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GREEDY LOW-RANK APPROXIMATION IN TUCKER FORMAT
OF TENSORS AND SOLUTIONS OF TENSOR LINEAR SYSTEMS

I. GEORGIEVA∗ AND C. HOFREITHER†

Abstract. We propose a method for the approximation of tensors, given either explicitly or
implicitly as the solution of tensor linear systems, in the Tucker tensor format. It is an iterative
method that greedily constructs a suitable tensor product subspace in which to approximate the
tensor by means of successive rank one approximations. An approximation to the target tensor is
then obtained either by orthogonal projection into this subspace (in the direct approximation case)
or by approximately satisfying the given linear system in the subspace (in the implicit approximation
case).

In several numerical experiments, we compare the method to the greedy rank one update (or
Proper Generalized Decomposition) approach. The proposed method outperforms the rank one
update method significantly, both in terms of error per iteration and error per unit of computation
time.

Key words. Tensor approximation, Tucker tensors, greedy algorithms, tensor linear systems,
Proper Generalized Decomposition
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1. Introduction. For low-rank approximation of tensors with order d higher
than two, several different formats have been described in the literature. The most
straightforward approach is the approximation by sums of outer products of d vectors,
sometimes referred to as the canonical or CP (CANDECOMP/PARAFAC) format;
see [12] and the references therein for a historical overview and properties of this
representation. Unfortunately, there are certain difficulties associated with low-rank
approximation in this format for orders d > 2 stemming from the fact that the set of
tensors with a given maximum rank R is not closed if d > 2, a crucial difference from
the matrix case [4].

These difficulties are not merely theoretical in nature, but significantly impact the
practical computation of best or “good” rank R approximations for tensors with order
d > 2. For instance, one of the oldest and most popular algorithms for this task,
the Alternating Least Squares (ALS) method, is heavily dependent on the choice
of its starting values and frequently runs into problems with slow or even stagnant
convergence. Many improvements to ALS and different approaches to the rank R
approximation problem have been proposed (see [7] and the references therein), but
at this point it seems unclear whether any single method can consistently and signif-
icantly outperform ALS with a decent choice of starting values.

In order to sidestep the inherent difficulties of the canonical rank R approximation
problem, alternative formats for low-rank tensor approximation have been devised.
One of the earliest of these is the so-called Tucker format [21], also known as tensor
subspace representation [8]. The idea here is to work with a small subspace of the
entire linear space of tensors RN1×...×Nd which is represented as a tensor product of
d spaces which are subspaces of RNj , j = 1, . . . , d. These subspaces are represented
as the ranges of d matrices. The coefficients of a particular tensor within the tensor
subspace are stored as a smaller so-called core or coefficient tensor. If, for all j, the
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j-th subspace is small compared to RNj , this leads to significant savings in the amount
of data to be stored.

The Tucker format still suffers from an exponential increase in required storage
as the order d increases. To fully break this “curse of dimensionality,” more advanced
tensor representations such as the hierarchical Tucker format [9, 8] and the tensor
train format [17] have been developed. Nevertheless, for problems with a moderate
number of dimensions, the Tucker format is often adequate and attractive due to its
comparable simplicity. In our case, we have applications in mind which stem from
the discretization of partial differential equations (PDEs) in tensor product spaces,
in particular in Isogeometric Analysis [11] where tensor product spline spaces are
employed.

A number of algorithms for approximation of tensors in Tucker format is avail-
able in the literature; see [12, 7] and the references therein for an overview. The most
popular one is the so-called Higher Order Singular Value Decomposition (HOSVD)
[14] combined with a truncation step, which is known to yield quasi-optimal approx-
imations [6]. Such an approximation can be improved by the so-called Higher Order
Orthogonal Iteration (HOOI) [15], essentially a variant of ALS for the Tucker for-
mat with similar problems with respect to convergence guarantees. Other methods
for computing Tucker approximations are based on a Newton-Grassman optimization
approach [5].

Although ALS for the best rank R approximation may converge slowly or not at
all, the ALS algorithm for the best rank one approximation typically converges very
fast and globally, i.e., independently of the starting value [22]. One simple and popu-
lar method which exploits this fact is the Greedy Rank One Update (GROU) strategy,
where a rank R approximation is built up by iteratively computing the best rank one
approximation to the current error and adding it to the previous approximation (see,
e.g., [1]). This approach is popular in applications for computing low-rank approxi-
mations to the solutions of tensor linear systems under the name Proper Generalized
Decomposition (PGD); see [3] and the references therein. Whereas the GROU method
yields optimal approximations in the matrix case (d = 2), its convergence is typically
very slow for tensors with orders d > 2.

We propose a novel greedy iterative algorithm for computing Tucker approxima-
tions of tensors which are given either explicitly or as the solution of a tensor linear
system. Like GROU, it uses best rank one approximations to the current error com-
puted by ALS as its main building block. The core idea is to greedily construct the
tensor subspaces used in Tucker approximation in such a way that they contain the
rank one approximations computed by ALS. The matrices which represent the tensor
subspace are kept orthonormal throughout, which permits fast orthogonal projection
of the tensor to be approximated into the tensor subspace.

A crucial advantage of this method is that it applies not only to approximation
of explicitly given tensors, but can be straightforwardly extended to approximation of
tensors which are given implicitly as the solution of linear equations with a low-rank
tensor linear operator. Such equations arise naturally in tensor product discretiza-
tions of partial differential equations [16] and, in particular, recently in Isogeometric
Analysis [11, 10]. In the case of such implicitly given tensors, the error of the current
approximation is unknown. Instead, we use a variant of ALS for computing a best
rank one minimizer of the residual of the linear equation and iteratively enrich our
tensor subspace to contain this rank one tensor. Since we cannot project the (un-
known) solution tensor into this space, we instead solve a small, dense linear system
which can be considered a projection of the original linear system into the small tensor
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subspace.
There are other methods for approximating solutions of tensor linear systems in

a number of tensor formats; see [7]. In general, they are either based on applying a
standard iterative method and truncating the result to a desired small rank after each
iteration, or on optimization considerations, such as ALS. We are not aware of any
prior publications which specifically treat the approximate solution of general tensor
linear systems in Tucker format, although a projection approach is taken in [2] for the
Hierarchical Tucker format.

We give some numerical examples which demonstrate the performance of the
proposed method for direct approximation and for approximately solving tensor linear
systems. The achieved approximation errors, relative to the spent computation time,
compare very favorably to the GROU scheme. In the direct approximation case, the
method produces almost optimal approximations in our tests, which is a surprising
result for a greedy algorithm.

The outline of the paper is as follows. In Section 2, we review some preliminaries
on tensor rank, low-rank approximation, the Tucker format and existing algorithms.
In Section 3, we describe our new algorithm for greedy approximation in Tucker
format. In Section 4, we develop a variant of the algorithm for approximating tensors
which are implicitly given as solutions of tensor linear systems. In Section 5, we
present some numerical examples and evaluate the performance of the method. We
summarize the main results in Section 6 and offer an outlook on future work.

2. Preliminaries.

2.1. Rank and low-rank approximation of tensors. Assume we are given
a tensor of order d and dimensions N1, . . . , Nd, i.e., B ∈ RN1×···×Nd =: RI with
I = {1, . . . , N1} × . . . × {1, . . . , Nd}. We seek to compute approximations which
require much fewer than the N1 · · ·Nd coefficients of B.

Definition 2.1. The d-dimensional tensor product of vectors xj ∈ RNj , j =
1, . . . , d is the tensor x1 ⊗ · · · ⊗ xd ∈ RI with the entries

[x1 ⊗ · · · ⊗ xd]i1,...,id = x1
i1 · · ·xdid .

Definition 2.2 ([13]). The rank of B is the smallest R ∈ N0 such that there
exist vectors xrj ∈ RNj , j = 1, . . . , d, r = 1, . . . , R with

B =
R∑

r=1

xr1 ⊗ · · · ⊗ xrd.

Even if B does not have low rank, it is often still possible to obtain good low-rank
approximations. In the sequel, we will always use the Frobenius norm

‖B‖2 =
∑

(i1,...,id)∈I
B2
i1,...,id

.

Definition 2.3. If X∗ minimizes the error ‖B −X‖ among all tensors X ∈ RI
of rank at most R ∈ N0, we call X∗ a best rank R approximation to B.

For higher order tensors, there are certain problems with this notion of best
approximation [4]. In particular, for order d > 2, the set of tensors of rank at most
R > 1 is not closed, meaning that a best rank R approximation may not exist, and
the problem of finding such a best approximation is ill-posed. On the other hand, for
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the matrix case (d = 2), there always exists a best rank R approximation given by
the truncated singular value decomposition (SVD). Furthermore, for any order d, a
best rank 1 approximation always exists.

2.2. Multiway tensor product and Tucker tensor format.

Definition 2.4. Given d matrices and a tensor of order d,

Uj ∈ RNj×rj , j = 1, . . . , d, X ∈ Rr1×...×rd ,

where Nj , rj ∈ N, the multiway tensor product is the tensor

(2.1) T = (U1, . . . , Ud) ·X ∈ RN1×...×Nd

with the entries

Ti1,...,id =

r1∑

α1=1

. . .

rd∑

αd=1

[U1]i1,α1
· · · [Ud]id,αd

Xα1,...,αd
, (i1, . . . , id) ∈ I.

Below we give two important properties of this product which are easy to derive
from the definition.

• For arbitrary matrices Qj , Uj of compatible sizes, we have

(2.2) (Q1, . . . , Qd) ·
(
(U1, . . . , Ud) ·X

)
= (Q1U1, . . . , QdUd) ·X.

• Let A = A1⊗· · ·⊗Ad : RI → RI be a rank one tensor linear operator, where
Aj : RNj → RNj are matrices. By this we mean that the application of A to
a rank one tensor x1 ⊗ . . .⊗ xd is given by

A(x1 ⊗ · · · ⊗ xd) = (A1x1)⊗ · · · ⊗ (Adxd).

In practice, such an operator is often represented as the Kronecker product
of the matrices Aj . The application of A to a tensor B ∈ RI is then given by

(2.3) AB = (A1, . . . , Ad) ·B.

A tensor T ∈ RI is said to be in Tucker format [21] or tensor subspace representa-
tion [8] if it has the form (2.1), and we call the tuple (r1, . . . , rd) its Tucker rank. (We
use this convention instead of the one used by Hackbusch [8], where only the minimal
tuple allowing such a representation of a given tensor is called the Tucker rank.)

A Tucker tensor can be represented on a computer by storing only the matrices
Uj and the core tensor X. Assuming Nj = N and rj = r, this requires the storage
of dNr + rd floating point numbers. If r � N , this is significantly less than the
storage Nd required for the same tensor in full tensor format. Furthermore, (2.2)
gives us an efficient method for applying the multiway tensor product to a Tucker
tensor, producing again a Tucker tensor. In conjunction with (2.3), this describes
how to efficiently apply a rank one operator to a Tucker tensor.

The storage required for the core tensor X still grows exponentially with the
order d, which makes other representations such as the hierarchical Tucker format
[9, 8] or the tensor train format [17] more desirable for high-dimensional problems.
Nevertheless, for problems with moderate dimensionality, the simplicity of the Tucker
format makes it an attractive choice.
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If we denote the columns of Uj by Uj,α ∈ RNj , α = 1, . . . , rj , the Tucker tensor T
can be written as

(2.4) T =

r1∑

α1=1

. . .

rd∑

αd=1

(U1,α1
⊗ · · · ⊗ Ud,αd

)Xα1,...,αd
.

An interpretation of this identity is that the columns of Uj , assuming that they are
linearly independent, form a basis for a rj-dimensional subspace of RNj . A basis for a
subspace of RN1×···×Nd is given by the tensor product of these univariate bases. Each
choice of (α1, . . . , αd) in (2.4) enumerates one such basis tensor, which is multiplied
by the corresponding entry in the coefficient tensor X. Thus, T ∈ range(U1)⊗ · · · ⊗
range(Ud), and the core tensor X gives the coefficients for T within this subspace.
This motivates the name “tensor subspace representation.”

2.3. The Alternating Least Squares algorithm. A popular method for com-
puting best rank R approximations is the Alternating Least Squares (ALS) algorithm.
It is based on sequentially fixing all but the k-th factor and solving the resulting linear
least squares problem. It can be considered a block nonlinear Gauss-Seidel iteration.
The variant for the best rank one approximation problem is given in Algorithm 2.1.

Algorithm 2.1 Alternating least squares (ALS)
function ALS(B ∈ RI)

choose nonzero starting values xj ∈ RNj , j = 1, . . . , d
while not converged do

for k = 1, . . . , d do
solve the linear least squares problem

xk ← arg min
y∈RNk

‖B − x1 ⊗ · · ·xk−1 ⊗ y ⊗ xk+1 · · · ⊗ xd‖2

end for
end while
return (x1, . . . , xd)

end function

Possible stopping criteria for Algorithm 2.1 include reaching a fixed number of
iterations, the reduction of the target functional to a desired level, or stagnation of
the changes in the factors xj .

We do not go into details here on how to solve the linear least squares problems
which occur within Algorithm 2.1 as this is by now well established in the literature;
see, e.g., [12]. For a more general situation, we describe the procedure in Section 4.1.

There exist variants of Algorithm 2.1 for the best rank R approximation problem.
However, for R > 1 and d > 2, convergence is very dependent on the chosen starting
values and may be very slow or even stagnate. On the other hand, Algorithm 2.1 (for
the case R = 1) has been proved to converge globally for almost all B (see [22]), and
this is conjectured to hold for all B.

2.4. The Greedy Rank One Update algorithm. As discussed above, best
rank one approximations are typically significantly faster to compute (by Algorithm
2.1) than best rank R approximations for R > 1, often by orders of magnitude. This
can be exploited to build approximation algorithms which are based on successive
rank one approximations.
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In particular, a greedy rank-one update strategy permits fast computation of
rank R approximations to tensors, which however usually have significantly larger
approximation errors than the best rankR approximation. Starting with a zero tensor,
we add in each iteration the best rank one approximation to the current approximation
error. This best rank one approximation can be computed using Algorithm 2.1 (ALS),
since it typically converges globally and quickly. After R iterations of the greedy rank
one update method, we obtain a rank R approximation. The entire procedure is
shown in Algorithm 2.2. Note that the approximation Xk is typically not stored and
returned as a full tensor, but as a list of rank one contributions.

Algorithm 2.2 Greedy rank one updates (GROU)
function GROU(B ∈ RI)

let X0 = 0
for k = 1, 2, . . . , R do

(x1, . . . , xd) = ALS(B −Xk−1)
Xk = Xk−1 + x1 ⊗ · · · ⊗ xd

end for
return XR

end function

In the matrix case (d = 2), ALS will, in the k-th iteration of Algorithm 2.2,
compute approximately the k-th singular pair of B. Thus, GROU will approximate
with high precision the truncated SVD and thus typically converge quite fast.

The situation is quite different for d > 2, where convergence of this algorithm is
often very slow, meaning that many rank one terms are required to obtain a reasonable
approximation of B. On the other hand, an advantage of this algorithm is that each
iteration requires relatively low computational effort. In fact, the computational time
is typically completely dominated by the ALS step.

3. A greedy algorithm for Tucker approximation. We propose a Greedy
Tucker Approximation (GTA) algorithm for efficiently computing approximations
of the form (2.1). The idea is to greedily build up the tensor product subspace
(U1, . . . , Ud) by one dimension in each iteration. In other words, after k iterations, we
have r1 = . . . = rd = k and Uj ∈ RNj×k. As in GROU, the main building block is
the computation of best rank one approximations to the current error by ALS.

Given an input tensor B ∈ RI , we start with an empty Tucker approximation
T = 0. In each iteration, we enrich the previous tensor subspace in such a way that
it contains the best rank one approximation of the current error B − T (computed
by Algorithm 2.1). In other words, given the matrices U1, . . . , Ud from the previous
iteration and a new rank one approximation x1⊗ · · · ⊗ xd ∈ RI , we wish to construct
new matrices U ′1, . . . , U ′d with one additional column each such that xj ∈ range(U ′j).
Instead of simply appending xj to Uj , we append its orthonormalized version,

U ′j = orth(Uj , xj) := [Uj , x
′
j/‖x′j‖] with x′j = (I − UjUTj )xj .

In this way, we keep the columns of the matrices Uj orthonormal throughout. Note
that if ‖x′j‖ � ‖xj‖, this means that xj is already approximately contained in
range(Uj), and we may skip enriching Uj in this iteration. For simplicity, we do
not use this modification of the algorithm in the remainder of the paper.

Since each matrix Uj has orthonormal columns, it follows from elementary prop-
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erties of the tensor product that the resulting tensor product basis used in (2.4),
{
U1,α1

⊗ · · · ⊗ Ud,αd
∈ RI : αj ∈ {1, . . . , rj}, j = 1, . . . , d

}

is orthonormal as well. This allows us to cheaply compute the core tensor correspond-
ing to the best approximation in the tensor subspace by the orthogonal projection

X = (UT1 , . . . , U
T
d ) ·B ∈ Rk×···×k.

Since the matrices Uj are unchanged from the previous iteration except for the
addition of one column, it is not necessary to recompute the entries of X which
were computed in previous iterations. We then obtain a new approximation T =
(U1, . . . , Ud) · X. It should be noted that it is not necessary to compute T as a full
tensor, but instead it may be kept only in Tucker format. The entire procedure is
shown in Algorithm 3.1.

Algorithm 3.1 Greedy Tucker approximation (GTA)
function GTA(B ∈ RI)

let Uj = {}, T = 0
for k = 1, 2, . . . , R do

(x1, . . . , xd) = ALS(B − T )
for j = 1, . . . , d do

Uj ← orth(Uj , xj)
end for
X ← (UT1 , . . . , U

T
d ) ·B

T ← (U1, . . . , Ud) ·X
end for
return (U1, . . . , Ud), X

end function

We may stop the algorithm either after a fixed number of iterations (as shown in
Algorithm 3.1) or when the absolute or relative error is below a desired threshold.

4. A greedy algorithm for Tucker approximation of solutions of tensor
linear systems. Assume that the tensor to be approximated is not given directly,
but as the solution Z ∈ RI of a tensor linear equation AZ = B, where A : RI → RI is
an invertible linear operator on tensors (often of low rank itself). Such equations arise
naturally, for instance, in the discretization of partial differential equations (PDEs)
over tensor product grids. We give an example of such a tensor linear system in Sec-
tion 5.2. Recently, there has been increased interest in efficiently solving such tensor
linear systems due to the development of the Isogeometric Analysis [11] approach for
the discretization of PDEs based on tensor product spline spaces; see, e.g., [10].

4.1. Best rank one minimizers of the residual. Instead of computing best
rank one approximations to the error, which is not accessible since Z is not known, we
compute rank one tensors which minimize the residual: find xj ∈ RNj , j = 1, . . . , d,
such that

‖B −A(x1 ⊗ · · · ⊗ xd)‖ → min .

The Alternating Least Squares algorithm generalizes in a straighforward fashion to
this setting, as shown in Algorithm 4.1. We denote this algorithm by ALS-LS(A, B).
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Algorithm 4.1 Alternating least squares for linear systems (ALS-LS)
function ALS-LS(A : RI → RI , B ∈ RI)

choose nonzero starting values xj ∈ RNj , j = 1, . . . , d
while not converged do

for k = 1, . . . , d do
solve the linear least squares problem

xk ← arg min
y∈RNk

‖B −A(x1 ⊗ · · ·xk−1 ⊗ y ⊗ xk+1 · · · ⊗ xd)‖2

end for
end while
return (x1, . . . , xd)

end function

Like Algorithm 2.1, it can be extended to compute approximations with rank R > 1,
but we do not use this variant due to the generally poor convergence.

For this algorithm to be efficient, we generally prefer the linear operator A itself
to be of low rank. By this we mean that there exists a rank RA ∈ N and (possibly
sparse) matrices Aρj ∈ RNj×Nj , j = 1, . . . , d, ρ = 1, . . . , RA, such that for all xj ∈ RNj ,
j = 1, . . . , d, we have

(4.1) A(x1 ⊗ · · · ⊗ xd) =

RA∑

ρ=1

(Aρ1x1)⊗ · · · ⊗ (Aρdxd).

In order to solve the k-th inner linear least squares problem in Algorithm 4.1 with
such an A with low rank (see, e.g., [1]), we introduce the tensor linear operator

Zk = Z =

RA∑

ρ=1

(Aρ1x1)⊗ · · · ⊗ (Aρk−1xk−1)⊗Aρk ⊗ (Aρk+1xk+1)⊗ · · · ⊗ (Aρdxd)

=

RA∑

ρ=1

zρ1 ⊗ · · · ⊗ zρk−1 ⊗A
ρ
k ⊗ z

ρ
k+1 ⊗ · · · ⊗ z

ρ
d : RNk → RI

with the vectors zρj = Aρjxj ∈ RNj . Then the solution of the k-th least squares
problem is given by the solution x̂k ∈ RNk of the linear equation

ZTZx̂k = ZTB =

RA∑

ρ=1

((zρ1)T , . . . , (zρk−1)T , (Aρk)T , (zρk+1)T , . . . , (zρd)T ) ·B

with the matrix ZTZ ∈ RNk×Nk and the right-hand side ZTB ∈ RNk , where we
used property (2.3). This shows that the input tensor B ∈ RI to Algorithm 4.1 is
not required entrywise, but only in a form which allows the computation of multiway
tensor products (2.1) with it. In particular, using property (2.2), we can realize
ALS-LS efficiently with B given as a Tucker tensor, which we will exploit in the next
section.

Before we proceed to introduce the variant of GTA for tensor linear systems, we
point out that the strategy of greedy rank one updates generalizes easily to the case of
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such linear systems by replacing the rank one approximation to the current error by
the rank one minimizer of the residual. Algorithm 4.2 displays this variant GROU-
LS. If the right-hand side B is given as a canonical tensor, then it is advantageous
to keep also Xk in canonical form throughout. Along the lines of the remarks made
above, it is possible to realize ALS-LS directly and efficiently on canonical tensors.
This approach has enjoyed considerable success in many applications under the name
Proper Generalized Decomposition (PGD); see [3] and the references therein. Some
convergence results for this greedy rank one update method are given in [1].

Algorithm 4.2 Greedy rank one updates for linear systems (GROU-LS)
function GROU-LS(A : RI → RI , B ∈ RI)

let X0 = 0
for k = 1, 2, . . . , R do

(x1, . . . , xd) = ALS-LS(A, B −AXk−1)
Xk = Xk−1 + x1 ⊗ · · · ⊗ xd

end for
return XR

end function

4.2. The algorithm GTA-LS. Based on ALS-LS, we develop a variant of
GTA, which we call GTA-LS, for approximating solutions of tensor linear systems
in Tucker format. As in Algorithm 3.1, we start with an empty Tucker tensor T = 0
and empty matrices (i.e., with zero columns) Uj , j = 1, . . . , d. In each iteration, we
compute the rank one tensor x1 ⊗ · · · ⊗ xd which minimizes the residual ‖B −A(T +
x1⊗· · ·⊗xd)‖ by Algorithm 4.1. As in Algorithm 3.1, we extend each matrix Uj with
the orthonormalized xj .

Unlike in Algorithm 3.1, we cannot compute the core tensor X as the orthogonal
projection of the sought tensor Z since Z is only given implicitly. Instead, we attempt
to approximately satisfy the linear equation AZ = B in the tensor subspace spanned
by the bases (U1, . . . , Ud). To this end, we introduce the linear operators

U : Rr1×···×rd → RN1×···×Nd , UX = (U1, . . . , Ud) ·X,
UT : RN1×···×Nd → Rr1×···×rd , UTY = (UT1 , . . . , U

T
d ) · Y.

Roughly speaking, we now seek a coefficient tensor X ∈ Rr1×···×rd such that

A(UX) ≈ B.

One way to approach this is to minimize the residual,

‖B −AUX‖ → min,

which leads to the linear least squares problem

(4.2) (AU)TAUX = (AU)TB.

Another approach which is tempting when the operator A stems from a Galerkin
discretization of a partial differential equation is based on the variational interpreta-
tion

〈AZ, ψ〉 = 〈B, ψ〉 ∀ψ ∈ RI ,
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where 〈·, ·〉 denotes the Frobenius inner product. Performing a Galerkin projection of
this variational problem to the tensor subspace spanned by U , we obtain the problem:
find ϕ ∈ range(U) ⊂ RI such that

(4.3) 〈Aϕ, ψ〉 = 〈B, ψ〉 ∀ψ ∈ range(U).

This is equivalent to finding X ∈ Rr1×···×rd such that

〈AUX, UY 〉 = 〈B, UY 〉 ∀Y ∈ Rr1×···×rd .

Thus, (4.3) is solved by ϕ = UX with X being the solution of the linear system

(4.4) (UTAU)X = UTB.

If A stems from the Galerkin discretization of a coercive and bounded bilinear form,
then, by Céa’s lemma, the unique solution ϕ is a quasi-optimal approximation to
Z in the space spanned by U . The constant of quasi-optimality depends only on
the underlying variational problem (namely, on the constants in the coercivity and
boundedness estimates), but not on U . If these assumptions are not satisfied, the
least squares approach (4.2) may be more appropriate.

The entire algorithm GTA-LS is given in Algorithm 4.3. As a stopping criterion,
we can either use a fixed number of iteration steps or the reduction of the initial
residual by a desired tolerance.

Algorithm 4.3 Greedy Tucker approximation for linear systems (GTA-LS)
function GTA-LS(A : RI → RI , B ∈ RI)

let Uj = {} for j = 1, . . . , d, X = 0
for k = 1, 2, . . . , R do

T ← (U1, . . . , Ud) ·X
(x1, . . . , xd) = ALS-LS(A, B −AT )
for j = 1, . . . , d do

Uj ← orth(Uj , xj)
end for
X ← (UTAU)−1UTB (or ((AU)TAU)−1(AU)TB, see (4.2))

end for
return (U1, . . . , Ud), X

end function

Assuming that B is given in low-rank Tucker format, we also obtain the residual
B −AT in low-rank Tucker format by combining properties (2.3) and (2.2). Here we
require a method for adding Tucker tensors, which is described in detail in [8]. The
trivial addition of Tucker tensors also increases the resulting Tucker rank additively.
Therefore, we apply HOSVD projection as described in [8] to reduce the Tucker rank
of the residual before invoking ALS-LS. In our examples we found that truncation
with a relatively large relative tolerance of 10−2 was sufficient in order not to degrade
the overall convergence rate.

In each iteration, we obtain X by solving the smaller (r1 · · · rd unknowns) linear
system (4.2) or (4.4). The matrix to be inverted here generally is dense and has size
kd×kd in the k-th iteration. Thus the solution of this linear system grows increasingly
computationally expensive with increasing k, and we will discuss some strategies to
speed up this step in Section 4.3.
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4.3. Solution of the linear system for the coefficients X. In every iteration
of Algorithm 4.3, we have to solve a linear system for the linear operator UTAU :
Rr1×···×rd → Rr1×···×rd (assuming the Galerkin approach (4.4)). After matricizing
this operator, and taking into account that in the k-th iteration rj = k, we obtain
a matrix C ∈ Rkd×kd . Since the matrices Uj have orthonormal columns, C inherits
many properties from the global linear system A such as invertability, symmetry, and
positive definiteness. If we use instead the operator UTATAU from the least squares
approach (4.2), C is guaranteed to be symmetric and positive definite.

However, in general, C is dense even if A is sparse due to the density of the
factor matrices Uj . This makes the direct inversion of C relatively expensive as the
rank grows, as the complexity for this inversion scales with O(k3d). Although these
routines are highly optimized in modern BLAS/LAPACK implementations, it is worth
considering alternatives for situations where higher rank is required.

At the k-th iteration, we have the core tensor Xk−1 ∈ R(k−1)×···×(k−1) from the
previous iteration available to us. Since all the previous basis vectors in the matrices
Uj remain unchanged, it seems reasonable to use Xk−1 as the starting value of an
iterative method by extending it with zeros along each coordinate axis, resulting in a
tensor X̃k ∈ Rk×···×k. We then apply a few iterations of Gauss-Seidel relaxation with
the matrix C and the starting values X̃k to obtain an approximation to the solution
of the linear system (assuming that the conditions for convergence of Gauss-Seidel,
e.g., symmetric positive definiteness, are satisfied).

The number of Gauss-Seidel iterations should be chosen in such a way that the
convergence rate of Algorithm 4.3 is not degraded. In the example in Section 5.2, we
see that the convergence rate of Gauss-Seidel is bounded from above independently
of the rank (and hence the size of C). This is rather surprising and motivates the
use of an iterative method for the solution of this linear system. In this case, a
constant number of Gauss-Seidel iterations per iteration of Algorithm 4.3 is sufficient
to maintain the optimal convergence rate.

Further ways to improve the performance of this step may be sparsification of the
matrix C, block preconditioning, or, since C has tensor product structure itself, the
use of tensor methods also on this level. We leave these ideas for future work.

5. Numerical examples. In this section, we present numerical results from
examples both for the direct and the implicit tensor approximation problem. The
tests were performed on a Linux workstation with an Intel R© CoreTM i5-7500 CPU
with 3.40GHz and 32 GB RAM. The used implementation in the Python programming
language can be found on the second author’s homepage1.

5.1. Example 1: Approximation. We consider low-rank approximation of the
tensor B ∈ R100×100×100 with the entries

Bijk = 1/
√
i2 + j2 + k2, i, j, k ∈ {1, . . . , 100}.

This tensor was used as a benchmark problem in several previous publications [19,
18, 20]. We compare the errors in the Frobenius norm which are obtained after R
iterations of Algorithm 2.2 (GROU) and Algorithm 3.1 (GTA). Recall that GROU
results in a rank R approximation, whereas GTA results in a Tucker approximation
with Tucker rank (R,R,R).

As an additional point of comparison, we compute the so-called higher-order SVD
(HOSVD; see [14]) of B and truncate it to Tucker rank (R,R,R). Unlike in the matrix

1http://www.numa.uni-linz.ac.at/~chofreither/software/
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case, where the truncated SVD yields the best rank R approximation, the truncated
HOSVD is generally not the best approximation with a given Tucker rank. However,
it is quasi-optimal up to a constant

√
d (see [6]) and thus provides a very good upper

bound for the best Tucker approximation error for our needs.
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Figure 1. Errors in Frobenius norm for Example 1 plotted over the rank R (i.e., the number
of iterations for GTA and GROU and the truncation rank for HOSVD).

The errors for these three methods are shown in Figure 1, plotted over the number
of iterations, i.e., the rank R. Convergence of the greedy rank one update strategy is
rather slow. On the other hand, the greedy Tucker approximation algorithm exhibits
errors which are essentially identical to those of the truncated HOSVD, and thus to
the best approximation error with a given Tucker rank. It is somewhat surprising
that a greedy approximation algorithm produces almost optimal approximations.

Of course, the comparison in terms of iteration numbers does not give the full pic-
ture as algorithmGTA performs more work per iteration and produces larger outputs
in terms of the required memory storage. Therefore, we also give the computation
times together with the achieved errors in the Frobenius norm for different ranks R in
Table 1. We see that the computation times grow mildly superlinearly with R for both
algorithms, and GTA takes only by a small factor more time than GROU. In fact,
the invokation of Algorithm 2.1 (ALS) requires the majority of time in both methods.
As a result, GTA is the dramatically superior method of approximation also when
considered with respect to computation time. The achieved errors are plotted over
the required times in Figure 2.

5.2. Example 2: Solution of tensor linear system. We compute discretized
solutions of the Poisson equation

−∆u = 1 on (0, 1)3

with homogeneous Dirichlet boundary conditions. We introduce a subdivision of (0, 1)
into n+ 1 uniform intervals and construct a space of univariate, piecewise linear and
continuous finite element functions over this grid. As a basis for this space, we use
standard Lagrange hat functions, i.e., functions which are 1 in the j-th grid point and
0 in all others; denote this basis function by φj . We then build a tensor product basis
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Table 1
Computation times (in seconds) and Frobenius errors for algorithms GROU and GTA in Ex-

ample 1. Numbers are averaged over 25 runs.

R time GROU time GTA error GROU error GTA

1 0.017 0.017 3.572×100 3.572×100

2 0.038 0.042 2.080×100 1.327×100

3 0.055 0.079 1.301×100 5.503×10−1

4 0.094 0.104 1.126×100 2.062×10−1

5 0.125 0.139 8.636×10−1 8.160×10−2

6 0.144 0.180 4.585×10−1 2.992×10−2

7 0.177 0.212 4.067×10−1 1.255×10−2

8 0.237 0.254 3.611×10−1 3.635×10−3

9 0.262 0.285 3.078×10−1 1.237×10−3

10 0.283 0.343 2.388×10−1 4.638×10−4

11 0.319 0.397 1.703×10−1 1.398×10−4

12 0.337 0.440 1.505×10−1 4.407×10−5

13 0.409 0.467 1.377×10−1 1.445×10−5

14 0.436 0.517 1.165×10−1 4.634×10−6

15 0.476 0.517 9.847×10−2 1.402×10−6

16 0.530 0.551 8.554×10−2 3.974×10−7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time (s)
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Figure 2. Errors in Frobenius norm for Example 1 plotted over computation time for algo-
rithms GTA and GROU. Numbers are averaged over 25 runs.

of trilinear basis functions

φijk(x, y, z) = φi(x)φj(y)φk(z)

over the unit cube and perform a standard Galerkin finite element discretization of
the Poisson equation. By standard arguments [16], we know that the stiffness matrix
K ∈ Rn3×n3

for this problem can be written as a sum of Kronecker products,

K = K1 ⊗M1 ⊗M1 +M1 ⊗K1 ⊗M1 +M1 ⊗M1 ⊗K1,
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where M1,K1 ∈ Rn×n with the entries

[M1]ij =

∫ 1

0

φi(x)φj(x) dx, [K1]ij =

∫ 1

0

φ′i(x)φ′j(x) dx, i, j = 1, . . . , n

are the mass and stiffness matrices for the univariate bases, respectively. Here n is the
number of univariate basis function after eliminating boundary degrees of freedom.

Interpreting this problem as a tensor linear system as described in Section 4, we
seek a tensor Z ∈ RI = Rn×n×n such that AZ = B, where the application of the
tensor linear operator A : RI → RI to a rank one tensor x1 ⊗ x2 ⊗ x3 with xj ∈ Rn
is given by

A(x1 ⊗ x2 ⊗ x3) = K1x1 ⊗M1x2 ⊗M1x3 +M1x1 ⊗K1x2 ⊗M1x3

+M1x1 ⊗M1x2 ⊗K1x3

and B ∈ RI is a constant (hence, rank one) tensor with entries bijk =
∫

Ω
φijk dx.

We apply Algorithm 4.3 (GTA-LS) to this tensor linear system, using the Gal-
erkin formulation (4.4) of the core linear system. We test both the variant with exact
solution of the dense core linear system and with inexact solution by 5 Gauss-Seidel
steps. For comparison, we also test the greedy rank one update method Algorithm 4.2
(GROU-LS). Furthermore, we compare to the truncated HOSVD of the exact so-
lution Z. Note that for computing the HOSVD, we first need to compute the exact
solution Z as a full tensor. Thus, this is not a viable method for computing the solu-
tion of large tensor linear systems and only serves as a point of reference for the best
Tucker rank (R,R,R) approximation of the exact solution.

The decay of the residual norm depending on the rank R for Example 2 with
n = 50 and n = 200 is shown in Figure 3. As in the direct approximation case
(Example 1), the convergence of the greedy rank one update method is slow. The
Greedy Tucker Approximation strategy attains rates which are much closer to the
quasi-optimal approximation error of the truncated HOSVD. We point out that the
variant which uses 5 Gauss-Seidel steps for the core linear system (GS) does not have
significantly worse convergence rate than the one using a direct solver (DS).

Unlike in the approximation case, there is a gap between the convergence rate
of GTA-LS and the optimal rate (which is very well approximated by truncated
HOSVD). In the case n = 50, the geometric mean of the residual reductions from one
iteration to the next is 5.19× for HOSVD (measured up to R = 15, where maximum
accuracy is reached) and 3.25× for GTA-LS; thus, the latter achieves 63% of the
quasi-optimal rate. In the case n = 200, the geometric mean of the residual reductions
from one iteration to the next is 3.00× for HOSVD and 2.13× for GTA-LS; thus, the
latter achieves 71% of the quasi-optimal rate. The quotients between the rates for the
error (instead of the residual) behave very similarly. Thus, somewhat surprisingly,
GTA-LS performs better, relatively to the best approximation error, for n = 200
than for n = 50.

The above results show that the gap is not directly related to the condition number
of the linear system, which scales like O(n2). Nevertheless, an interesting topic for
future study is the use of preconditioners. Assume we have an operator C : RI → RI
such that the preconditioned problem

C−1AZ = C−1B

is better conditioned than the original problem. For C having rank one, its inverse
has rank one as well and can be applied very efficiently. In the ideal (but unrealistic)
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Figure 3. Residual norm in Example 2 (solution of Poisson equation) plotted over the rank
R. Top: n = 50, bottom: n = 200. We compare Algorithm 4.3 with direct solution of the core linear
system (GTA-LS (DS)), Algorithm 4.3 with 5 Gauss-Seidel steps for the core linear system (GTA-
LS (GS)), and Algorithm 4.2 (GROU-LS). In addition, we show the residuals for the truncated
HOSVD, which was computed from the full exact solution. Numbers are averaged over 20 runs.

case that C−1A = I, the residual is identical to the error and we can hope for optimal
convergence rates by the evidence from Example 1. If C−1A is in some sense closer
to identity than A, we can expect the convergence rates to be closer to the optimal
ones, i.e., the gap to narrow.

In Figure 4, we plot the decay of the residual norm over the computation time.
Again, GROU-LS is not competitive. Up to a certain point, as long as the dense
core linear systems are small, the residual is reduced exponentially with time for
both variants of GTA-LS. As the solution of the dense core linear system begins to
dominate, we see significant differences in performance between the direct solution and
the Gauss-Seidel variants, stemming from the difference in computational complexity
for this step (cubic for exact solution, quadratic for Gauss-Seidel).

In order to evaluate the performance of the algorithm for varying problem size and
varying condition number, we display the computation times and residual reduction
factors for a constant number R = 15 of iterations for different choices of n in Table 2.
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Figure 4. Residual norm in Example 2 (solution of Poisson equation with n = 200) plotted
over computation time. We compare Algorithm 4.3 with direct solution of the core linear system
(GTA-LS (DS)), Algorithm 4.3 with 5 Gauss-Seidel steps for the core linear system (GTA-LS (GS)),
and Algorithm 4.2 (GROU-LS). Numbers are averaged over 20 runs.

Table 2
Algorithm GTA-LS with fixed rank R = 15 and varying problem size n in Example 2 (Poisson

equation). Shown are the computation time and the reduction in Frobenius norm of the initial
residual. The small core linear systems were solved directly (variant GTA-LS (DS)).

n time res. reduction

25 2.87 s 2.330× 10−12

50 3.78 s 1.023× 10−7

100 5.26 s 5.533× 10−6

200 5.49 s 3.009× 10−5

400 8.19 s 1.325× 10−4

800 8.17 s 4.025× 10−4

1600 11.24 s 7.450× 10−4

The core linear systems were solved directly here. We point out that the largest
problem considered here, n = 1600, corresponds to a linear system with roughly 4.1
billion degrees of freedom.

We observe that the computation times increase sublinearly with n. This can be
explained by the fact that in addition to steps which scale essentially linearly with
n, such as the invocation of ALS-LS, we also have the solution of the small, dense
core linear system, whose size does not depend on n. As usual, implementation issues
and hardware characteristics, such as multithreading and cache sizes, also impact the
time measurements.

The reduction of the residual for a fixed number of iterations decreases with n
in Table 2. As the discussion of Figure 3 indicated, this effect may be mostly due to
the fact that the error of the best Tucker rank (R,R,R) approximation, with fixed R,
increases with n. However, preconditioning could improve these rates, as discussed
above.

Finally, we present some numerical evidence that Gauss-Seidel performs well as
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Figure 5. Convergence rate of Gauss-Seidel for the dense core linear system, computed as the
spectral radius ρ(I − L−1

C C), for Poisson problem (Example 2) with n = 50 and n = 200, plotted
over the rank R. The size of the dense matrix C is R3 ×R3.

an approximate solver for the core linear system (see Section 4.3). The convergence
rate of Gauss-Seidel for a matrix C is given by the spectral radius ρ(I−L−1

C C), where
LC denotes the lower triangular part of C. In Figure 5, we plot these numbers for
the matrices C ∈ RR3×R3

arising in Algorithm 4.3 after R iterations, for the Poisson
equation example with n = 50 and n = 200. The rates stay bounded away from
1 in both examples, independently of the rank. This shows that a fixed number of
Gauss-Seidel iterations is sufficient to solve the core linear system to an accuracy
where it does not degrade the overall convergence of Algorithm 4.3. However, for
increasing n, it may be necessary to increase the number of Gauss-Seidel steps. This
is generally acceptable since the effort for the ALS-LS step of the algorithm scales
roughly linearly with n, whereas the cost of one Gauss-Seidel iteration on C does not
depend on n.

6. Conclusion and outlook. We have presented algorithms for greedy approx-
imation in the Tucker tensor format of tensors which are given either explicitly or
implicitly as the solutions of tensor linear systems. We have compared their per-
formance with the greedy rank one update (GROU) strategy (also known as Proper
Generalized Decomposition [3] in applications), with which they share a main building
block, namely the computation of successive rank one approximations.

Both in the direct and in the implicit approximation case, the proposed methods
significantly outperform the GROU algorithms, both in terms of error per iteration
and error per unit of computation time.

In the implicit approximation case, our algorithm solves a small, dense linear
system in each iteration, usually of size kd × kd in the k-th iteration. If k becomes
large, this step may become a bottleneck. We have described how using Gauss-Seidel
iteration instead of the direct solution can help mitigate this issue. Additional ways to
improve the performance of this step, such as sparsification or using tensor methods,
may be the subject of future research.

The application of the GTA-LS algorithm to tensor product discretizations of
partial differential equations, in particular those arising in Isogeometric Analysis, will
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be the topic of a forthcoming publication. An interesting issue will be the construction
of suitable low-rank or rank one preconditioners in order to improve the convergence
rates, as discussed in Section 5.
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