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Abstract

In a recent paper by A. Chambolle et al. [10] it was proven that if the subgradient
of the total variation at the noise free data is not empty, the level-sets of the total
variation denoised solutions converge to the level-sets of the noise free data with respect
to the Hausdorff distance. The condition on the subgradient corresponds to the source
condition introduced by Burger and Osher [9], who proved convergence rates results
with respect to the Bregman distance under this condition. We generalize the result
of Chambolle et al. to total variation regularization of general linear inverse problems
under such a source condition. As particular applications we present denoising in
bounded and unbounded, convex and non convex domains, deblurring and inversion
of the circular Radon transform. In all these examples the convergence result applies.
Moreover, we illustrate the convergence behavior through numerical examples.

1 Introduction

In this paper we are concerned with total variation regularization of linear inverse problems

Au = f , (1)

for functions u : Ω→ R, where

• Ω = R2 or

• Ω is a bounded Lipschitz domain D ⊂ R2,

and A : L2(Ω)→ L2(Σ) is a linear bounded (typically compact) operator.
Since in general the solution of (1) is ill-posed, some sort of regularization needs to be

employed. The method considered in this paper is total variation regularization, in which
a regularization parameter α > 0 is chosen, and either of the two following minimization
problems is solved:

• The Dirichlet (resp. full space) problem consisting in computation of the minimizer
of the functional

Fα(u) :=
1

2
‖Au− f‖2L2(Σ) + αTV(u) (2)

over either one of the sets of functions

u ∈ L2(D) or u ∈ L2(R2) .

Here TV(u) ∈ [0,+∞] denotes the total variation in R2 of the function u (or its
extension by zero).
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• The Neumann problem consists in minimizing

F̂α(u) :=
1

2
‖Au− f‖2L2(Σ) + αTV(u ; Ω) over u ∈ L2(Ω) . (3)

Here TV(u ; Ω) is the total variation of u computed in the open set Ω.

Previously, Chambolle et al [10] proved that in the full space problem for A = Id
the level-sets of regularized solutions converge in Hausdorff distance to those of f . The
main goal of this paper is to show that the techniques of [10] apply to TV-regularization
for general linear ill-posed problems. We therefore show that the level-sets of the TV-
regularized solutions Hausdorff converge assuming a source condition and adequate pa-
rameter choices. Furthermore, we consider different boundary conditions (Dirichlet, Neu-
mann and full space) which not only have significant impact (more than in the denoising
case) on the reconstructions, but also require new ideas for the proofs.

One of the main reasons for the use of total variation regularization is dealing with solu-
tions which contain discontinuities, in particular piecewise constant functions representing
the contours of separate objects. Hausdorff convergence of level-sets is in fact particularly
well suited to such a situation, since it means (see Definition 2) that the maximal distance
between points of the regularized objects and those of the noise free solutions goes to zero.
Such a convergence is desirable both in imaging applications, where it has a direct visual
interpretation, as well as in identification of inclusions, where it corresponds to uniform
convergence of the inclusions themselves.

Structure of the paper. The outline of the paper is as follows: In Section 2 we prove
existence of minimizers of Fα and F̂α, review dual formulations of the corresponding opti-
mization problems and explore the convergence of dual solutions (see (8)) under vanishing
data perturbations, while assuming the source condition. In Section 3, we see that the
curvature of level-sets of minimizers is strongly linked to these dual variables and we ex-
plain (following [10]) how the convergence of the curvatures implies the main result on
Hausdorff convergence of level-sets. In Section 4 we give a proof, for each of the different
boundary conditions considered, of the main ingredient needed for the convergence: den-
sity estimates (25) for the level-sets. Finally, Section 5 contains some inverse problems
examples, where the results of previous sections apply. We discuss the effect of boundary
settings on the regularized solutions. Moreover, some numerical results are presented.

1.1 Notation and spaces

We recall that the total variation of a function u ∈ L1
loc(Ω) is defined by

TV(u ; Ω) := |Du|(Ω) = sup

{∫

Ω
u div z dx

∣∣∣∣ z ∈ C∞0 (Ω ; R2), ‖z‖L∞(Ω) 6 1

}
.

If TV(u ; Ω) is finite, then the distributional derivative Du is a vector-valued Radon mea-
sure on Ω. We also emphasize that for Ω = R2 we write

TV(u) := TV(u;R2),

and that for Ω = R2, the Dirichlet and Neumann problems coincide.
We also recall that for every Lebesgue measurable E ⊂ Ω the perimeter of E in Ω is

defined to be
Per(E ; Ω) := TV(1E ; Ω),

where 1E is the characteristic function of E, that is, 1E(x) = 1 if x ∈ E, and 1E(x) = 0
otherwise. If this quantity is finite, E is said to have finite perimeter. When Ω = R2 or
when Ω is clear from the context we skip the second argument in the above notation.
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If Ω is a bounded domain D, we can identify L2(D) with the set of extended functions{
u ∈ L2(R2)

∣∣ supp(u) ⊂ D
}

and since we have the inclusion L2(D) ⊂ L1(D), candidates
for minimizers of Fα are in

{
v ∈ BV(R2)

∣∣ v ≡ 0 on R2 \D
}
,

where we adopt the standard definition

BV(Ω) :=
{
u ∈ L1(Ω)

∣∣ TV(u; Ω) < +∞
}
.

This corresponds to assuming a homogeneous Dirichlet boundary condition and pos-
sible jumps at the boundary are taken into account. On the other hand, if Ω = R2,
minimizers of F̂α and Fα are identical, and are elements of the set

{
u ∈ L2(R2)

∣∣TV(u) < +∞
}
.

When minimizing F̂α, corresponding to the homogeneous Neumann condition, the natural
space is BV(Ω)∩L2(Ω). The influence of Ω and the boundary conditions on the solutions
is discussed in Section 5.

2 Dual solutions and source condition

Proposition 1. The functional Fα defined in (2) has at least one minimizer in L2(Ω). If
A is injective, there exists a unique minimizer.

Proof. Let (uk) be a minimizing sequence for Fα. Since uk ∈ L2(Ω) implies uk ∈ L1
loc(R2)

and we work in dimension 2, we can use Sobolev’s inequality [3, Theorem 3.47] to get

‖uk‖L2(Ω) 6 C TV(uk).

Now, the right hand side is bounded uniformly in k so that the Banach-Alaoglu theorem
for L2(Ω) and a compactness result [3, Theorem 3.23] provide a subsequence (uk) (not
relabelled) that converges both weakly in L2(Ω) and strongly in L1

loc(R2) to some limit uα.
Since A is a bounded linear operator, Auk also converges weakly to Auα in L2(Σ). Lower
semicontinuity of the norm with respect to weak convergence, and of the total variation
with respect to strong L1

loc(R2) convergence [3, Remark 3.5] proves that uα is a minimizer
of Fα.

The uniqueness statement is straightforward, since ‖·‖2L2(Σ) is strictly convex.

Remark 1. Minimization of F̂α and Fα can produce markedly different results. An example
is the choice Ω = (−1, 1)2, Σ = (−1 + η, 1 − η)2 for some η ∈ (0, 1), α = 1, f = 0 and A
defined by

Au(x) = u(x)− 1

4η2

∫

(−η,η)2
u(x+ y) dy,

continuous since ‖Au‖L2(Σ) 6 2 ‖u‖L2(Ω) by the triangle inequality and Young’s inequality
for convolutions. In this situation, the functional (3) is not coercive: considering the
sequence un := n1Ω, we have that F̂(un) = 0 for all n, but un is not bounded in L2(Ω). The
underlying reason is that constant functions are annihilated by A, that is, A1 = 0, where
1 represents the constant function with value 1 (this situation has also been discussed in
[24]). In contrast, when working with Dirichlet boundary we have TV(un) = 4n. Note
that in the denoising case (A = Id) the data term makes the functional coercive in L2(Ω)
even when using TV(u ; Ω).
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Proposition 2. The functional F̂α defined in (3), considered in L2(Ω), has at least one
minimizer. If A is injective, there exists a unique minimizer.

Proof. As noticed in Remark 1, the situation is slightly different from Prop. 1. Indeed, if
as above, (uk) is a minimizing sequence for F̂α, Poincaré inequality gives the existence of
a constant mk such that

‖uk −mk‖L2(Ω) 6 CTV(uk) 6 C. (4)

Now, if the constant functions are annihilated by A (that is, A1 = 0), then Auk − f =
A(uk − mk) − f and TV(uk −mk ; Ω) = TV(uk ; Ω), so that vk := uk − mk is also a
minimizing sequence. Since vk is bounded in L2(Ω) by (4), it converges weakly to some
v ∈ L2(Ω). Similarly to Prop. 1, one can use compactness and lower semicontinuity to
show that v is a minimizer of (3).
On the other hand, if A1 6= 0, the minimizing property for uk implies that (Auk − f)
is uniformly bounded in k. Therefore, so is (Auk). The Poincaré inequality implies that
A(uk −mk) is also bounded unformly in k, which forces (Amk) to be bounded too. The
boundedness of A gives

‖A ·mk‖L2(Σ) = |mk|‖A1‖L2(Σ),

and since the left hand side is bounded, the sequence |mk| is also bounded and therefore,
by (4), (uk) is bounded in L2(Ω) and converges weakly (up to a subsequence) to some u.
The end of the proof works then again as in Prop. 1.

In the rest of the section, we assume that we are in the case of Ω = R2 or Dirichlet
boundary conditions, but the results and their proofs are identical for Neumann boundary
conditions.

First, we recall some basic results about the convergence of uα as α vanishes, when
some noise is added to the data f .

Lemma 1. Let A : L2(Ω)→ L2(Σ) be a bounded linear operator. Moreover, assume that
there exists a solution ũ of (1) which satisfies TV(ũ) < ∞. Then the following results
hold:

• There exists a solution u† of (1) with minimal total variation. That is Au† = f and

TV(u†) = inf
{

TV(u)
∣∣u ∈ L2(Ω), Au = f

}
.

• Given a sequence (αn) with αn → 0+, elements wn ∈ L2(Ω) and some positive
constant C such that

‖wn‖2L2(Σ)

αn
6 C, (5)

there exist a (not relabelled) subsequence (αn) and minimizers (uαn,wn) of

u 7→ 1

2
‖Au− (f + wn)‖2L2(Σ) + αnTV(u)

such that uαn,wn ⇀ u† weakly in L2(Ω) for u† a solution of (1) with minimal total
variation. Additionally, this convergence is also strong with respect to the L1

loc(R2)
and Lp(Ω) for 1 6 p < 2, topology, respectively, if Ω is bounded. Furthermore,
TV(uαn,wn)→ TV(u†).

Proof. A proof of the first statement can be found in [23, Theorem 3.25]. The second
relies on the compactness of the embedding of BV, and may be found in [23, Theorem
3.26] (see also [1, Theorem 5.1]).
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For the results contained in the rest of this section, we consider the noiseless case,
and therefore we denote a generic minimizer of Fα with the fixed data f by uα. We now
introduce the source condition, which is the key assumption for our results.

Definition 1. Let A∗ : L2(Σ) → L2(Ω) be the adjoint of A. We say that a minimum
norm solution u† satisfies the source condition if

R(A∗) ∩ ∂TV(u†) 6= ∅. (6)

Here R(A∗) denotes the range of the operator A∗ and ∂TV(u†) denotes the subgradient of
TV(·) at u† with respect to L2(Ω).

Remark 2. This source condition, first introduced in [9], is standard in the inverse problems
community. It is the natural condition to obtain convergence rates (with respect to the
Bregman distance) of uα → u†. See [23, Proposition 3.35, Theorem 3.42].

Remark 3. Let us notice that the set in (6) does not depend on which minimal variation

solution u† is chosen. Indeed, let u†1, u
†
2 be such solutions and assume

A∗p ∈ ∂TV(u†1),

which means that for every h ∈ L2(Ω)

TV(u†1 + h)− TV(u†1) > 〈A∗p, h〉L2(Ω) .

Now we can write for every k ∈ L2(Ω), since TV(u†2) = TV(u†1)

TV(u†2 + k)− TV(u†2) = TV(u†1 + (u†2 − u†1) + k)− TV(u†1)

>
〈
A∗p, (u†2 − u†1) + k

〉
L2(Ω)

=
〈
A∗p, u†2 − u†1

〉
L2(Ω)

+ 〈A∗p, k〉L2(Ω)

=
〈
p,Au†2 −Au†1

〉
L2(Σ)

+ 〈A∗p, k〉L2(Ω)

= 〈A∗p, k〉L2(Ω) ,

which means that A∗p ∈ ∂TV(u†2).

Theorem 1. • Let α > 0. The dual problem (in the sense of [15]) of minimizing the
functional Fα, defined in (2), on L2(Ω) consists in maximizing, among p ∈ L2(Σ)
such that A∗p ∈ ∂TV(0), the quantity

Dα(p) := 〈f, p〉L2(Σ) −
α

2
‖p‖2L2(Σ) . (7)

Moreover,
inf

u∈L2(Ω)
Fα(u) = sup

A∗p∈∂TV(0)
Dα(p). (8)

If these quantities are attained by uα, pα, then we have the extremality relations

A∗pα ∈ ∂TV(uα) (9)

and

pα ∈ −∂
(

1

2α
‖A · −f‖2L2(Σ)

)
(uα) =

{
1

α
(f −Auα)

}
.
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• Similarly, the formal limits of the minimization problems for (2) and (7) when α→ 0
write

inf{TV(u) | u ∈ L2(Ω), Au = f} (10)

and
sup

A∗p∈∂TV(0)
〈p, f〉L2(Σ) = sup

v∈R(A∗)∩∂TV(0)

〈
v, u†

〉
L2(Ω)

, (11)

and satisfy also the strong duality condition, that is, these values are equal.

The extremality conditions for (10) and (11), provided the quantities above are at-
tained by some u†, p0, write

A∗p0 ∈ ∂TV(u†) (12)

and
p0 ∈ −

(
∂χ{f}(A ·)

)
(u†) = L2(Σ),

where χ{f} is the indicator function (defined on L2(Σ)) of the set {f}, i.e. χ{f}(q) = 0
if q = f , and χ{f}(q) = +∞ otherwise.

Proof. In the L2 setting we can make use of classical duality theorems. With the notation
of [15, Theorem III.4.2]

V = L2(Ω), Y = L2(Σ),Λ = A,F (·) = TV(·) and G(·) =
1

2α
‖· − f‖2L2(Σ) .

the claim follows from [15, Remark III.4.2]. We now check the assumptions of this remark:
F and G are convex and lower semi-continuous in L2(Ω). In addition, there exists v ∈
L2(Ω), for instance v = 0, such that TV(v) < +∞, 1

2α ‖Av − f‖
2
L2(Σ) < +∞ and w 7→

1
2α ‖w − f‖

2
L2(Σ) < +∞ is continuous at Av.

Now, noticing that since by definition TV is the conjugate of the indicator function of
the set

K =
{

div z
∣∣ z ∈ C∞0 (Ω ; R2), ‖z‖L∞(Ω) 6 1

}
,

we get that its conjugate TV∗ is the indicator function of the closure K of K in the L2

topology [15, Propositions I.4.1 and I.3.3]. On the other hand, we have [15, Proposition
I.5.1] that v ∈ ∂TV(0) if and only if TV∗(v) = 0, that is, when v ∈ K.

The assumption that there exists a maximizer of (11) is in fact related to the source
condition (6):

Lemma 2. The following identity holds:

∂TV(u†) =

{
v ∈ ∂TV(0)

∣∣∣∣
〈
v, u†

〉
L2(Ω)

= TV(u†)
}
. (13)

Furthermore, there exists p0 maximizing the functional defined in (11) over p ∈ L2(Ω)
satisfying

A∗p ∈ ∂TV(0) if and only if the source condition (6) is satisfied.

Proof. The identity (13) (also used in [10]), that holds for every 1-homogeneous convex
functional, can be derived taking advantage of the 0-homogeneity of the subgradient and
noting that for such a functional, we have the triangle inequality.

For the second part, we start by noticing that

〈p, f〉L2(Σ) =
〈
p, Au†

〉
L2(Σ)

=
〈
A∗p, u†

〉
L2(Ω)

. (14)
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The source condition (6) implies the existence of p0 ∈ L2(Σ), v0 ∈ L2(Ω) such that

v0 = A∗p0 ∈ ∂TV(u†).

Then, we note that for an arbitrary v ∈ ∂TV(0) the definition of the subgradient implies
that TV(u†)− TV(0)−

〈
v, u† − 0

〉
L2(Ω)

≥ 0, and thus

〈
v, u†

〉
L2(Ω)

6 TV(u†). (15)

In particular, (13) and (15) imply that v0 ∈ ∂TV(0) and maximizes ∂TV(0) 3 v 7→〈
v, u†

〉
L2(Ω)

. Therefore, using (14), it follows that p0 ∈ L2(Σ) is a maximizer of the

functional defined in (11).
Conversely, if p0 ∈ L2(Σ) maximizes 〈·, f〉L2(Σ) among p such that A∗p ∈ ∂TV(0),

then the extremality condition (12) ensures that

A∗p0 ∈ ∂TV(u†),

and thus the source condition is satisfied.

Remark 4. The minimizers of the primal functionals (2), (10) as well as the maximizers
of the limit dual functional (11) are not unique in general. However, the dual functional
Dα, defined in (7), has a unique maximizer pα. Indeed, the existence follows directly
since ∂TV(0) is weakly closed (subgradients of lower semicontinuous convex functions are
convex and strongly closed [7, Proposition 16.4], hence weakly closed) and non empty
(zero is for example in it). Uniqueness follows by the strict convexity of the squared L2

norm and convexity of ∂TV(0).

The following proposition is a key result explaining the importance of the source con-
dition, and its influence on the behavior of the dual solutions. The arguments are similar
as proving convergence of the Augmented Lagrangian Method (see [18]), which have also
been used to prove convergence rates results for dual variables of Tikhonov regularized
solution [16] and to prove existence of Bregman TV-flow [8]. The proof of the first part
of this proposition follows [14].

Proposition 3. Let the source condition (6) be satisfied and let pα be the maximizer of
(7). Then,

lim
α→0+

pα = pm strongly in L2(Σ),

where pm is the maximizer of (11) with minimal L2(Σ) norm. Conversely, if (pα) is
bounded in L2(Σ), then the source condition is satisfied (and therefore (pα) is also conver-
gent).

Proof. Let p0 be a maximizer of (11), which exists by Lemma 2. We have that

〈p0, f〉L2(Σ) =
〈
A∗p0, u

†
〉

L2(Ω)
>
〈
A∗pα, u†

〉
L2(Ω)

and analogously, since pα maximizes Dα(·) that

〈
A∗pα, u†

〉
L2(Ω)

− α

2
‖pα‖2L2(Σ) >

〈
A∗p0, u

†
〉

L2(Ω)
− α

2
‖p0‖2L2(Σ) . (16)

Summing these inequalities, we see that (pα) is bounded and therefore converges weakly
(up to a subsequence) to some pm ∈ L2(Σ). Passing to the limit in the two previous
equations gives

〈pm, f〉L2(Σ) = 〈p0, f〉L2(Σ)
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where A∗pm ∈ ∂TV(0), the latter being weakly closed. Equation (16) and weak conver-
gence imply that

‖pm‖L2(Σ) 6 lim inf ‖pα‖L2(Σ) 6 ‖p0‖L2(Σ)

which implies that pm is actually the minimal norm maximizer of the functional 〈·, f〉L2(Σ)

over p such that A∗p ∈ ∂TV(0), and that the convergence is strong (and for every subse-
quence).

Let us now assume that (pα) is bounded in L2(Σ). Then by weak compactness for the
pα and applying Lemma 1 (with wn = 0), there exist αn → 0, u† a solution of Au = f
with minimal total variation, and p such that

pαn ⇀ p in L2(Σ), and

uαn → u† in L1
loc(Ω).

The extremality conditions (9) and (13) imply that

〈A∗pαn , uαn〉L2(Ω) = TV(uαn).

Since TV(·) is lower semi-continuous on L1
loc(R2), we have TV(u†) 6 lim infn TV(uαn).

On the other hand, one can write

TV(uαn) =
〈
A∗pαn , u

†
〉

L2(Ω)
+
〈
A∗pαn , uαn − u†

〉
L2(Ω)

=
〈
A∗pαn , u

†
〉

L2(Ω)
+ 〈pαn , Auαn − f〉L2(Σ) ,

where the first term of the right hand side converges to
〈
A∗p, u†

〉
L2(Ω)

whereas the second

term goes to zero because (pαn) is uniformly bounded in L2(Ω) and because of the strong
L2(Σ) convergence Auαn → f . Moreover, A∗p ∈ ∂TV(0) because ∂TV(0) is weakly closed.
Hence A∗p ∈ ∂TV(u†), which is the source condition.

3 Convergence of Level-Sets

In order to formulate the main result of this paper we need three definitions:

Definition 2. Let E and F two subsets of Ω. We define the Hausdorff distance between
E and F to be the quantity

dH(E,F ) = max

{
sup
x∈E

d(x, F ), sup
y∈F

d(y,E)

}

= max

{
sup
x∈E

inf
y∈F
|x− y|, sup

y∈F
inf
x∈E
|x− y|

}
.

If En is a sequence of subsets of Ω, we say that En Hausdorff converges to F whenever
dH(En, F )→ 0.

Definition 3. Let uα,w denote the minimizer of Fα, F̂α, respectively, with the data f+w,
where w can be considered as some error, as already considered in Lemma 1. For every

t ∈ R, we denote by U
(t)
α,w the t level-set of uα,w, that is

U (t)
α,w := {x ∈ Ω | uα,w(x) > t} for t > 0,

U (t)
α,w := {x ∈ Ω | uα,w(x) 6 t} for t < 0 .

This choice of the level-sets ensures that the volumes of the level-sets are always finite

(except the zero one that should be considered separately, see [10]). Moreover, we call U
(t)
†

the level-sets of u†.
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Figure 1: Three Lipschitz domains. Domains (a) and (b) have a variational curvature with
lower bound in L2 of their complements, whereas (c), because of the inside corner, does
not.

Definition 4. Let v ∈ L1(Ω). Then a set E is said to have variational curvature v in Ω
if

• The perimeter in Ω of E is finite.

• Let E := {F ⊆ Ω : F∆E is compactly supported in Ω}. E minimizes the functional

E 3 F 7→ Per(F )−
∫

F
v.

That means that for every F ∈ E

Per(E)−
∫

E
v 6 Per(F )−

∫

F
v. (17)

Remark 5. For smooth sets the notion of variational curvature is strongly related to the
differential notion of curvature. Indeed, assuming that the boundary of E is smooth and
that its variational curvature v is also smooth, one may consider diffeomorphic deforma-
tions φs : Ω → Ω applied to E such that each boundary point x ∈ ∂E is mapped to
x + sh(x)ν(x), where ν is the outer unit normal vector to E and h : Ω → R is a smooth
function. We obtain at s = 0 [22, Section 17.3]

d

ds
Per

(
φs
(
E
))

=

∫

∂E
h(x)κ(x) dH1(x) and

d

ds

∫

φs
(
E
) v =

∫

∂E
h(x)v(x) dH1(x),

where κ is the curvature of ∂E and H1 is the 1-dimensional Hausdorff measure. Since h
was arbitrary and using the minimality (17) of E, we must have κ

∣∣
∂E

= v.
In [5], the authors show that every set with finite perimeter has a variational curvature

in L1(R2), so such a quantity will exist for every set considered in this paper.

Using this definition of a variational curvature we can formulate our main result:

Theorem 2. Assume that either:

• For Dirichlet boundary conditions or Ω = R2, let (wn) ⊂ L2(Σ) and αn → 0+ such
that

‖wn‖L2(Σ)‖A∗‖
αn

6 η < 2
√
π. (18)

If Ω is bounded, assume further that it admits a variational curvature κΩ ∈ L1(R2)
such that κΩ > g for some g ∈ L2(R2 \ Ω).

9



• For Neumann boundary conditions, let (wn) ⊂ L2(Σ) and αn → 0+ such that

‖wn‖L2(Σ)‖A∗‖
αn

6 η <
1

C(Ω)
, (19)

with C(Ω) is some Sobolev-Poincaré constant, to be specified later.

Let un := uαn,wn denote a minimizer of the functional Fαn, F̂αn, respectively, with data
f + wn and let Un := Uαn,wn denote the level sets of un. Then up to a subsequence and
for almost all t ∈ R we have that

lim
n→∞

|U (t)
n ∆U

(t)
† | = 0, (20)

and lim
n→∞

∂U (t)
n = ∂U

(t)
† , (21)

where the second limit is understood in the sense of Hausdorff convergence.

Remark 6. The restriction κΩ > g ∈ L2 that is put on Ω in Theorem 2 roughly means
that inside corners (where the curvature is negative, see Figure 1 (c)) are not allowed.
Indeed, corners are known not to have a curvature in L2(R2) [19, Theorem 1.1]. However,
many interesting domains satisfy κΩ > g with g ∈ L2(R2 \ Ω) (see Figure 1 (a) and (b)),
in particular:

• Every convex domain, even with corners, has a variational curvature κΩ such that
κΩ = 0 on R2\Ω, since a convex set minimizes perimeter among outer perturbations.
Indeed, if F ⊃ E, this writes Per(F ) > Per(E) which is precisely (17) after using∫
F κΩ =

∫
E κΩ +

∫
F\E κΩ.

• Any C1,1 domain has a curvature κΩ ∈ L∞(R2). To see this, first notice that at
boundary points of a C1,1 set one can place balls of radius bounded below and
completely inside or outside Ω [13, Theorems 7.8.2 (ii) and 7.7.3]. Moreover, it is
proved in [4, Remark 1.3 (ii)] that the variational curvature constructed in [19] for
a set with the mentioned property is bounded.

3.1 Proof of Theorem 2

The proof is along the lines of [10], however taking into account that the operator A is not
the identity and that we consider various boundary conditions (Dirichlet and Neumann
cases). We give its architecture here, postponing the proofs of the main lemmas to the
rest of this section as well as Section 4.

The proof consists of two steps which correspond to proving (20) and (21) respectively.

Proof of (20). Let us show first that it is sufficient to prove the strong convergence of
un → u† in L1(R2). Indeed, Fubini’s theorem implies

∫

Ω
|un − u†| =

∫ +∞

−∞
|U (t)
n − U (t)

† | dt.

Then, the strong convergence of un would imply the L1 convergence of the sequence of
functions

t 7→ |U (t)
n − U (t)

† |,
which would imply that one can find a subsequence (not relabelled) such that for almost
every t,

|U (t)
n − U (t)

† | −→n→∞ 0.

10



We now prove the L1 convergence of un. Since the conditions (18) and (19) are stronger
than (5), we can apply Lemma 1 and it follows that un → u† strongly in L1

loc(R2) along a
subsequence that we do not relabel. To remove the “loc”, we will prove that all the un are
actually supported in a same ball. To see this, we first need to investigate geometrically
the level-sets of un and see that their variational curvature is related to the maximizer of
the dual problem (7).

Lemma 3. Let

vα,w = A∗pα,w =
1

α
A∗(f + w −Auα,w), (22)

where pα,w is the maximizer of the dual problem (7) with data f +w (replacing f in (7)).

Then each level set U
(t)
α,w of uα,w has a variational curvature sgn(t)vα,w. In addition,

Per(U (t)
α,w) = sgn(t)

∫

U
(t)
α,w

vα,w. (23)

First, the vα,w are related to the vα := A∗pα, pα being the maximizer of the dual
functional Dα.

Lemma 4.

‖vα − vα,w‖L2(Ω) 6
‖w‖L2(Σ)‖A∗‖

α
6 η,

where η is defined in (18).

Moreover, from Prop. 3 and the boundedness of A it follows that since the source
condition (6) holds,

(vα) := (A∗pα)
L2(Ω)−→ v0 := A∗p0

and the family (vα) is therefore equiintegrable (see Definition 5 in the appendix).

In the rest of the proof, we see that the fact that the level-sets U
(t)
α,w have variational

curvatures vα,w close to the equiintegrable family vα implies some uniform regularity. The
necessity of the restrictions for η of (18) and (19) is made apparent in Sections 3.4 and 4
below. First,

Lemma 5. Assume (18). Then, the elements of

E :=

{
E ⊂ Ω

∣∣∣∣Per(E) =

∫

E
vα,w with vα,w from (22)

}
, (24)

have the following properties:

1. There exists a constant C > 0 such that for all E ∈ E, Per(E) ≤ C,

2. There exists a constant R > 0 such that for all E ∈ E, E ⊆ B(0, R).

This lemma implies that the level-sets of un, which belong to E , are contained in some
B(0, R). That means that the un are all supported in a common ball. From their L1

loc

convergence, we then deduce the full L1 convergence of un to u† and therefore (20).

Proof of (21). We will deduce (21) from (20). This step is performed through stronger reg-
ularity for the level-sets Un. In our case, the adequate property is termed weak-regularity
in [10], and relates to the well-known density estimates for Λ-minimizers of perimeter [22,
Theorem 21.11]. This is the main ingredient of the proof of Theorem 2. We can state it
as

11



Lemma 6. Under the assumptions of Theorem 2 (in particular (18), (19) resp.), the

level-sets U
(t)
α,w satisfy the following property. There exists C > 0 and r0 > 0 (which do

not depend on α, w or t provided (18) (resp. (19)) is satisfied) such that for every α, w

satisfying (18) (resp. (19)) and every r < r0 and x ∈ ∂U (t)
α,w, one has

|B(x, r) ∩ U (t)
α,w|

|B(x, r)| > C and
|B(x, r) \ U (t)

α,w|
|B(x, r)| > C. (25)

We prove this property for all the different boundary conditions in Section 4. To
conclude the proof of (21), one need the

Lemma 7. Let En, F measurable subsets of Ω such that En
L1(Ω)−→ F , such that there exists

R > 0 independent of n with En ⊂ B(0, R) and such that the conclusion of Lemma 6 holds

(with U
(t)
α,w replaced by En). Then, the convergence holds in Hausdorff sense, that is the

Hausdorff distance (Definition 2)

dH(En, F )→ 0.

Applying this lemma to U
(t)
n for a t such that (20) holds, we conclude the proof of

(21).

Proof of Lemma 7. Let us consider the definition of Hausdorff distance:

dH(En, F ) = max

{
sup
x∈En

inf
y∈F
|x− y|, sup

y∈F
inf
x∈En

|x− y|
}
,

and suppose without loss of generality that the first term of the right hand side does not
converge to 0. This would imply that there is a δ > 0 (we can take δ < r0) and xn ∈ En
such that d(xn, F ) > δ, and in particular B(xn, δ)∩F = ∅. This implies using the density
estimate (25) that

|En ∆F | > |(En ∩B(xn, δ)) \ F | = |En ∩B(xn, δ)| > Cδ2,

contradicting the L1 convergence.

3.2 The level-sets have prescribed curvature: proof of Lemma 3

Proof of Lemma 3. It is proved in [10, Proposition 3] by slicing equations (9) and (13) and
using the coarea and layer cake formulas (A-42) and (A-41) that the extremality relation
(9) is equivalent to the statement that for every F ⊂ Ω and every t 6= 0

Per(F )− sgn(t)

∫

F
vα,w > Per(U (t)

α,w)− sgn(t)

∫

U
(t)
α,w

vα,w, (26)

which implies that U
(t)
α,w has a variational curvature sgn(t)vα,w. Furthermore, it is also

shown in [10, Proposition 3] that (13) implies that the U
(t)
α,w satisfy

Per(U (t)
α,w) = sgn(t)

∫

U
(t)
α,w

vα,w.

12



3.3 Parameter choice: proof of Lemma 4

Proof of Lemma 4. From (7) with f replaced by f + w it follows that pα,w is the L2(Σ)

orthogonal projection of f+w
α onto the convex set
{
p ∈ L2(Σ)

∣∣ A∗p ∈ ∂TV(0)
}
.

The non-expansiveness of the projection operator leads to

‖pα − pα,w‖L2(Σ) 6
‖w‖L2(Σ)

α
,

which, together with the boundedness of A∗, means that

‖vα − vα,w‖L2(Ω) 6
‖w‖L2(Σ)‖A∗‖

α
6 η, (27)

where η is defined in (18).

3.4 Upper bounds and compact support: proof of Lemma 5

Proof of Lemma 5. We distinguish between the following cases:

• Let Ω be bounded, a bound on the perimeter follows easily from (23) and (18) (resp.
(19)):

Per(E) 6
∣∣∣∣
∫

E
(vα,w − vα)

∣∣∣∣+

∣∣∣∣
∫

E
vα

∣∣∣∣ 6 η
√
|Ω|+

√
|Ω|‖vα‖L2(Ω)

6
(
η + sup

α
‖vα‖L2(Ω)

)√
|Ω|.

• If Ω = R2, then the proof is very similar to what is done in [10]. We sketch now the
arguments given in [10], that apply directly to this case.

Here, by Prop. 3, we have that vα → v0 strongly in L2(Ω), and therefore the family
(vα) is L2-equiintegrable, which in particular means that for every ε > 0, one can
find a ball B(0, R) such that

∫

R2\B(0,R)
v2
α 6 ε.

Then, for every E with finite mass that satisfies (24) and provided α and w satisfy
(18),

Per(E) 6
∣∣∣∣
∫

E
(vα,w − vα)

∣∣∣∣+

∣∣∣∣∣

∫

E∩B(0,R)
vα

∣∣∣∣∣+

∣∣∣∣∣

∫

E\B(0,R)
vα

∣∣∣∣∣

6 η
√
|E|+

√
|B(0, R)|‖vα‖L2(Ω) +

√
|E \B(0, R)|ε

6
(
η + sup

α
‖vα‖L2(Ω)

)√
|B(0, R)|+ (η + ε)

√
|E \B(0, R)|.

Now, the isoperimetric inequality (that is, 4π|E| ≤ Per(E)2) and sub-additivity of
the perimeter lead to

√
|E \B(0, R)| 6 1√

4π
Per(E \B(0, R)) 6 1√

4π

(
Per(E) + Per(B(0, R))

)
,

which when used in the previous equation, since ε is arbitrary and η < 2
√
π, implies

that Per(E) is bounded uniformly in α. Once again using the isoperimetric inequality
yields the boundedness of |E| independently of α, as long as (18) is satisfied.
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We now prove that the mass and perimeter of level-sets of uα,w are bounded away from
zero. The equiintegrability of (vα) ensures that there is no concentration of mass for vα:∫
E v

2
α is small if |E| is small. Then, if E satisfies (24), Cauchy Schwarz inequality provides

an inequality of the type
Per(E) 6 ε

√
|E|,

which together with the isoperimetric inequality, implies Per(E) 6 CεPer(E), which is
not possible for ε too small. Therefore, |E| must be bounded away from zero (and Per(E)
as well thanks to the isoperimetric inequality).

It is shown in [10, Remark 4] (using [2, Corollary 1]) that if E has a finite mass and
satisfies (24), E can be split into connected components which also satisfy (24). Therefore,
the perimeter and mass of such components are bounded from above and below, which
implies that there can only be finitely many of them. Since their perimeter is bounded,
their diameter is bounded too, which implies that they all lie in a ball B(0, R). So does
E.

Remark 7. As a byproduct of the previous proof, one can notice that all level-sets of u†

belong to some ball B(0, R), which means that ∂TV(u†) 6= ∅ implies that u† has a compact
support. To our knowledge, this property was never stated before, although it is implicit
in [10]. Since it is a result on the subgradient, it applies whether A = Id or not.

4 Proof of the density estimates: proof of Lemma 6

In this section, we prove Lemma 6, that is we derive the density estimates (25) in each
of the three boundary frameworks that are mentioned in this article. The proof follows
the usual strategy for this kind of estimates (see [22], for example), but the appearance of
different boundary conditions requires a closer examination.

The general strategy of the proof is to use minimality of a set in problem (26) and
compare it with the sets obtaining by adjoining or substracting pieces of balls centered at
a point of its boundary, leading to the first and second parts of (25) respectively.

In what follows we consider only the first estimate, since the second one can be derived
analogously. We emphasize that the bounds obtained need to be uniform in α in order to
obtain the desired convergence.

Let us first prove the

Lemma 8. Let κ ∈ L2(Ω) (with Ω bounded or Ω = R2) and E ⊂ Ω minimize

F 7→ Per(F ; Ω)−
∫

F
κ,

among F ⊂ Ω Lebesgue measurable. Then, one has for almost every r

Per(E ∩B(x, r))−
∫

E∩B(x,r)
κ 6 2 Per(B(x, r) ; E(1)), (28)

where E(1) denotes the set of points of density 1 in E (see Definitions 8 and 6 in the
appendix).

Remark 8. One can note that

Per(B(x, r) ; E(1)) = H1(∂B(x, r) ∩ E) for almost every r, (29)

for H1 the 1-dimensional Hausdorff measure. In fact, (28) can be proved for all r by
keeping track of extra terms in (30) and (31) that appear when the sets E and B(x, r)
have tangential contact.
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Proof. We use the following inequality, valid for every finite perimeter sets F,G ⊂ Ω,

Per(F \G) + Per(G \ F ) 6 Per(F ) + Per(G), (30)

which can be proved by using (A-44) twice. We will also apply the following equality,
which holds for almost every r > 0

Per((B(x, r) ∩ Ω) \ E)

= Per(B(x, r) ∩ Ω ; E(0) ∩ Ω) + Per(E ; B(x, r) ∩ Ω)

= Per(B(x, r) ∩ Ω ; E(0) ∩ Ω) + Per(E ∩B(x, r) ; Ω)− Per(B(x, r) ∩ Ω ; E(1) ∩ Ω).
(31)

This can be deduced using (A-44) in the first equality and (A-43) in the second one and
the fact that the set of tangential contact

{νE = ±νB(x,r)}

is contained in the set
∂(B(x, r) ∩ Ω) ∩ ∂∗E

and that for almost every r,

H1 [(∂(B(x, r) ∩ Ω) ∩ ∂∗E) ∩ Ω] = 0, (32)

since H1(∂∗E) <∞, where ∂∗E is the reduced boundary of E (see Appendix).
Using the minimality of E, then the two formulas above, and the additivity of perime-

ter, we get

Per(E)−
∫

E
κ 6 Per(E \B(x, r))−

∫

E\B(x,r)
κ

6 Per(E) + Per(B(x, r) ∩ Ω)− Per((B(x, r) ∩ Ω) \ E)−
∫

E\B(x,r)
κ

= Per(E) + Per(B(x, r) ∩ Ω)− Per(B(x, r) ∩ E)− Per(B(x, r) ∩ Ω ; E(0) ∩ Ω)

+ Per(B(x, r) ∩ Ω ; E(1) ∩ Ω)−
∫

E\B(x,r)
κ

= Per(E)− Per(B(x, r) ∩ E) + 2 Per(B(x, r) ; E(1) ∩ Ω)−
∫

E\B(x,r)
κ,

where in the last equality we use Theorem 4 and again (32) to see that for a.e. r,

Per(B(x, r) ∩ Ω) = Per(B(x, r) ∩ Ω ; E(1) ∩ Ω) + Per(B(x, r) ∩ Ω ; E(0) ∩ Ω).

Since E(1) ⊂ Ω, the inequality above is the statement of (28).

4.1 The R2 case.

Here, Ω = R2 and the proof is then the one presented in [10] up to making more explicit the

constants involved. Let us consider a level-set U
(t)
α,w (we assume without loss of generality

that t > 0) of uα,w that therefore minimizes

F 7→ Per(F )−
∫

F
vα,w,

and x ∈ ∂U (t)
α,w. Thanks to the equiintegrability of vα (which, as noted before, follows from

the strong convergence in L2 showed in Proposition 3), for every ε > 0 and |F | 6 πr2
0 with

r0 small enough (independent of α but dependent of ε) one has
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(∫

F
|vα|2

)1/2

6 ε. (33)

Then, (18), (27) and the above imply that for r 6 r0,
∣∣∣∣∣

∫

U
(t)
α,w∩B(x,r)

vα,w

∣∣∣∣∣ 6 |U
(t)
α,w ∩B(x, r)|1/2‖vα,w‖L2(B(x,r))

6 |U (t)
α,w ∩B(x, r)|1/2

(
‖vα‖L2(B(x,r)) + η

)

6 |U (t)
α,w ∩B(x, r)|1/2(ε+ η).

Using the above in (28) (with κ = vα,w), we obtain

Per(U (t)
α,w ∩B(x, r))− |U (t)

α,w ∩B(x, r)|1/2(ε+ η) 6 2 Per(B(x, r) ; U (t)
α,w

(1)
),

which combined with the isoperimetric inequality in R2 and finally (29) yields

|U (t)
α,w ∩B(x, r)|1/2(2

√
π − ε− η) 6 2H1(U (t)

α,w ∩ ∂B(x, r)). (34)

Now, denoting by
g(r) := |U (t)

α,w ∩B(x, r)|,

the coarea formula (A-42) for the distance to x implies for a.e. r, g′(r) = H1(U
(t)
α,w ∩

∂B(x, r)). As a result, (34) reads

(2
√
π − ε− η)

√
g 6 2g′.

Now, if η and ε are chosen such that ε + η < 2
√
π, one can integrate on both sides and

use g(0) = 0 to get (2
√
π − ε− η)r 6 4

√
g(r), which reads

|B(x, r) ∩ U (t)
α,w|

|B(x, r)| > (2
√
π − ε− η)2r2

16πr2
=

(2
√
π − ε− η)2

16π
,

where the right hand side is uniform in α. Since ε was arbitrary and the parameter choice
(18) implies η < 2

√
π, we obtain (25).

4.2 The Dirichlet case

In this subsection, we consider the case of Dirichlet conditions in a bounded domain, and
see that it can be treated through a variational problem formulated in R2:

Lemma 9. Assume that Ω admits a variational curvature κΩ such that κΩ > g with
g ∈ L2(R2), and let E ⊂ Ω satisfy (26) (we assume that t > 0). Then, E satisfies the
following variational problem among sets F ⊂ R2 such that |F∆E| is bounded:

Per(E)−
∫

E
κα,w 6 Per(F )−

∫

F
κα,w, where κα,w = vα,w1Ω + g1R2\Ω. (35)

Proof. Similarly to [6, Lemma, p. 132], we consider the constraint as an obstacle and we
write (comparing E and F ∩ Ω in (35))

Per(E)−
∫

E
κα,w = Per(E)−

∫

E
vα,w 6 Per(F ∩ Ω)−

∫

F∩Ω
vα,w

6 Per(F ) + Per(Ω)− Per(F ∪ Ω)−
∫

F∩Ω
vα,w

= Per(F ) + Per(Ω)− Per(F ∪ Ω)−
∫

F∩Ω
κα,w.

(36)
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On the other hand, the variational curvature of Ω implies

Per(Ω)−
∫

Ω
κΩ 6 Per(F ∪ Ω)−

∫

F∪Ω
κΩ,

which we can use in (36) along with the definition of κα,w to get

Per(E)−
∫

E
κα,w 6 Per(F )−

∫

F∩Ω
κα,w −

∫

F\Ω
κΩ

6 Per(F )−
∫

F∩Ω
κα,w −

∫

F\Ω
g

= Per(F )−
∫

F∩Ω
κα,w −

∫

F\Ω
κα,w

= Per(F )−
∫

F
κα,w.

Now, for E = U
(t)
α,w a level-set of uα,w, x ∈ ∂U

(t)
α,w, we may perturb U

(t)
α,w with balls

B(x, r) not necessarily contained in Ω. Using the definition of the (κα,w) we get that (κα,0)
is equiintegrable, and using also (27), that ‖κα,w−κα,0‖ 6 η. Therefore, we can apply the
R2 density estimates of Section 4.1 to obtain (25) for the Dirichlet boundary conditions.

4.3 The Neumann case

For Per(· ; Ω), the usual isoperimetric inequality does not hold. However, since we have
assumed that Ω is such that its boundary can be locally represented as the graph of
a Lipschitz function (so it is in particular an extension domain, see [3, Definition 3.20,
Proposition 3.21]), we can use the following Poincaré-Sobolev inequality [3, Remark 3.50]
valid for u ∈ BV(Ω): ∥∥∥∥u−

1

|Ω|

∫

Ω
u

∥∥∥∥
L2(Ω)

6 C(Ω) TV(u ; Ω).

With u = 1F the characteristic function of some F ⊂ Ω, the left hand side reads

∫

Ω

∣∣∣∣1F −
|F |
|Ω|

∣∣∣∣
2

= |F |
( |Ω \ F |
|Ω|

)2

+ |Ω \ F |
( |F |
|Ω|

)2

and the inequality reads

C(Ω) Per(F ) >
( |F | |Ω \ F |

|Ω|2
)1/2

(|Ω \ F |+ |F |)1/2 >
( |F | |Ω \ F |

|Ω|

)1/2

. (37)

As before, let U
(t)
α,w be a level-set of uα,w (that satisfies (26)). Applying (37) to U

(t)
α,w ∩

B(x, r), we get

|U (t)
α,w ∩B(x, r)|1/2 6 C(Ω)

(
|Ω|

|Ω \ (U
(t)
α,w ∩B(x, r))|

)1/2

Per(U (t)
α,w ∩B(x, r))

6 C(Ω)

( |Ω|
|Ω \B(x, r)|

)1/2

Per(U (t)
α,w ∩B(x, r)).

(38)

Now, the parameter choice (19) implies that one can choose r0 independent of x such that
for every r 6 r0,

η <
1

C(Ω)

( |Ω| − |B(r)|
|Ω|

)1/2
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and such that (33) holds for some ε that satisfies

1

C(Ω)

( |Ω| − |B(r0)|
|Ω|

)1/2

− ε− η > 0.

We can then use (38) instead of the isoperimetric inequality in (28) (which holds since

U
(t)
α,w satisfies (26)) and perform the same proof as in Section 4.1 to get the estimate

|B(x, r) ∩ U (t)
α,w|

|B(x, r)| >

(
1

C(Ω)

(
|Ω|−|B(r0)|
|Ω|

)1/2
− ε− η

)2

16π
,

where the right hand side is uniform in r and x. This is the first estimate of (25). In this
case, the second estimate of (25) reads

|(B(x, r) ∩ Ω) \ U (t)
α,w|

|B(x, r)| > C,

which is still enough for the Hausdorff convergence of ∂U
(t)
α,w for the proof of (21).

5 Examples and discussion

First, we consider two particular applications. In the first, we check that Theorem 2
applies to the inversion of the circular Radon transform, which is used as a model for
image formation in synthetic aperture radar [20]. In such an application, object detection
is often important, and Hausdorff convergence of level-sets corresponds to a kind of uniform
convergence of the detected objects. In the second, we numerically confirm the convergence
of level sets in the deblurring of a characteristic function, where the theorem applies and
the convergence has visual meaning.

We then conclude with some remarks about the differences in the solutions when
imposing different boundary conditions, and an accompanying numerical example.

5.1 The circular Radon transform

We review from [23] the problem of inverting the circular Radon transform

Rcirc u = v (39)

in a stable way, where

Rcirc : L2(R2)→ L2
(
Σ = S1 × (0, 2)

)
,

u 7→ (Rcirc u)(~z, t) := t

∫

S1
u(~z + t~ω) dH1(~ω) .

(40)

In the following let Ω := B(0, 1) be an open Ball of Radius 1 with center 0 in R2 and let
ε ∈ (0, 1). We are considering the spherical Radon transform defined on the subspace of
functions supported in B(0, 1− ε), that is on

L2(B(0, 1− ε)) :=
{
u ∈ L2(R2)

∣∣∣ supp(u) ⊆ B(0, 1− ε)
}
.

Some properties [23, Propositions 3.80 and 3.81] of the circular Radon transform are:

• The circular Radon transform, as defined in (40), is well-defined, bounded, and
satisfies ‖Rcirc‖ ≤ 2π.
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• There exists a constant Cε > 0, such that

C−1
ε ‖Rcirc u‖2 ≤ ‖i∗(u)‖1/2,2 ≤ Cε ‖Rcirc u‖2 , u ∈ L2(B(0, 1− ε)) ,

where i∗ is the adjoint of the embedding i : W1/2,2(B(0, 1)) → L2(B(0, 1)) of the
standard Sobolev space of differentiation of order 1/2 on Ω.

• For every ε ∈ (0, 1) we have

R(R*
circ) ∩ L2(B(0, 1− ε)) = W1/2,2(B(0, 1− ε)) ,

where

W1/2,2(B(0, 1− ε))
:=
{
u ∈ L2(R2)

∣∣∣ suppu ⊂ B(0, 1− ε) and u|B(0,1) ∈W1/2,2(B(0, 1))
}
.

Note that W1/2,2 is not the standard definition of a Sobolev space because we as-
sociate with each function of the space W1/2,2(B(0, 1− ε)) an extension to R2 by 0
outside. We could also say, in the terminology of this paper, that these functions
satisfy zero Dirichlet boundary condition on B(0, 1− ε).

It was shown in [23, Propositions 3.82 and 3.83] that minimization of the functional (2)
with A = Rcirc:

• is well-posed, stable, and convergent.

• Moreover, the following result holds: Let ε ∈ (0, 1) and u† be the solution of (39).
Then we have the following convergence rates result for TV-regularization: If ξ ∈
∂TV(u†) ∩W1/2,2(B(0, 1− ε)), then

TV(uδα(δ))− TV(u†)−
〈
ξ, uδα(δ) − u†

〉
= O(δ) for α(δ) ∼ δ.

In the last equation, the left hand side is called Bregman distance of TV at u† and
ξ.

With the results of this paper, if the parameter α is chosen finer, meaning satis-
fying (18), we not only have convergence rates of the Bregman distance, but also
convergence of the level-sets.

There are particular examples for which the source condition is satisfied:

– Let ρ ∈ C∞0 (R2) be an adequate mollifier and ρµ the scaled function of ρ.
Moreover, let x0 = (0.2, 0), a = 0.1, and µ = 0.3. Then

u† := 1B(x0,a+µ) ∗ ρµ

satisfies the source condition.

– Let u† := 1F be the characteristic function of a bounded subset of R2 with
smooth boundary. Then, the source condition is satisfied as well [23, Example
3.74].
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5.2 A numerical deblurring example

The second situation we consider is a numerical deconvolution example, in which a char-
acteristic function has been blurred with a Gaussian kernel and subsequently corrupted
by additive Gaussian noise. Both the convolution kernel and the variance of the noise
are assumed known, and Dirichlet boundary conditions on a rectangle are used. These
choices lead directly to the minimization of (2) and enable the use of a parameter choice
according to (18), so that the the results of Section 3 provide convergence of level-lines.

The discretization of choice is the ‘upwind’ finite difference scheme of [11], and the
resulting discrete problem is solved with a primal-dual algorithm with the convolutions
implemented through Fourier transforms as in [12]. The boundary conditions were imposed
by extending the computational domain and projection onto the corresponding constraint.
The results and parameter choices are shown in Figure 2.

Figure 2: Deblurring of a characteristic function by total variation regularization with
Dirichlet boundary conditions. First row: Input image blurred with a known kernel and
with additive noise. Second row: numerical deconvolution result, corresponding to mini-
mizers of (2). Third row: some level lines of the results. The regularization parameters
are α = 1, 0.25, 0.0625, 0.0156 and the variance of the Gaussian noise used is α/10.
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5.3 Denoising in R2 or in Ω with Dirichlet conditions

In this subsection, we consider only denoising (A = Id). If u† = f has a bounded support
in R2, one can minimize (2) either in R2 or in a bounded domain Ω containing the support
of f . In general, these minimizations yields different results. Nevertheless, when Ω is
convex, we can easily show

Proposition 4. Let f have compact support included in an open convex set Ω. Then,
minimizing (2) on Ω with Dirichlet homogeneous boundary conditions or R2 lead to the
same solution.

Proof. We just need to show that the minimizer u of (2) in R2 has a support in Ω. If
it were not the case, just note that replacing u by u · 1Ω decreases both terms of the
functional. For the total variation part, this result uses the convexity of Ω.

If Ω is not convex, it is easy to construct examples where this result is no longer
true, even for denoising. In Figure 3, aggressive total variation denoising is applied to
a noiseless image, to illustrate the role of the boundary conditions in the regularization.
Nevertheless, the direct application of Theorem 2 show that as α → 0, the level-sets of
these two minimizers concentrate around the ones of f .

5.4 Denoising with Neumann boundary conditions

As in the Dirichlet case, there are some configurations where solving in a bounded domain
does not correspond to solving for R2. For example, if A = Id, f = 1B(0,1) and Ω = B(0, R)
with R > 1, the minimizer of (3) is

uα =

(
1− α− 2α

R2 − 1

)
1B(0,1) +

2α

R2 − 1
1B(0,R),

whereas the minimizer of (2) in R2 is clearly 1B(0,1).
One can also see lower left image in Figure 3, which contains the denoising of the C in

a rectangle.
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A Auxiliary results

Proposition 5 (Layer-cake formula, [21], Theorem 1.13). Let u ∈ L1(Ω) be nonnegative.
Then, one has ∫

Ω
u =

∫ ∞

0
|{u > t}|dt. (A-41)

Definition 5 (Equiintegrability). Let (vs) ⊂ L2(R2) be a family of functions. We say
that (vs) is equiintegrable if for each ε > 0 there are numbers δ > 0 and R > 0 such that
for every measurable subset F with |F | < δ and all s,

(∫

F
|vs|2

)1/2

6 ε and

(∫

R2\B(0,R)
|vs|2

)1/2

6 ε.

It can be checked directly that a sequence (vn) that converges strongly in L2(R2) is neces-
sarily equiintegrable.
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Figure 3: Denoising of a C with different boundaries and boundary conditions. Upper left:
original image. Upper middle: convex Dirichlet domain. Upper right: nonconvex domain.
Lower left: result with Neumann boundary. Lower middle: Dirichlet result in the convex
domain Lower right: Dirichlet result in the nonconvex domain. The Neumann solution
reflects the fact that for level-sets that reach the boundary of Ω, part of their perimeter
is not penalized. For the rightmost solution, since the domain is not convex, the solution
is different to that of the R2 case.
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Proposition 6 (Coarea formula for functions with bounded variation, [3], Theorem 3.40).
Let u ∈ BV(Ω). Then one has

TV(u ; Ω) =

∫ +∞

−∞
Per({u > t}) dt. (A-42)

Definition 6. Since D1E is a Radon measure, one can consider the perimeter of E in
every Borel subset F , which we denote by

P (E ; F ) := |D1E |(F ).

Definition 7 (Reduced boundary and unit normal). For any set E with finite perimeter
in Ω, one can define its reduced boundary ∂∗E. One says that x ∈ supp(1E) belongs to
∂∗E if

lim
r→0+

D1E(B(x, r))

|D1E |(B(x, r))
exists and belongs to S1.

For x ∈ ∂∗E, one can define the measure theoretic outer normal νE to E by

νE(x) := lim
r→0+

D1E(B(x, r))

|D1E |(B(x, r))
.

Theorem 3 (De Giorgi, [17], Theorem 4.4). For E with finite perimeter in Ω, one has

Per(E ; Ω) = H1(∂∗E ∩ Ω).

Definition 8. For a Lebesgue set E ⊂ R2, we use the notations E(1) and E(0) for the
points where the density of E is 1 and 0 respectively. That is, for s ∈ {0, 1} we have

E(s) =

{
x ∈ R2

∣∣∣∣ lim
r→0

|B(x, r) ∩ E|
|B(x, r)| = s

}
.

Furthermore, we note that by the Lebesgue differentiation theorem

|E(0)∆(R2 \ E)| = 0 and |E(1)∆E| = 0.

Theorem 4 (Federer, [22], Theorem 16.2). Let E have finite perimeter in Ω and let

∂eE := R2 \ (E(0) ∩ E(1)).

Then, ∂∗E ⊂ ∂eE and
H1(∂eE \ ∂∗E) = 0.

Theorem 5 ([22], Theorem 16.3). Let E and F be two finite perimeter sets in Ω. Then,
for every Borel set G ⊂ R2, one has

Per(E ∩ F ; G) = Per(E ; F (1) ∩G) + Per(F ; E(1) ∩G) +H1 ({νE = νF } ∩G) . (A-43)

and

Per(E \ F ; G) = Per(E ; F (0) ∩G) + Per(F ; E(1) ∩G) +H1 ({νE = −νF } ∩G) . (A-44)
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SMC. Springer, New York, second edition, 2011.

[8] M. Burger, K. Frick, S. Osher, and O. Scherzer. Inverse total variation flow. Multiscale
Model. Simul., 6(2):365–395 (electronic), 2007.

[9] M. Burger and S. Osher. Convergence rates of convex variational regularization.
Inverse Prob., 20(5):1411–1421, 2004.
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