figure 3: Examples of basis functions for p = 4, r = 1, k = 3. Top row: Function values visualized
by isosurfaces (left: φΓ,0

5,5 , right: φ
Γ,1
2,2 ). Bottom row: Function values visualized by level curves in

a plane (left: φΓ,0
5,5 , right: φ

Γ,1
2,2 ).

5. Conclusion

We developed the theoretical foundation to fully analyze the space VF of C1-smooth
isogeometric spline functions on trilinearly parameterized volumetric two-patch domains Ω.
On the one hand, the dimension of the space VF was computed, where the obtained the-
oretical results verify the experimentally ones from [5]. On the other hand, a simple basis
construction was presented, which works uniformly for any degree p ≥ 3 and regularity
1 ≤ r ≤ p− 1. In addition, the single basis functions are locally supported (except for the
case p− 2 ≤ r ≤ p− 1) and possess a simple explicit representation. We see this basis as
an important first step for the planned extension of our approach to the case of trilinearly
parameterized multi-patch domains by following e.g. a similar concept as in [14, 15] for the
case of bivariate spline spaces. Moreover, the extension of our approach to more general
two-patch or even multi-patch domains, comparable to the class of analysis-suitable G1

parameterizations (cf. [6]) in 2D, is of interest, too.
In contrast to the bivariate case, e.g. [14, 18], the space VF of C1-smooth isogeometric

spline functions seems to have a slightly reduced approximation power. The investigation
of the approximation properties of the space and the study of the magnitude of the possible
reduction of the approximation power is an interesting topic for possible future work. Fur-
thermore, we plan to explore the potential of the C1-smooth isogeometric spline functions
for applications in IGA, such as the solving of fourth order PDEs (e.g. the biharmonic
equation) over volumetric two-patch and multi-patch domains.
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