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Abstract

Given a bivariate function and a finite rectangular grid, we perform transfinite inter-

polation at all the points on the grid lines. We present a method that generates an

interpolating function of low rank and show that the interpolating function is equivalent

to the output of Schneider’s CA2D algorithm [27]. Based on the tensor-product version

of bivariate divided differences, we derive a new error bound that confirms the optimal

approximation order of rank-n functions.
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1. Introduction

Transfinite interpolation addresses the task of constructing a function matching given

data at a non-denumerable (transfinite) number of points. It was introduced by Gordon

and Hall [9] based on their earlier work on blending functions [7, 8], although the par-

ticular case of Coons interpolation was proposed before [2]. Applications include mesh

generation [9, 11] and construction of finite elements accurately capturing the boundary

[10]. We refer to Sabin’s survey [26] for an overview.

The idea of transfinite interpolation has been an active research topic ever since. It

was extended to domains that are not of tensor-product type [24, 29]. Kuzmenko and

Skorokhodov [19] recently studied transfinite interpolation of functions with bounded

Laplacian. The Hermite-Lagrange transfinite interpolation by trigonometric blending

functions was also investigated [3]. Transfinite mean value interpolation was proposed

by Dyken and Floater [4], while Rvachev et al. [25] used R-functions to construct the

interpolating function when the data are given implicitly. Also, the question of when

the data can be interpolated by a smooth function was extensively investigated in the

case of splines [22]. For interpolation by parametric Bézier surfaces, conditions on the

input curves to become geodesics of the resulting surface have been studied [5].
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The task of lofting (skinning) can also be seen as a particular case of transfinite

interpolation. See Woodward [30] for the case of B-splines and Hohmeyer and Barsky

[13] or Piegl and Tiller [23] for the case of NURBS.

Low-rank functions — that is, sums of a low number of separable functions — appear

in numerical tensor calculus when using sparse tensor formats for representing multi-

variate functions [12, 17]. Interpolation by low-rank functions was studied by Schneider

[27], and an efficient algorithm for low-rank approximation with bivariate tensor-product

splines has been proposed [6]. In the context of isogeometric analysis [15], low-rank ap-

proximation has been successfully applied to adress the efficiency problem of matrix

assembly [21]. This has motivated us to explore transfinite interpolation by low-rank

functions, so far in the bivariate case.

In our recent paper [16], we proposed two constructions of a parametric low-rank

spline surfaces from given boundary data. In particular, we focused on achieving geo-

metric invariance and on the validity of the permanence principle. Furthermore, the two

constructions were compared with other methods, in particular with Coons interpolation.

The current paper generalizes one of the proposed constructions (CR2I – coordinate-

wise interpolation by rank 2 functions) to the case when the given data consist of a

tensor-product grid of prescribed values (possibly more than 2× 2 curves, which are no

longer required to be splines), see Fig. 1. We analyze the properties of the algorithm and

investigate the rank of the resulting function. In addition we observe that the proposed

generalization is equivalent to the output of Schneider’s CA2D (cross interpolation of

bivariate functions) algorithm [27]. Furthermore, we use bivariate divided differences

to derive a new error bound that confirms that interpolation by rank-n functions pro-

vides the same approximation order as n-fold transfinite interpolation with blending

functions [9].

The rest of the paper is organized as follows. Section 2 recalls the generalization of

divided differences to the bivariate tensor-product setting. Section 3 presents the new

interpolation method, which generalizes Algorithm CR2I [16]. This is used in Section 4 to

approximate bivariate functions. Finally, the L∞-error of the approximation is analyzed

in Section 5, and the paper concludes with two examples in Section 6.

2. Divided differences

Divided differences are a useful notion in the context of numerical analysis [28].

We recall the non-recursive version of their definition in the univariate case and the

generalization to a bivariate tensor-product grid [18]. The latter will be used for deriving

the error estimates.

Definition. The m-th divided difference of a univariate function ϕ with respect to real
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values s0, . . . , sm is defined by

ϕ[s0, . . . , sm] =

m∑

i=0

ϕ(si)∏

p=0,...,m
p 6=i

(si − sp)

whenever s0, . . . , sm are mutually different, and by the corresponding limit otherwise.

Given a system of functions ϕ0, . . . , ϕm, we recall that their discrete Wronskian with

respect to the nodes s0, . . . , sm is the matrix with elements

ϕi[s0, . . . , sj ], i, j = 0, . . . ,m ,

see Lascoux [20]. Its determinant satisfies the following identity:

det (ϕi(sj))i,j=0,...,m =
( ∏

0≤k<`≤m
(s` − sk)

)
det (ϕi[s0, . . . , sj ])i,j=0,...,m . (1)

For distinct nodes, the proof follows directly from the above Definition, see also [20,

Proposition 9.3.1]. The identity is trivially satisfied whenever at least two nodes are

equal.

Now we extend this definition to bivariate functions, cf. Kunz [18], Section 11.17.

Definition. Let ϕ be a bivariate function. The (m,n)-th divided difference of ϕ with

respect to real values s0, . . . , sm and t0, . . . , tn is defined by

ϕ[s0, . . . , sm][t0, . . . , tn] =
m∑

i=0

n∑

j=0

ϕ(si, tj)∏

k=0,...,m
k 6=i

(si − sk)
∏

`=0,...,n
`6=j

(tj − t`)
(2)

whenever the denominator on the right-hand side is non-zero, and by the corresponding

limit whenever some of s0, . . . , sm or t0, . . . , tn coincide.

Applying Eq. (1) repeatedly gives the following result:

Lemma 1. For a bivariate function ϕ and real values s0, . . . , sm and t0, . . . , tm we have

the identity

det
(
ϕ(si, tj)

)
i,j=0,...,m

=
( ∏

0≤k<`≤m
(s` − sk)(t` − tk)

)
det
(
ϕ[s0, . . . , si][t0, . . . , tj ]

)
i,j=0,...,m

.

Proof. Using Eq. (1) confirms

det
(
ϕ(si, tj)

)
i,j=0,...,m

=
( ∏

0≤k<`≤m
(t` − tk)

)
det
(
ϕ[si][t0, . . . , tj ]

)
i,j=0,...,m

.
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Using the same equation once more, det
(
ϕ[sj ][t0, . . . , ti]

)
i,j=0,...,m

equals

( ∏

0≤k<`≤m
(s` − sk)

)
det
(
ϕ[s0, . . . , sj ][t0, . . . , ti]

)
i,j=0,...,m

.

In the following, we use the abbreviation

ϕ(k,`)(x, y) =
∂k

∂xk
∂`

∂y`
ϕ(x, y) .

Furthermore, for an open set Ω we will use the symbol Cm,n(Ω) to denote the class of

functions ϕ such that for each k = 0, . . . ,m and ` = 0, . . . , n the derivative ϕ(k,`) is

continuous in Ω and it can be continuously extended to Ω.

The following result is a bivariate analogue of the mean value theorem for divided

differences [18, Section 5.7].

Lemma 2 (see Kunz [18], Section 11.17). Consider real values s0, . . . , sk and t0, . . . , t`
and let ϕ ∈ Ck,`(∆), where

∆ =

[
min

i=0,...,k
si, max

i=0,...,k
si

]
×
[

min
i=0,...,`

ti, max
i=0,...,`

ti

]
.

Then there exists (ŝ, t̂) ∈ ∆ such that

ϕ[s0, . . . , sk][t0, . . . , t`] =
ϕ(k,`)(ŝ, t̂)

k! `!
.

3. Low rank interpolation

In this section we show how to construct a bivariate function interpolating a tensor-

product grid of univariate functions.

From now on we assume that real values x1 < · · · < xn and y1 < · · · < yn are given,

and we call them nodes. We use the notation

Ωx = [x1, xn] , Ωy = [y1, yn] and Ω = Ωx × Ωy .

Furthermore, we use x0 and y0 to denote the variables in order to simplify the notation.

Consider a positive integer ` ≤ n. Assume that we are given 2` continuous functions

σi : Ωy → R and τj : Ωx → R, i, j = 1, . . . , ` ,

which satisfy the compatibility conditions

σi(yj) = τj(xi) = ci,j ,

and the additional constraint

det



c1,1 · · · c1,`

...
. . .

...

c`,1 · · · c`,`


 6= 0 . (3)
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Lemma 3. The function ψ defined by

ψ(x0, y0) = −

det




0 τ1(x0) · · · τ`(x0)

σ1(y0) c1,1 · · · c1,`
...

...
. . .

...

σ`(y0) c`,1 · · · c`,`




det



c1,1 · · · c1,`

...
. . .

...

c`,1 · · · c`,`




(4)

for all arguments (x0, y0) ∈ Ω interpolates the given functions, i.e.,

∀i = 1, . . . , `, ∀(x0, y0) ∈ Ω : ψ(x0, yi) = τi(x0) and ψ(xi, y0) = σi(y0) .

Proof. Writing σi(yj) instead of ci,j and expanding the numerator determinant in (4)

with respect to the first row gives

ψ(x0, y0) =
∑̀

k=1

(−1)k

det



σ1(y0) · · · σ1(yk−1) σ1(yk+1) · · · σ1(y`)

...
. . .

...
...

. . .
...

σ`(y0) · · · σ`(yk−1) σ`(yk+1) · · · σ`(y`)




det



σ1(y1) · · · σ1(y`)

...
. . .

...

σ`(y1) · · · σ`(y`)




τk(x0) . (5)

We evaluate ψ(x0, yi) for any i = 1, . . . , n by setting y0 = yi. On the one hand, the

determinants in the numerator are equal to zero whenever the summation index satisfies

k 6= i, because they contain two identical columns. On the other hand, the determinant

in the numerator for k = i equals (−1)k times the determinant in the denominator and

thus ψ(x0, yi) = τi(x0).

To prove that ψ(xi, y0) = σi(y0) we proceed analogously, expanding the numerator

determinant in (4) with respect to the first column.

Note that the lemma defines a procedure to construct a bivariate function ψ that

interpolates the 2` univariate functions σi, τi, i = 1, . . . , `. See Fig. 1 for an example of

input and output of this procedure.

Definition. Let Ω ⊆ R2 be given. The rank of a function ψ : Ω → R is the minimal

number r such that there exists a representation of the form

∀(x0, y0) ∈ Ω : ψ(x0, y0) =
r∑

s=1

γs(x0) ηs(y0) (6)

for some functions γs : Ωx → R and ηs : Ωy → R, s = 1, . . . , r.
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Figure 1: Left: given univariate functions; right: interpolating bivariate function.

The following lemma establishes a relation between the rank of a function and the

rank of a matrix.

Lemma 4. The rank of any matrix (ψ(xi, yj))i=1,...,k;j=1,...,` obtained by sampling values

of a rank-r function ψ does not exceed r.

Proof. We use the representation (6) to rewrite the matrix as a product of two matrices

with dimensions (k, r) and (r, `),

(ψ(xi, yj))i=1,...,k;j=1,...,` = (γs(xi))i=1,...,k;s=1,...,r (ηs(yj))s=1,...,r;j=1,...,`

and note that the rank of the product does not exceed the rank of each factor.

Clearly, the rank of a function need not exist. However, the rank of the functions

obtained by using Lemma 3 is finite:

Lemma 5. The function ψ constructed in Lemma 3 has rank ` on Ω.

Proof. On the one hand, the determinants in the numerators in (5) are functions of y0.

Hence (5) is an expansion of the form (6) with r = `. On the other hand, we have that

ci,j = ψ(xi, yj) for i, j = 1, . . . , `. Due to the constraint (3), the matrix (ψ(xi, yj))i,j=1,...,`

has full rank, thus the rank of ψ cannot be less than `.

4. Function approximation through interpolation

Now we specialize the procedure of the previous section to the case when the uni-

variate functions σi and τi are slices of a bivariate function. This will enable us to study

the approximation power of the construction.

In view of Lemma 5 we introduce the following notions for any ` = 1, . . . , n:
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• A function ϕ is said to be `-admissible (with respect to the nodes x1, . . . , x` and

y1, . . . , y`), if it satisfies the condition

det



ϕ(x1, y1) · · · ϕ(x1, y`)

...
. . .

...

ϕ(x`, y1) · · · ϕ(x`, y`)


 6= 0 . (7)

• For an `-admissible function ϕ, we define the rank-` approximation operator (again

with respect to the nodes x1, . . . , x` and y1, . . . , y`) by

(R`ϕ)(x0, y0) = −

det




0 ϕ(x0, y1) · · · ϕ(x0, y`)

ϕ(x1, y0) ϕ(x1, y1) · · · ϕ(x1, y`)
...

...
. . .

...

ϕ(x`, y0) ϕ(x`, y1) · · · ϕ(x`, y`)




det



ϕ(x1, y1) · · · ϕ(x1, y`)

...
. . .

...

ϕ(x`, y1) · · · ϕ(x`, y`)




.

In particular, the operator R` transforms any `-admissible function ϕ into the func-

tion ψ = R`ϕ constructed according to Lemma 3, where

σi(y0) = ϕ(xi, y0), τj(x0) = ϕ(x0, yj), ci,j = ϕ(xi, yj), i, j = 1, . . . , ` .

Note that ψ is also `-admissible (with respect to x1, . . . , x` and y1, . . . , y`).

In addition we note the following observation, which imposes restrictions on the input

of the operator R`:

Lemma 6. Functions ϕ of rank r < ` are not `-admissible on Ω.

This is obvious since by Lemma 4 the rank of any matrix obtained by sampling values

of a rank-r function on a tensor-product grid cannot exceed r.

Next we show that the non-linear operator R` is a projector onto the set of rank `

functions, as made precise in the following lemma:

Lemma 7. If ϕ is an `-admissible function with respect to the nodes x1, . . . , x` and

y1, . . . , y`, then

ϕ(x0, y0)− (R`ϕ)(x0, y0) =
det
(
ϕ(xi, yj)

)
i,j=0,...,`

det
(
ϕ(xi, yj)

)
i,j=1,...,`

. (8)

In particular, ϕ = R`ϕ if ϕ has rank `.
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Proof. Using the multilinearity of determinants with respect to the row vectors, we

rewrite the numerator of the right-hand side in (8) as

det




ϕ(x0, y0) 0 · · · 0

ϕ(x1, y0) ϕ(x1, y1) · · · ϕ(x1, y`)
...

...
. . .

...

ϕ(x`, y0) ϕ(x`, y1) · · · ϕ(x`, y`)


+ det




0 ϕ(x0, y1) · · · ϕ(x0, y`)

ϕ(x1, y0) ϕ(x1, y1) · · · ϕ(x1, y`)
...

...
. . .

...

ϕ(x`, y0) ϕ(x`, y1) · · · ϕ(x`, y`)


 ,

from where (8) follows directly due to the `-admissibility of ϕ and the definition of R`ϕ.

Finally we note that in view of Lemma 4 the numerator of the right-hand side in (8)

vanishes if ϕ has rank `, since it is the determinant of a matrix obtained by sampling

values on a tensor-product grid with `+ 1 rows and columns.

Next we establish the relation between R`ϕ and the CA2D algorithm (“two-dimen-

sional cross approximation”) of Schneider [27]. For that we introduce the cross approxi-

mation operator I` for ` = 1, . . . , n that transforms any function γ satisfying γ(x`, y`) 6= 0

into the rank-1 function

(I`γ)(x0, y0) =
γ(x`, y0) γ(x0, y`)

γ(x`, y`)
, (9)

which interpolates γ on ({x`}×R)∪(R×{y`}). Note that I1 = R1. In case γ(x`, y`) = 0,

I`γ = 0.

Theorem 8. Let ϕ be `-admissible with respect to the nodes x1, . . . , x` and y1, . . . , y`
for ` = 1, . . . , n. The sequence of rank-` approximations of ϕ satisfies the recurrence

R`ϕ = R`−1ϕ+ I`(ϕ−R`−1ϕ) (10)

for ` = 2, . . . , n

Proof. First, we prove that the functions on both sides in (10) take the same values on

the grid lines defined by x1, . . . , x` and y1, . . . , y`. On the one hand, the definitions of

the operators imply

(R`ϕ)(xi, y0) = (R`−1ϕ)(xi, y0) +
(ϕ−R`−1ϕ)(x`, y0) (ϕ−R`−1ϕ)(xi, y`)

(ϕ−R`−1ϕ)(x`, y`)

if 1 ≤ i < `, since R`−1ϕ interpolates ϕ on the grid lines defined by x1, . . . , x`−1. On

the other hand, this equation is clearly true if i = `. Analogously, we see that

(R`ϕ)(x0, yj) = (R`−1ϕ)(x0, yj) +
(ϕ−R`−1ϕ)(x`, yj) (ϕ−R`−1ϕ)(x0, y`)

(ϕ−R`−1ϕ)(x`, y`)

if 1 ≤ j ≤ `.
Second, we use this fact to establish the identity

R`(R`ϕ) = R`(R`−1ϕ+ I`(ϕ−R`−1ϕ)) , (11)
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which follows from the fact that the rank-` interpolation of a function depends solely on

the values on the associated grid lines.

Finally, we complete the proof by noting that (11) implies the recurrence (10), as R`

reproduces rank-` functions according to Lemma 7.

This proves that R`ϕ is the same as the function obtained by Schneider’s CA2D al-

gorithm, which constructs a function by iteratively using the recurrence (10). Moreover,

Theorem 8 also confirms the expression for the error derived in Lemma 7, since it is

equivalent to Schneider’s Remark 3.3 [27].

5. Error estimates

Now we analyze the L∞–error of the approximation introduced in the previous sec-

tion. Throughout this section we assume that Ω = [0, h]2 and that the nodes satisfy

x1 = y1 = 0, xn = yn = h.

It follows directly from Lemmas 1 and 2 that

Lemma 9. For ϕ ∈ Cn,n(Ω) there exist (x̂ij , ŷij) ∈ Ω, i, j = 0, . . . , n− 1, such that

det
(
ϕ(xi, yj)

)
i,j=1,...,n

=

∏
1≤k<`≤n

(x` − xk)(y` − yk)

(
1! · · · (n− 1)!

)2 det
(
ϕ(i,j)(x̂ij , ŷij)

)
i,j=0,...,n−1

.

The smoothness of ϕ then implies the following result:

Corollary 10. If ϕ satisfies the assumption of the previous lemma and if

det
(
ϕ(i,j)(0, 0)

)
i,j=1,...,n

6= 0 , (12)

then there exists h∗ > 0 such that ϕ is n-admissible for any two monotonic sequences

0 = x1 < · · · < xn = h and 0 = y1 < · · · < yn = h with h < h∗.

Now we can state the first error bound:

Lemma 11. For ϕ : Ω→ R satisfying det
(
ϕ[x1, . . . , xi][y1, . . . , yj ]

)
i,j=1,...,n

6= 0,

‖ϕ−Rnϕ‖L∞(Ω) ≤ h2n sup
(x0,y0)∈Ω

∣∣∣∣∣
det
(
ϕ[x0, . . . , xi][y0, . . . , yj ]

)
i,j=0,...,n

det
(
ϕ[x1, . . . , xi][y1, . . . , yj ]

)
i,j=1,...,n

∣∣∣∣∣ . (13)

Proof. Using Lemma 7, we get

‖ϕ−Rnϕ‖L∞(Ω) = sup
(x0,y0)∈Ω

∣∣∣∣∣
det (ϕ(xi, yj))i,j=0,...,n

det (ϕ(xi, yj))i,j=1,...,n

∣∣∣∣∣ .
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Applying Lemma 1, the right-hand side above becomes

sup
(x0,y0)∈Ω

∣∣∣∣∣

∏
0≤k<`≤n(x` − xk)(y` − yk)∏
1≤k<`≤n(x` − xk)(y` − yk)

∣∣∣∣∣

∣∣∣∣∣
det (ϕ[x0, . . . , xi][y0, . . . , yj ])i,j=0,...,n

det (ϕ[x1, . . . , xi][y1, . . . , yj ])i,j=1,...,n

∣∣∣∣∣ .

Noting that
∣∣∣∣∣

∏
0≤k<`≤n(x` − xk)(y` − yk)∏
1≤k<`≤n(x` − xk)(y` − yk)

∣∣∣∣∣ =

∣∣∣∣∣
n∏

`=1

(x` − x0)(y` − y0)

∣∣∣∣∣ ≤ h
2n,

we conclude the claim of the lemma.

Now we state the main result of the paper:

Theorem 12. Let ϕ ∈ Cn,n(Ω) be an n-admissible function and h a real number such

that

cϕ =

sup
ûij ,v̂ij∈(0,h)
i,j=0,...,n

∣∣∣det
(
ϕ(i,j)(ûij , v̂ij)

)
i,j=0,...,n

∣∣∣

inf
quij ,qvij∈(0,h)
i,j=1,...,n

∣∣∣det
(
ϕ(i,j)(quij , qvij)

)
i,j=1,...,n

∣∣∣
<∞ .

Then

∀h ∈ (0, h) : ‖ϕ−Rnϕ‖∞,Ω ≤ cϕ
h2n

(n!)2
. (14)

Proof. Consider a particular point (x0, y0) ∈ Ω. According to Lemma 2 there exist

(x̂ij , ŷij) ∈ Ω, i, j = 0, . . . , n and (qxij , qyij) ∈ Ω, i, j = 1, . . . , n, such that

∣∣∣∣∣
det
(
ϕ[x0, . . . , xi][y0, . . . , yj ]

)
i,j=0,...,n

det
(
ϕ[x1, . . . , xi][y1, . . . , yj ]

)
i,j=1,...,n

∣∣∣∣∣

is equal to ∣∣∣∣∣

(
1! · · · (n− 1)!

1! · · ·n!

)2 det
(
ϕ(i,j)(x̂ij , ŷij)

)
i,j=0,...,n

det
(
ϕ(i,j)(qxij , qyij)

)
i,j=1,...,n

∣∣∣∣∣ .

The definition of the constant cϕ implies

∣∣∣∣∣
det
(
ϕ(i,j)(x̂ij , ŷij)

)
i,j=0,...,n

det
(
ϕ(i,j)(qxij , qyij)

)
i,j=1,...,n

∣∣∣∣∣ ≤ cϕ .

hence for all (x0, y0) ∈ Ω
∣∣∣∣∣
det
(
ϕ[x0, . . . , xi][y0, . . . , yj ]

)
i,j=0,...,n

det
(
ϕ[x1, . . . , xi][y1, . . . , yj ]

)
i,j=1,...,n

∣∣∣∣∣ ≤
1

(n!)2
cϕ ,

and (14) follows, in view of Lemma 11.
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Note that if

det
(
ϕ(i,j)(0, 0)

)
i,j=1,...,n

6= 0 , (15)

there is an h such that cϕ < ∞. Additionally, this assumption also ensures the n–

admissibility for a certain neighborhood of the origin according to Corollary 10. Thus

the assumptions of Theorem 12 hold under (15).

We briefly analyze the relation to existing results:

• It has been proved [9, Theorem 2] that transfinite interpolation with blending

functions also gives an approximation error of order h2n.

• Schneider [27, Proposition 2.3] derives an error estimate for h = 1, i.e., for functions

defined on Ω = [0, 1]2, which is valid for a particular choice of the nodes (‘partial

pivoting’). We apply his result to the function ϕ̃(x̃0, ỹ0) = ϕ(hx̃0, hỹ0) and to

the low-rank interpolation operator R̃n with respect to the nodes x̃i = xi/h and

ỹi = yi/h and obtain the inequality

|(ϕ−Rnϕ)(x0, y0)| = |(ϕ̃− R̃nϕ̃)(
x0

h
,
y0

h
)| ≤ 2n

n!

n∏

i=1

|x0

h
− x̃i| sup

ũ∈[0,1]
|ϕ̃(n,0)(ũ,

y0

h
)|

=
2n

hnn!

n∏

i=1

|x0 − xi| sup
u∈[0,h]

hn|ϕ(n,0)(u, y0)| ≤ 2n

n!
hn sup

u,v∈[0,h]
|ϕ(n,0)(u, v)|

for all x0, y0 ∈ [0, h]. Consequently, Schneider’s result implies approximation order

hn, which is, however, not optimal. This may be caused by the asymmetry with

respect to the order of the two variables.

6. Two examples

First we apply the interpolation scheme to a polynomial ϕ of bidegree (7, 7) with

randomly chosen coefficients. Figure 2 compares the L∞–error of three methods: rank-2

interpolation R2, rank 3-interpolation R3 with x2 = y2 = h
2 , and Coons interpolation

C [2, 14]. Clearly, both R2 and C yield an error of the order h4, whereas R3 gives a

higher order h6 of accuracy, as expected.

Coons interpolation is known to converge with the fourth order. This can be verified

by noticing that it is the particular case of the transfinite interpolation with blending

functions [9] with n = 2, see the remark at the end of the previous section.

In the second example, we study the L∞–error which is present when approximating

the function

ϕ = 1 + s+ s2 + s3 + (s+ s2 + s3)t+ s3t2 + (s2 + s3)t3 .

We consider the same three methods as in the previous example. The results are visu-

alized in Figure 3. Note that since

det
(
ϕ(i,j)(0, 0)

)
i,j=0,1,2

= 0 ,

11



●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

10
-4

0.001 0.010 0.100 1

h

10
-15

10
-11

10
-7

0.001

10.000

L
∞-error

● L∞-error rank-2

● L∞-error rank-3

● L∞-error Coons

h4

h6

Figure 2: First example: Approximation errors for a randomly chosen degree 7 polynomial when using

R2, R3 and C.

the assumption of Theorem 12 is not satisfied. Consequently, both R2 and R3 do not

exhibit the same order of convergence as in the previous example. In both cases, the

order seems to be equal to h5.

7. Closure

We studied methods for transfinite interpolation by bivariate functions of low rank

and investigated the approximation power of these schemes. Future work might address

the generalization to the multivariate case (see [1] for cross interpolation of multivariate

functions), although the underlying tensor rank is much harder to characterize than

matrix rank.
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