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Abstract

We analyze the spaces of C1–smooth isogeometric functions on hexahedral two-patch
domains. Our aim is to generalize the corresponding results from the bivariate [25] to the
trivariate case. In the first part of the paper, we introduce the notion of gluing data and
use it to define glued spline functions on two-patch domains. Employing the fundamen-
tal observation that “matched Gk–constructions always yield Ck–continuous isogeometric
elements” [14], this allows us to characterize C1–smooth geometrically continuous isoge-
ometric functions as the push forwards of these functions for suitable gluing data. The
second part of the paper is devoted to various special classes of gluing data. We analyze
how the generic dimensions depend on the number of knot spans (elements) and on the
spline degree. Finally we show how to construct locally supported basis functions in spe-
cific situations.

Keywords: geometric continuity, isogeometric analysis, volumetric multi-patch domain,
C1–smooth isogeometric functions

1 Introduction
One of the main advantages of the framework of isogeometric analysis (IGA) [3, 9], which
was established by T.J.R. Hughes et al in 2005 [18], is that it allows for discretization spaces
providing high order smoothness. Using these spaces can be beneficial when solving high
order partial differential equations, such as the Cahn-Hilliard equation [10, 12], the Navier-
Stokes-Korteweg equation [13] as well as Kirchhoff-Love shells [2, 4, 26].

More precisely, the use of tensor-product splines – which dominate in applications due to
their frequent use in Computer-Aided Design – lead to isogeometric discretization spaces that
possess high order smoothness within each patch. However, multi-patch parameterizations
are required when considering more complex geometries, and the construction of globally
smooth spline functions is a non-trivial problem. This has motivated research on the coupling
of isogeometric multi-patch spline spaces across interfaces. Two main approaches can be
identified:

On the one hand, the coupling constraints are enforced weakly, using variational methods
or Lagrangian multiplier-based techniques. Nitsche-type methods in IGA were studied in
[1, 30], and the particular case of isogeometric thin shells were considered in [15]. Isogeometric
mortar methods have been investigated in [6], whereas discontinuous Galerkin methods were

∗Corresponding author (katharina.birner@jku.at)

1



explored in [27]. More recently, the latter approach has been extended to provide isogeometric
tearing and interconnecting solvers [16].

On the other hand, the coupling constraints are enforced strongly, by defining a suitable
subset of the isogeometric spline space on the underlying multi-patch domain. We will follow
this approach in our paper.

The strong enforcement of the coupling constraints is particularly well suited for generating
C0–smooth isogeometric splines on multi-patch domains. In [32] isogeometric spline forests
were introduced and the potential to use them as a basis in the isogeometric context was
shown. Multi-patch B-splines with enhanced smoothness across the interface were described
in [7].

The construction of isogeometric discretizations possessing higher order smoothness is a
more involved problem. Most methods use the concept of geometric continuity [31] and the
fundamental observation that Cs–continuity of an isogeometric function is directly related to
Gs–smoothness (order s geometric continuity) of the associated parameterization [14]. With
a few exceptions, the majority of the literature on (at least) C1–smooth isogeometric multi-
patch splines addresses the bivariate case.

A detailed investigation of C1–smooth piecewise polynomial splines on bilinearly param-
eterized multi-patch domains has been given by [5]. General results on dimensions and bases
of geometrically continuous spline surfaces of arbitrary topology were presented recently [28].
The space of C1–smooth geometrically continuous isogeometric splines on bilinear two- and
multi-patch domains was studied in [19, 25], including explicit constructions of basis functions
and numerical experiments indicating optimal approximation power. Recently, these results
have been extended to C2–smoothness [22, 23, 24].

The notion of analysis-suitableG1-parameterizations, which was introduced in [8], general-
izes the piecewise bilinear case while maintaining the optimal approximation properties. The
detailed analysis for two- and multi-patch domains is provided in [21] and [20], respectively.

To the best of our knowledge, the only existing construction of G1–smooth isogeometric
splines in the trivariate case was presented by [29]. It was derived by applying a sweep
operation to a bivariate construction, hence the effect of geometric continuity is limited to
two of the three parametric directions.

The present paper extends the investigation of G1–smooth isogeometric splines on two
patch domains (cf. [25]) to the volumetric setting.

In the first part of the paper, which consists of Sections 2 and 3, we introduce the notion of
gluing data and use it to define glued spline functions on two-patch domains. Employing the
fact that “matched Gk-constructions always yield Ck–continuous isogeometric elements” [14],
this allows us to characterize C1–smooth geometrically continuous isogeometric functions as
the push forwards of these functions for suitable gluing data. The second part of the paper
(Sections 4–6) is devoted to various special classes of gluing data. We analyze how the generic
dimensions depend on the number of knot spans (elements) and on the spline degree. We also
show how to construct locally supported basis functions in specific situations. We conclude
the paper in Section 7.

2 Glued spline spaces
We restrict ourselves to a two-patch domain Ω = Ω(1) ∪ Ω(2), which consists of two hexa-
hedral volumetric subdomains Ω(1) and Ω(2) that share a common face. Both subdomains
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are described by parameterizations F (i) : [0, 1]3 → Ωi, see Fig. 1. In particular, we consider
parameterizations by spline functions.

Let the symbol Sps,k denote the space of spline functions on [0, 1] of degree p with k
uniformly distributed inner knots of multiplicity p − s. Consequently, this space contains
spline functions that are at least Cs smooth. The two hexahedral subdomains are described by
parametric representations F (1) and F (2) with coordinate functions from the tensor-product
spline space

P = Sp1,k ⊗ S
p
1,k ⊗ S

p
1,k,

for certain values of the degree p and the knot number k. These parameterizations, which are
defined on two copies of the domain [0, 1]3, form the two-patch geometry mapping

F = (F (1), F (2)) ∈ P3 × P3.

We assume that the common face of the subdomains is parameterized by the two copies of
the face Γ = [0, 1]2 × {0} of the domains. More precisely, the subdomain parameterizations
satisfy

F (1)(ξ1, ξ2, 0) = F (2)(ξ1, ξ2, 0). (1)
Isogeometric discretization spaces on the two-patch domain Ω,

(P × P) ◦ F−1,

are constructed by composing pairs of spline functions belonging to P ×P with the inverse of
the geometry mapping F . Additional constraints are needed to construct smooth isogeometric
discretizations. More precisely, we will use gluing data to identify a suitable subspace of the
full Cartesian product P ×P. Both the two-patch geometry mapping and the functions used
for the discretizations will be chosen from the glued spline space, which is defined in the
following:

We denote by Π the ring of polynomials in two variables. Additionally, let Π∗ be the
ring of bivariate piecewise polynomial functions on [0, 1]2, which are obtained by composing
finitely many polynomial segments of arbitrary degree. In the most general case, the gluing
data

D = (α1, α2, α3, α4) ∈ Π4
∗

is a quadruple consisting of four bivariate piecewise polynomials αi, i = 1, . . . , 4.
We say that gluing data D is regular, if both α3 and α4 are non-zero, i.e., these functions

satisfy the inequality
α3(s, t) · α4(s, t) 6= 0 ∀(s, t) ∈ [0, 1]2 .

Given some gluing data D, which may or may not be regular, we define the glued spline space

GD =
{
f = (f (1), f (2)) ∈ P2 : f (1) = f (2) on Γ︸ ︷︷ ︸

(a)

and

α1∂1f
(1) − α2∂2f

(1) + α3∂3f
(1) − α4∂3f

(2) = 0 on Γ︸ ︷︷ ︸
(b)

}
,

which is the subspace of the Cartesian product P×P consisting of pairs of functions that sat-
isfy the continuity condition (a), which involves the values of both functions on the interface,
and the additional derivative compatibility condition (b). The partial derivative operator ∂k
indicates the differentiation with respect to the k-th argument ξk.

We briefly discuss two special cases:
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Figure 1: Parameterizations of two hexahedral subdomains Ω(1) and Ω(2) with the same parameter
domain, joined at the interface Γ.

• When choosing trivial data D0 = (0, 0, 0, 0) = 0, the compatibility condition is satisfied
for any choice of the two functions, hence we obtain the space G0 consisting of pairs of
spline functions that are joined together with C0–smoothness. This space contains any
space defined by non-trivial gluing data D.

• We obtain pairs of spline functions with identical first derivatives along the interface
when choosing D1 = (0, 0, 1, 1). This corresponds to the classical case of spline functions
that are joined together with C1–smoothness.

In the sequel we will use the B-spline representation

f (i) =
n∑

k=0
b
(i)
k Nk(ξ1, ξ2, ξ3), i ∈ {1, 2},

of the functions f =
(
f (1), f (2)

)
∈ P×P, where Nk are the tensor-product B-splines spanning

the space P. Consequently, any function f ∈ GD is characterized by the two equations

0 =
n∑

k=0
b
(1)
k Nk(ξ1, ξ2, 0)− b(2)

k Nk(ξ1, ξ2, 0) and

0 =
n∑

k=0
b
(1)
k

(
α1(ξ1, ξ2) (∂1Nk)(ξ1, ξ2, 0)− α2(ξ1, ξ2) (∂2Nk)(ξ1, ξ2, 0)

+α3(ξ1, ξ2) (∂3Nk)(ξ1, ξ2, 0)
)
− b(2)

k α4(ξ1, ξ2) (∂3Nk)(ξ1, ξ2, 0).

(2)

The next section discusses the relation between glued spline spaces and smooth isogeo-
metric discretizations. This is then followed by an analysis (presented in Section 4) of the
dimension of the glued spline space GD for various different choices of gluing data D.

3 Geometrically continuous isogeometric functions
We consider geometry mappings F ∈ G3

0, hence the C0 condition (1) is satisfied. For each
mapping F we define the space

VF =
[
(P × P) ◦ F−1] ∩ C1(Ω(1) ∪ Ω(2))
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of C1–smooth isogeometric functions on the computational domain Ω.
In detail, we consider functions ν ∈ (P × P) ◦ F−1. For any such function ν there exist

two spline functions w(1), w(2) ∈ P such that

(ν|Ω(i))(x) = ν(i)(x) = (w(i) ◦ (F (i))−1)(x), x ∈ Ω(i), i = 1, 2.

or equivalently

(ν|Ω(i))(F (i)(ξ)) = ν(i)(F (i)(ξ)) = w(i)(ξ), ξ ∈ [0, 1]3, i = 1, 2.

As additional smoothness property we require that the first derivatives of ν(1) and ν(2) take
identical values at the interface F (i)(ξ1, ξ2, 0), i ∈ {1, 2}, since ν ∈ C1(Ω(1) ∪ Ω(2)).

We consider the associated graph surface Φ of ν, which consists of two patches

Φ(i) =
(
F (i), w(i)

)T
: [0, 1]3 → R4, i = 1, 2.

The function ν is C1–smooth if and only if the two patches have identical tangent hyperplanes
along the interface

Φ(1)(ξ1, ξ2, 0) = Φ(2)(ξ1, ξ2, 0), ξ1, ξ2 ∈ [0, 1], (3)
see Theorem 1 in [25] for the bivariate case. This is characterized by two conditions: First,
the spline functions w(i) satisfy the C0 condition

w(1)(ξ1, ξ2, 0) = w(2)(ξ1, ξ2, 0).

Second, the four partial derivatives

∂1Φ(1)(ξ1, ξ2, 0) = ∂1Φ(2)(ξ1, ξ2, 0),
∂2Φ(1)(ξ1, ξ2, 0) = ∂2Φ(2)(ξ1, ξ2, 0),
∂3Φ(1)(ξ1, ξ2, 0) and ∂3Φ(2)(ξ1, ξ2, 0)

(4)

of both patches are linearly dependent at each point of the interface (3). These conditions
are equivalent to the well-established notion of geometric continuity between patches (see
[14, 17]), hence we refer to VF as the space of C1–smooth geometrically continuous isogeometric
functions.

The linear dependency can be equivalently characterized by the vanishing determinant of
the 4× 4 matrix consisting of the vectors in (4). The resulting equation

J(ξ1, ξ2) = det
(
∇F (1)|ξ3=0 ∂3F (2)|ξ3=0
∇w(1)|ξ3=0 ∂3w(2)|ξ3=0

)
= 0 (5)

generalizes the well–known determinant condition for geometric continuity of surfaces [17].
We consider the expansion of this determinant by its first minors J4m and obtain

J41 (∂1w
(1)|ξ3=0)− J42 (∂2w

(1)|ξ3=0) + J43 (∂3w
(1)|ξ3=0)− J44 (∂3w

(2)|ξ3=0) = 0.

For future reference we note that

J44 = det∇F (1)|ξ3=0 and J43 = det∇F (2)|ξ3=0.

These minors define the geometric gluing data

DF = (J41, J42, J43, J44) . (6)

We call it geometric as it is obtained from a geometry mapping F .
Two observations are in order:
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• The coordinate functions of the two-patch geometry mapping F are elements of the
glued spline space defined by the geometric gluing data DF , i.e.,

F ∈ G3
DF
.

• The pair w = (w(1), w(2)) of spline functions is contained in the glued spline space
defined by DF if and only if the corresponding isogeometric function ν is C1 smooth,
i.e., ν ∈ VF . Thus any C1 smooth geometrically continuous isogeometric function is
simply the push forward of a glued spline function, i.e.,

VF = GDF
◦ F−1. (7)

So far, we considered geometric gluing data DF defined by a given geometry mapping F .
Now we will start from general gluing data D and use it to define a geometry mapping. We
will see, this mapping yields geometric gluing data that is essentially equivalent to D (see
also [8] for the bivariate case):

Lemma 1. We consider regular gluing data D = (α1, α2, α3, α4) and a regular two-patch
geometry mapping F ∈ G3

D. The geometric gluing data DF defined by F satisfies

DF = φD (8)

with the non-zero factor
φ(ξ1, ξ2) = J44

α4(ξ1, ξ2) .

Proof. The fact that F ∈ G3
D implies

∂3F
(2)|ξ3=0 = (α1

α4
∂1F

(1) − α2
α4
∂2F

(1) + α3
α4
∂3F

(1))|ξ3=0,

since the regularity of the gluing data ensures α4 6= 0. Substituting the fourth column of the
matrix in (5) by the right–hand side of this equation gives minors

J41 = α1
α4

J44, J42 = α2
α4

J44, J43 = α3
α4

J44. (9)

The regularity of the geometry mapping implies J44 6= 0 at all points, hence combining (9)
with the definition (6) of the geometric gluing data DF completes the proof.

As an immediate consequence of (8) we obtain that the two glued spline spaces are iden-
tical,

GDF
= GD (10)

since the glued spline spaces defined by D and ψD are identical for any non-zero factor ψ.
Finally we use these results to re–derive the recent result of Groisser and Peters [14] in

our particular situation (C1 smooth isogeometric trivariate functions):

Theorem 2. Consider regular gluing data D and regular geometry mapping F ∈ G3
D. Any

C1–smooth geometrically continuous isogeometric function is the push-forward of a glued
spline function,

VF = GD ◦ F−1.
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Proof. This can be seen by combining (7) and (10).

The fundamental result of Groisser and Peters [14] deals with Gk–smoothness ofm–variate
geometry mappings into d–dimensional space and considers functions with values in RN .
According to their result, Gk constructions always yield Ck–smooth isogeometric functions.
When applying it to our specific case (k = 1,m = 3, d = 3 and N = 1), it allows to conclude
that GD ◦ F−1 ⊆ VF . The above theorem complements this observation by establishing the
equivalence of both spaces under an additional regularity assumption. We conjecture that it
can be extended to the general case as well. This, however, would require more technicalities
and is therefore beyond the scope of the present work.

4 Particular classes of gluing data
We define several types of gluing data and introduce the generic dimension of the associated
glued spline spaces.

4.1 Types of gluing data
We analyze the dimension of the glued spline space GD — and hence also the dimension of
the space of C1–smooth geometrically continuous isogeometric functions VF for any regular
geometry mapping F ∈ G3

D — for specific types of gluing data. In general, the dimension is
very low. Even for geometric gluing data, the dimension may be as low as four. Due to the
linear precision of tensor-product B-splines, the space of C1- smooth geometrically continuous
isogeometric functions always contains the four-dimensional space of linear polynomials, but
it does not contain any additional function in general. However, this space is guaranteed to
contain any polynomial of degree p if we consider geometric gluing data derived from a regular
trilinear geometry mapping F ∈ G3

D, hence its dimension is at least
(p+2

2
)
in this situation.

In order to obtain a non-trivial glued spline space GD, we consider polynomial gluing data
of relatively low degree, i.e.,

D = (α1, α2, α3, α4) ∈ Πq1 ×Πq2 ×Πq3 ×Πq4 ,

where Πqi denotes the space of bivariate tensor-product polynomials of bi-degree qi ∈ Z2
≥0.

The four bi-degrees Q = [q1, q2, q3, q4] thus characterize a class of gluing data. In particular
we obtain the degree

Q3 = [(3, 2), (2, 3), (2, 2), (2, 2)] (11)

when considering geometric gluing data which is derived from a generic trilinear geometry
mapping.

We analyze the dimension of GD for gluing data whose degree does not exceed Q3. The
full set of all these gluing data forms a 42-dimensional real linear space, which we will denote
by D. In addition to considering the full space, we will also analyze the dimension for gluing
data D taken from certain subsets of D. These subspaces are defined as embeddings

Ttype : Rm → D,

of the m-dimensional real linear space Rm, for some dimension m ∈ Z>0. The embeddings
are represented by rational mappings Ttype, where the lower index identifies the type of gluing
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Figure 2: Two-patch geometry with two trilinear subdomains Ω(1),Ω(2) joined at a common interface
Γ and their defining corner points vj,k,`.

data. Consequently, the associated subsets

Ttype = Ttype(Rm)

form algebraic varieties in D = R42.
More precisely we consider the following embeddings:

1) The corner points vj,k,` of the volumetric hexahedral patches define a two-patch trilinear
geometry mapping F = (F (1),F (2)),

F (i) =
1∑

j=0

1∑

k=0

1∑

`=0
v

(i)
(−1)ij,k,`

βj(ξ1) βk(ξ2) β`(ξ3),

where the blending functions βj , βk, β` are the linear Bernstein polynomials, see Fig. 2.
We obtain geometric gluing data by evaluating the subdeterminants J4m as in (5). The
mapping

Ttrl : R36 → D, F 7→ (J41, J42, J43, J44),

which transforms the 36 coordinates of the 12 corner points into the associated geometric
gluing data, defines the algebraic variety Ttrl of trilinear geometric gluing data.

2) Considering again the situation of the trilinear embedding, we obtain the special case
of planar interfaces1 by choosing corner points v0,k,` ∈ R2 × {0}. The mapping

Tpln : R32 → D,

which transforms the 32 free coordinates of the 12 corner points into the associated
geometric gluing data, defines the algebraic variety Tpln ⊆ Ttrl of trilinear geometric
gluing data with a planar interface.

1Without loss of generality we choose the xy plane as the plane containing the interface.
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Tsym ⊆ Tpln ⊆ Ttrl
⊆ ⊆

Tuni Tcub = D
⊆ ⊆

Tlin ⊆ Tqud

Figure 3: The relations between the algebraic varieties Ttype, which are defined by different types of
gluing data D.

3) Even more restrictive choices of the 12 corner points define further types of gluing data.
As an example, we focus on configurations which are symmetric with respect to the
interface plane and obtain the embedding

Tsym : R20 → D,

defining the variety Tsym ⊆ Tpln.

4) In the simplest possible situation, we arrive at a two-patch domain that consists of
cubes with some edge length δ > 0. This corresponds to the classical case of uniform
C1–smooth splines. The associated geometric gluing data defines the embedding

Tuni : R1 → D,

which specifies the variety Tuni ⊆ Tsym.

5) For the sake of completeness we also include the most general case of using generic gluing
data D of degree Q3 as in (11). We will in the following denote such non-trilinear gluing
data of degree Q3 as cubic gluing data. By considering the 42 coefficients of these four
tensor-product polynomials we find the embedding

Tcub : R42 → D,

which defines the full set Tcub = D.

6) Considering again the situation of the generic embedding, we obtain the special cases
of quadratic and linear gluing data by restricting some of the coefficients of the four
polynomials αi, i ∈ {1, 2, 3, 4} to zero. In particular, we consider the degrees

Q2 = [(2, 1), (1, 2), (1, 1), (1, 1)] and Q1 = [(1, 0), (0, 1), (0, 0), (0, 0)] ,

respectively and obtain the embeddings

Tqud : R20 → D and Tlin : R6 → D

which define the varieties Tlin ⊆ Tqud.

Figure 3 summarizes the relation between the algebraic varieties in the space D which corre-
spond to the various types of gluing data described above.
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4.2 Generic dimension
For given gluing data D ∈ Q3 we compute the dimension of the glued spline space GD by
analyzing the equations (2). The right-hand sides of both equations are contained in the
spline space P ′ = Sp+2

0,k ⊗ S
p+2
0,k . Thus we obtain an equivalent homogeneous linear system2

ADb = 0 (12)

for the unknowns
b =

(
b
(i)
j

)
j=1,...,n, i=1,2

(13)

by performing collocation at the Greville points of P ′. The dimension of the glued spline
space is determined by the rank of the coefficient matrix,

dimGD = 2n− rankAD.

For fixed values of p and k, the dimension defines a function on the 42-dimensional space D.
In order to compute the dimension, we evaluate the rank of the matrix AD. We pay

special attention to avoid numerical errors during the computation. To do so, we use rational
numbers throughout the process. The Greville abscissas have rational coordinates and the
values of B-spline functions on them are also rational, which is why the matrix AD is a matrix
with rational elements as well. Later, in order to obtain a basis, we will also compute the
kernel of the matrix AD and analyze the structure of the solutions. More precisely we apply
Gaussian elimination to transform AD to Reduced Row Echelon Form (RREF).

Recall that the rank of the coefficient matrix satisfies

rankAD = min
r∈N
{r : all (r + 1)× (r + 1) minors of AD vanish} .

Consequently, when adopting the notion of degeneracy loci from [11],

Lr = {D ∈ D : rankAD ≤ r},

it is obvious that these loci form a nested sequence of algebraic varieties,

{(0, 0, 0, 0)} = L0 ⊆ · · · ⊆ Lr ⊆ Lr+1 ⊆ · · · ⊆ L2n = D.

The dimension GD is at least 2n−r if the degeneracy locus Lr contains the gluing data D ∈ D.
In order to capture the dimension of the glued spline space for an entire class of gluing

data — which is defined by one of the types introduced in the previous section — we define
the generic dimension δtype as

δtype = 2n−min
r
{r : Ttype ⊆ Lr}.

This notion is justified by the following observation:

Theorem 3. For randomly chosen gluing data D ∈ Ttype, where type is one of the types
introduced in Section 4, the dimension of the glued spline space satisfies

dimGD = δtype

with probability 1.
2In practice, it suffices to analyze the smaller system obtained by identifying the degrees of freedom along

the common interface and restricting the system to the three layers of coefficients around it.
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Figure 4: Coefficients used by the interface functions (green bullets). The figure shows the control
cages of both patches (red and blue).

Proof. Recall that the degeneracy loci can be characterized by vanishing minors of the coef-
ficient matrix AD. More precisely, the degeneracy loci satisfy

Lr = {D : sr(D) = 0} ,

where sr(D) is the vector whose elements are all the (r + 1)× (r + 1)-minors of AD. Conse-
quently, the inclusion Ttype ⊆ Lr can equivalently be characterized by

sr ◦ Ttype = 0 on Rm,

where m is the dimension of the preimage space of the embeddings Ttype.
We consider the randomly chosen gluing data D ∈ Ttype. For any r, the equations

sr ◦ Ttype = 0 define an algebraic variety, which is either the entire space Rm, or it is a
lower-dimensional subvariety thereof. The latter case occurs if and only if r < 2n− δtype, due
to the definition of the generic dimension. Consequently, for any randomly generated point
x ∈ Rm,

P
(

(sr ◦ Ttype)(x) = 0
)

=
{

1, if Ttype ⊆ Lr

0, otherwise,

since lower dimensional subvarieties of Rm have zero volume. Thus

P
(

min
r
{(sr ◦ Ttype)(x) = 0} = min

r
(Ttype ⊆ Lr)

)
= 1

which implies
P (dimGD = δtype) = 1

and this completes the proof.

5 Dimension of the glued spline space
The different types of gluing data Ttype ⊆ D yield different dimensions δtype. We adopt the
strategy introduced in [25, Theorem 4] and extend it to the trivariate case. More precisely,
we split the glued spline space into a direct sum of spaces of inner functions and interface
functions. The nonzero spline coefficients of the latter ones are located in the three layers
adjacent to the interface, while the inner functions use only the remaining coefficients, see
Fig. 4.
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k p=2 p=3 p=4 p=5 p=6 p=7 p=8
0 18+2 64+12 150+26 288+44 490+66 768+92 1134+122
1 64+2 288+12 768+37 1600+85 2880+153 4704+237 7168+337
2 150+2 768+12 2178+50 4704+136 8670+274 14400+448 22218+658
3 288+2 1600+12 4704+65 10368+197 19360+429 32448+725 50400+1085
4 490+2 2880+12 8670+82 19360+268 36450+618 61440+1068 95830+1618

Table 1: Dimensions δ0 + δΓ
cub of glued spline spaces for cubic gluing data.

The dimension of the space of inner functions

δ0 = 2(p+ 1 + k(p− 1))2(p− 1 + k(p− 1))

does not depend on the gluing data, since their values and first derivatives vanish along
the interface. We analyze the dimension of the interface functions by studying randomly
generated instances. Each instance provides a lower bound on the dimension. However, since
we use random instances, the sum of both dimensions

δtype = δ0 + δΓ
type

is equal to the generic dimension with probability 1 due to the Theorem 3.
We now proceed by discussing δΓ

type for the various types of gluing data individually.

Type ‘cub’ First we consider general cubic gluing data. Table 1 presents the dimensions
δcub for different degrees (p, p, p) and numbers k of inner knots. The dimension of the space
GD is shown as the sum of the dimensions of the spaces of inner and the interface functions.
While the dimension of the inner functions grows with k for any degree p, the number of
linearly independent interface functions remains constant for p = 3.

We use interpolation to obtain a closed formula for the dimension of the interface functions.
One expects to obtain a closed polynomial expression for sufficiently large degrees p, but not
necessarily for all degrees. In the case of cubic gluing data, we did not obtain a closed formula
when considering degrees p ≤ 4. For p > 4, we conjecture that the dimension satisfies

δΓ
cub = −6− 14k + 5k2 − 10 k(1 + k) p + 2 (k + 1)2 p2

for generic cubic gluing data.

Type ‘trl’ Table 2 presents the dimensions δtrl for the case of trilinear geometric gluing data.
The dimensions are always larger than in the cubic case. This is significantly different from the
results in [8] for the bivariate case, where it was shown that the dimension does not change
when generalizing bilinear parameterizations to analysis-suitable G1 parameterizations, see
Remark 4 below for more details.

Again we use interpolation to obtain a closed formula for the dimension of the interface
functions. For p > 2, we conjecture that the dimension satisfies

δΓ
trl = 2 + 2k + 13k2 − 10 k(1 + k) p + 2 (k + 1)2 p2.
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k p=2 p=3 p=4 p=5 p=6
0 18+10 64+20 150+34 288+52 490+74
1 64+10 288+29 768+65 1600+117 2880+185
2 150+10 768+40 2178+106 4704+208 8670+346
3 288+10 1600+53 4704+157 10368+325 19360+557
4 490+10 2880+68 8670+218 19360+468 36450+818

Table 2: Dimensions δ0 + δΓ
trl of glued spline spaces for trilinear geometric gluing data.

k p=2 p=3 p=4 p=5 p=6
0 18+15 64+27 150+43 288+63 490+87
1 64+22 288+49 768+93 1600+153 2880+229
2 150+31 768+79 2178+163 4704+283 8670+439
3 288+42 1600+117 4704+253 10368+453 19360+717
4 490+55 2880+163 8670+363 19360+663 36450+1063

Table 3: Dimensions δ0 + δΓ
sym of glued spline spaces for trilinear gluing data corresponding to two

symmetric trilinear subdomains.

k p=2 p=3 p=4 p=5 p=6
0 18+18 64+32 150+50 288+72 490+98
1 64+32 288+72 768+128 1600+200 2880+288
2 150+50 768+128 2178+242 4704+392 8670+578
3 288+72 1600+200 4704+392 10368+648 19360+968
4 490+98 2880+288 8670+578 19360+968 36450+1458

Table 4: Dimensions δ0 + δΓ
uni of glued spline spaces for gluing data Tuni.

Type ‘pln’ This class of gluing data is derived from trilinear parametrizations with planar
interfaces. We obtain exactly the same results as in the previous case (Table 2), hence
δpln = δtrl.

Type ‘sym’ An even more restricted class of gluing data is derived from symmetric trilinear
parametrizations. Table 3 lists the dimensions δsym for this situation as the sum of δ0 + δΓ

sym.
The dimensions are always larger than in the previous three cases.

Again we use interpolation to obtain a closed formula for δΓ
sym. For p > 2, we conjecture

that the dimension satisfies

δΓ
sym = 3 + 10k2 + 2 (1− 3k − 4k2) p + 2 (k + 1)2 p2.

Type ‘uni’ Table 4 presents the dimensions δuni for the case of gluing data that corresponds
to two cubes with a shared face. The obtained dimensions are always larger than for the other
cases.

We arrive at the closed formula for the dimension of the interface functions,

δΓ
uni = 2 (1− k)2 + 4 (1− k2) p + 2 (k + 1)2 p2,

which is equal to the dimension of the interface functions among the trivariate tensor-product
splines on the two cubes.
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k p=2 p=3 p=4 p=5 p=6 p=7
0 18+11 64+23 150+39 288+59 490+83 768+111
1 64+11 288+34 768+77 1600+137 2880+213 4704+305
2 150+11 768+47 2178+127 4704+247 8670+403 14400+595
3 288+11 1600+62 4704+189 10368+389 19360+653 32448+981
4 490+11 2880+79 8670+263 19360+563 36450+963 61440+1463

Table 5: Dimensions δ0 + δΓ
qud of glued spline spaces for gluing data of degree Q2

k p=2 p=3 p=4 p=5 p=6
0 18+18 64+32 150+50 288+72 490+98
1 64+25 288+61 768+113 1600+181 2880+265
2 150+34 768+100 2178+202 4704+340 8670+514
3 288+45 1600+149 4704+317 10368+549 19360+845
4 490+58 2880+208 8670+458 19360+808 36450+1258

Table 6: Dimensions δ0 + δΓ
lin of glued spline spaces for gluing data of degree Q1

Types ‘qud’ and ‘lin’ Table 5 presents the dimensions δqud for gluing data D of degree
Q2. The obtained dimensions are always larger than in case of cubic gluing data. Again we
use interpolation to obtain a closed formula for the dimension of the interface functions. For
p > 3, we conjecture that the dimension satisfies

δΓ
qud = −1− 8 k + 6 k2 + 2 (1− 3k − 4k2) p + 2 (k + 1)2 p2 .

Table 6 presents the dimensions δlin for gluing data D of degree Q1. The obtained dimen-
sions are always larger than in case of quadratic gluing data. For k = 0 and any choice of p
we obtain the same dimension δlin as for gluing data of type ‘uni’.

For p > 2, we conjecture that the dimension satisfies

δΓ
lin = 2− 6 k + 5 k2 + 2 (2− k − 3 k2) p + 2 (k + 1)2 p2 .

Remark 4. For the trivariate isogeometric functions considered in this paper, the spaces
defined by cubic gluing data (more precisely, by gluing data of degree Q3, see (11)) and by
trilinear geometric gluing data have different dimensions. This is due to the fact that the
algebraic varieties defined by the embeddings Tcub and Ttrl are different. Indeed, the second
one is a proper subvariety of the first one. This is a fundamental difference to the bivariate
case. In that case, we have to consider only three blending functions, which depend solely
on one variable. The two classes of gluing data, which correspond to the types cub and trl,
are data of degree (2, 1, 1) [8] and geometric data generated by bilinear geometry mappings
[25], respectively. A short computation confirms that the two associated subvarieties are
identical. Indeed, one can prove that the subset associated with the bilinear gluing data is
dense in the algebraic variety generated by the data of degree (2, 1, 1). Consequently, the
generic dimensions of the corresponding glued spline spaces are identical. In particular, this
also applies to the particular class of analysis-suitable gluing data, which is situated between
the two classes, see [21].

14



36 48 60 72 84 96

38 50 62 74 86 98

40 52 64 76 88 100

42 54 66 78 90 102

44 56 68 80 92 104

46 58 70 82 94 106

0 6 12 18 24 30

1 7 13 19 25 31

2 8 14 20 26 32

3 9 15 21 27 33

4 10 16 22 28 34

5 11 17 23 29 35

37 49 61 73 85 97

39 51 63 75 87 99

41 53 65 77 89 101

43 55 67 79 91 103

45 57 69 81 93 105

47 59 71 83 95 107

Figure 5: Numbering of the three layers of coefficients of interface basis functions for p = 3 and k = 1.
From left to right: coefficients above, on and below the interface.

6 Basis functions
In order to obtain glued spline spaces (and consequently spaces of C1–smooth geometrically
continuous isogeometric functions) on two-patch domains that are useful for applications, we
investigate two additional questions:

1. Can we find a system of locally supported3 basis functions spanning the space?

2. Do these functions have good approximation properties?

We will focus mainly on the first question and give partial answers to the second one in the
next section. Basis functions for a specific case will be presented in Section 6.2.

6.1 Existence of a locally supported basis
In order to simplify the presentation and to eliminate the influence of boundary effects,
we restrict ourselves to spaces with homogeneous C1 boundary conditions. This does not
limit the applicability of the results to isogeometric analysis since one may always transform
inhomogeneous problems into homogeneous ones. The glued spline space which is obtained
by enforcing these conditions will be denoted by GD,0. Consequently, we may discard two
layers of boundary coefficients from the equations (2) and the equivalent linear system (12).

We focus on the computation of interface basis functions δΓ
type and their structure for

different types of generic gluing data and various degrees. In order to find locally supported
basis functions, we order the coefficients b (see (13)) according to their location. Figure 5
shows this ordering for a particular case.

After reordering the columns of AD according to this numbering (and discarding boundary
coefficients), we compute the coefficients of the basis functions using the RREF of the matrix.
In most cases we were able to identify patterns for the kernel of the matrix, which correspond
to locally supported interface basis functions. More precisely, we obtained four classes of
functions, visualized by different symbols in Table 7:

× No locally supported interface basis functions were found, dimGD,0 = 0. In these cases,
the dimension of the full space of glued spline functions does not depend on k.

(×) Locally supported basis functions were found but they take only zero values on the
interface. This implies locking and hence a loss of approximation power.

3More precisely, we wish to have basis functions with a bounded number of non-zero-coefficients, where the
bound is independent of the number of inner knots k.
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p Trilinear Cubic Quadratic Linear
gluing data gluing data gluing data gluing data

2 × × × (×)
3 X × (×) (×)
4 X (×) (×) X
5 X (×) (X) X

Table 7: This table shows the different types of bases occurring for the specific types of gluing data.
× indicates that dimGD,0 = 0 and (×) that only basis functions with zero support on the shared face
were obtained, hence leading to locking. Entries with X refer to local bases with desired properties at
the interface. (X) signals that a basis was constructed not fulfilling all requirements for local support.

X We found a local basis of the space GD,0 and there are basis functions with non-zero
coefficients on the interface.

(X) We found a basis of the space GD,0 but not all basis functions are local.

Only global basis functions were found for almost all types of gluing data if p = 2, and for
cubic gluing data if p = 3. This matches the corresponding dimensions results of Section 5,
which showed that the dimension of the interface functions does not increase with the number
k of inner knots. Among the other cases, the most promising ones are trilinear and linear
gluing data of degree p ≥ 3 and p ≥ 4, respectively. The case of quintic splines for quadratic
gluing data is still open, since applying a re-ordering of the coefficients might still lead to a
locally supported basis.

6.2 Basis functions for trilinear geometric gluing data
In this section we discuss the obtained interface functions in case of trilinear geometric gluing
data Ttrl and C1 boundary conditions in further detail, focusing on degrees p = 3, 4. Similar
results can be obtained for higher degrees. Independently of the spline degree p > 2, we
obtain a local basis containing functions taking non-zero values on the interface, provided
that there are sufficiently many inner knots. For applications it is important to understand
the structure of the basis functions, i.e., their coefficient patterns.

For degree p = 3, the basis can be generated by using functions of only one type. The
coefficient pattern, which involves 6×6×3 coefficients, is shown in Fig. 6 (top). More precisely,
the three pictures represent the three layers of relevant spline coefficients (from left to right:
above, on, and below the interface), specifying the signs of these coefficients. The basis is
formed by (k − 2)2 functions of this type, with coefficient patterns obtained by performing
index shifts by multiples of p− 1 = 2 (horizontally and/or vertically).

The values of these functions are visualized by an isosurface (middle row, left) and by the
level curves in a plane that intersects the interface transversally (right). These level curves
are connected smoothly across the interface, thereby confirming the C1 smoothness of the
basis. Additionally we provide reflection lines of a particular level set (bottom).

This approach can be generalized to basis functions of degree p = 4. In this case we distin-
guish between six types of basis functions, depending on the number of non-zero coefficients.
The coefficients form seven different patterns, one for each of the types 1 and 3-6, and two
for type 2, see Figure 7. Figure 8 visualizes these functions. The global C1–smoothness is
confirmed by the smoothness of the level curves (right column).
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Figure 6: Coefficient pattern (top), function values (middle, visualized by isosurfaces (left) and a level
curves in a plane (right)) and reflection lines of a particular level set (bottom) of the single type of
basis functions obtained for p = 3.

Different instances of the basis functions are obtained when using coefficient patterns
obtained by performing index shifts by multiples of p−1 = 3 (horizontally and/or vertically).
Not all the functions obtained in this way are present in the basis of the glued spline space:

– Only the 2k − 1 translates obtained by applying index shifts to either one of the two
indices are considered for the Type 1 pattern.

– Only the k − 1 translates obtained by applying horizontal index shifts are considered
for the Type 2.1 pattern.

– For all other types, we use all possible translates, resulting in k(k − 1) functions of
Type 2.2 and (k − 1)2 functions for each of the remaining types.

Summing up, the size of the basis amounts to 5k2 − 6k + 2, assuming that k is non-zero.
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Figure 7: Coefficient patterns of basis functions obtained for p = 4.

7 Conclusions
We analyzed the spaces of C1–smooth geometrically continuous isogeometric functions on
hexahedral two-patch domains. We introduced the notation of gluing data and used it to
define glued spline functions on two-patch domains. We were able to characterize C1-smooth
geometrically continuous isogeometric functions as push-forwards of glued spline functions.

In addition to these theoretical results, we studied several classes of gluing data in more
detail. More precisely, we identified several interesting types of trilinear geometric gluing
data, and we considered the generic case of degree Q3 as well as lower degree cases.

We analyzed the generic dimension of the glued spline space for these classes of gluing data
and showed how to construct locally supported basis functions. These functions, however,
do not exist for all combinations of gluing data and degrees. Even if they exist, they may
all take zero values on the interface, thereby indicating C1-locking, cf. [8]. According to our
results, the class of trilinear geometric gluing data is particular promising for applications in
isogeometric analysis since it leads to locally supported basis functions without locking for
moderate degrees of the spline functions.

Our current work is devoted to the detailed investigation of the approximation power of
the resulting spaces of C1-smooth geometrically continuous isogeometric functions, and to
applications in isogeometric simulations. In the bivariate case, it was shown that glued spline
spaces defined by bilinear geometric gluing data possess optimal approximation properties.
Moreover, this was found to be true for the class of analysis-suitable G1-parameterizations
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(a) Type 1

(b) Type 2

(c) Type 3

(d) Type 4

(e) Type 5

(f) Type 6

Figure 8: Isosurfaces (left column) and level curves in a plane that intersects the interface transversally
(right column) visualizing the values of the six different types of basis functions obtained for p = 4.

[8]. The generalization of these results to the trivariate case is of vital interest.
Finally, the class of two-patch domains possesses rather limited geometric modeling ca-
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pabilities, and hence the generalization to the full multi-patch case is a potential topic for
future research, similar to the results presented in [19] for the bivariate case.

Acknowledgment Supported by the Austrian Science Fund (FWF) through NFN S117
“Geometry + Simulation”.
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