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Abstract. System matrix assembly for isogeometric (i.e., spline-based) discretizations of par-
tial differential equations is more challenging than for classical finite elements, due to the increased
polynomial degrees and the larger (and hence more overlapping) supports of the basis functions. The
global tensor-product structure of the discrete spaces employed in isogeometric analysis can be ex-
ploited to to accelerate the computations, using sum factorization [1, 7], precomputed look-up tables
[23], and tensor decomposition [25]. We generalize the third approach by considering partial tensor
decompositions. We show that the resulting new method preserves the global discretization error
and that its computational complexity compares favorably to the existing approaches. Moreover, the
numerical realization simplifies considerably since it relies on standard techniques from numerical
linear algebra.

1. Introduction. Isogeometric discretizations (see [9]) possess significant ad-
vantages for the numerical solution of partial differential equations (PDEs). These
include the higher smoothness of the obtained numerical solution (when using higher
polynomial degree), the compatibility of the representation with models coming from
computer-aided design (CAD) systems, as well as the reduction of the number of
degrees of freedom required to reach a prescribed accuracy level. However, these ad-
vantages come at the price of increased computation costs per degree of freedom, and
this effect becomes even more pronounced as the dimension increases [8].

There are several lines of work which aim at improving the computational effi-
ciency of isogeometric computations. First, quadrature rules with a reduced (or even
minimal) number of nodes have been studied [3, 5, 6, 16]. These rules are defined
for univariate spline spaces and require less quadrature points compared to standard
Gaussian quadrature, taking into account the higher regularity of the space. Special-
ized reduced quadrature rules have also emerged [14, 15] recently. The generalization
to multivariate integrals is achieved by a tensor-product approach.

Second, the collocation approach to discretization of PDEs has been extensively
explored in isogeometric analysis [2, 28]. Intuitively, collocation may be thought as
one-point quadrature, since approximately one evaluation per element is required for
highly-smooth B-spline discretizations. However, the method acts on the strong form
of the PDE at hand, thereby sacrificing some of the benefits of the Galerkin method.

Third, the built-in tensor-product structure of isogeometric discretizations has
been exploited to improve efficiency. The evaluation of mass and stiffness matrices was
addressed in [22, 23], based on small look-up tables for univariate B-spline integral.
These are used in conjunction with an interpolation approach that transforms the
integrands into spline functions. Building on these ideas, singular value decomposition
(SVD) is used in [24] for the decomposition of bivariate integrals into univariate
integrals. This has been generalized to higher dimensions in [25], using a similar
decomposition approach for tensors.

A different idea to exploit the tensor-product structure has been explored in [7]:
The authors use quadrature rules which are exact for all integrals that involve a fixed
basis function. This approach is combined with sum factorization [1]. More recently,
the tensor-product structure has been employed for constructing fast preconditioners
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for the linear systems that arise from isogeometric discretisation [27].
Tensor methods are quite effective when dealing with high-dimensional operators

[4, 19, 21] and have found applications in several fields where structured data are
present [13, 18]. Recently, tensor decomposition has been proposed as a general
approach to reduce the complexity of simulations in isogeometric analysis [25]. While
in 2D this approach requires solely standard linear algebra tools, its extension to
higher dimensions requires advanced decomposition algorithms for tensors, such as
higher-order singular value decomposition (HOSVD) and alternating least squares
(ALS). Those methods are not supported by all standard scientific computing libraries.
Moreover, they require non-linear optimization and their properties are not yet fully
understood. In contrast to this, singular value decomposition (SVD) of matrices
– which is the main tool required for the 2D case – is well established and highly
optimized implementations are provided by linear algebra packages.

The present approach improves on [25]. More precisely we employ SVD in order
to decouple isogeometric discretizations partially, while maintaining a quasi-optimal
complexity for the task of matrix formation. This demonstrates that for efficient 3D
isogeometric matrix computations, sophisticated tools such as HOSVD/ALS can be
replaced by standard SVD with little or no compromises with respect to accuracy and
efficiency. In particular, we split the domain variables into two groups and perform
SVD with respect to this partition. Consequently, our initial 3D matrix computation
problem is replaced by a set of univariate and bivariate integration problems, which are
solved independently, and provide a Kronecker product representation of the original
matrix. We show that the overall asymptotic complexity remains quasi-optimal, and
the obtained rank values for this decomposition are in the worst case equal to the
case of a full 3D decomposition and can be much lower in practice.

The rest of the paper is organized as follows: First we recall in Section 2 the theory
of singular value decomposition of functions, in particular in finite dimensional func-
tion spaces. We also present our model problem and recall the isogeometric Galerkin
method. We then apply the theory of singular value decomposition to decouple the
isogeometric discretisation in Section 3 . The following section examines the assembly
of the system matrices using the decoupled discretisation. Based on this we analyze
the consistency errors and their contribution to the total error in Section 5. We com-
plete the analysis by discussing the complexity of our method and by comparing it to
the full decomposition method from [25] in Section 6. Finally, we present the results
of our numerical experiments.

2. Preliminaries. This section has three parts. First we recall existing results
concerning singular value decomposition of functions in tensor-product spaces. The
remaining two parts describe the model problem and its isogeometric discretization.

2.1. Singular value decomposition in finite dimensional function spaces.
Let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be domains of dimensions d1, d2 ∈ N. We will use the
singular value decomposition (SVD) of matrices to compute low-rank approximations
of functions

f : Ω1 × Ω2 −→ R

in a tensor–product space Φ⊗Ψ generated by two finite–dimensional spaces Φ ⊂ C(Ω1)
and Ψ ⊂ C(Ω2). Analogously to the rank of a matrix, the rank of a function g ∈ Φ⊗Ψ,
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denoted by rank(g), is defined to be the smallest integer such that

g(ξ) =

rank(g)∑

r=1

g1
r(ξ1)g2

r(ξ2)

with {g1
r} ⊂ Φ and {g2

r} ⊂ Ψ.
First we recall the SVD of a matrix and some of its properties, see e.g. [13,

Section 2.5.3]: For any matrix C ∈ Rµ×ν , there exist orthogonal matrices U ∈ Rµ×µ,
V ∈ Rν×ν and a rectangular diagonal matrix Σ ∈ Rµ×ν , such that

C = UΣV T =

min(µ,ν)∑

r=1

σrurv
T
r ,

where the diagonal entries of Σ, which are called the singular values, satisfy σ1 ≥
σ2 . . . ≥ σmin(µ,ν) ≥ 0 and ur and vr are the columns of the matrices U and V . By
defining the truncated diagonal matrix

(ΣR)ij =

{
σi for i = j ≤ R
0 otherwise

for any positive integer R, we obtain the rank-R approximation

(1) CR = UΣRV
T =

R∑

r=1

σrurv
T
r

of the given matrix C.
In order to apply SVD to the function approximation problem, we choose two

bases

φ =



φ1

...
φµ


 and ψ =



ψ1

...
ψν




for the two finite-dimensional spaces Φ ⊂ C(Ω1) and Ψ ⊂ C(Ω2) of dimensions µ and
ν, respectively. The Euclidean inner product of the coefficients then defines the inner
product

〈h, h′〉Φ = hTh′ =

µ∑

i=1

hih
′
i

on Φ (and analogously for Ψ), where the functions are represented as

h = 〈h,φ〉Rµ =

µ∑

i=1

hiφi and h′ = 〈h′,φ〉Rµ =

µ∑

i=1

h′iφi

with coefficient vectors h and h′. These inner products on Φ and Ψ induce an inner
product on

Φ⊗Ψ ⊂ C(Ω1 × Ω2),
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which is equal to the inner product defined by the tensor–product basis φ ⊗ ψ. We
find it convenient to express it via the Frobenius inner product 〈., .〉F of matrices,

〈g, g′〉Φ⊗Ψ = 〈G,G′〉F =

µ∑

i=1

ν∑

j=1

GijG
′
ij ,

since the functions g, g′ ∈ Φ⊗Ψ have coefficient matrices G and G′ with respect to the
basis φ ⊗ ψ. An analogous relation connects the Euclidean coefficient norm ‖.‖Φ⊗Ψ

with the Frobenius norm ‖.‖F of the coefficient matrices.
The Frobenius inner product also furnishes the compact notation

(2) f = 〈C,φ⊗ψ〉F =

µ∑

i=1

ν∑

j=1

Cijφiψj ,

where C ∈ Rµ×ν is the coefficient matrix, for the representation of any function
f ∈ Φ⊗Ψ with respect to the tensor-product basis.

Combining (2) with the SVD of the coefficient matrix C leads to the decomposi-
tion

(3) f =

min(µ,ν)∑

r=1

σr 〈ur,φ〉Rµ 〈vr,ψ〉Rν .

Considering again the truncated diagonal matrix, we obtain the rank-R approximation

(4) fR = 〈CR,φ⊗ψ〉F =
R∑

r=1

σr 〈ur,φ〉Rµ 〈vr,ψ〉Rν ,

of the function f with respect to the tensor product basis φ⊗ψ.

Lemma 1. The rank-R approximation (4) solves the best approximation problem

min
{g∈Φ⊗Ψ: rank(g)≤R}

‖f − g‖Φ⊗Ψ

and the resulting approximation error equals

‖f − fR‖Φ⊗Ψ = ‖C − CR‖F =

√√√√
min(µ,ν)∑

r=R+1

σ2
r .

Proof. It is known that the approximation error of the rank-R approximation CR
of the matrix C in the Frobenius norm is given by

(5) ‖C − CR‖F =

√√√√
min(µ,ν)∑

r=R+1

σ2
r

and it is the best approximation of C by a matrix of rank R in the Frobenius norm,
see [13, Lemma 2.30]. With our choice of norm on Φ⊗Ψ these properties are trans-
ferred to the function f and its rank-R approximation fR.

We establish a simple bound on the approximation error in the L∞ norm:
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Lemma 2. Given f as in (2) and its rank-R approximation fR as in (4) we have

‖f − fR‖L∞(Ω1×Ω2) ≤
(

max
ξ∈Ω1×Ω2

‖(φ⊗ψ)(ξ)‖F
)
√√√√

min(µ,ν)∑

r=R+1

σ2
r .

Proof. We rewrite the L∞ norm of the approximation error and use the Cauchy-
Schwarz inequality to obtain

‖f − fR‖L∞ = ‖〈C,φ⊗ψ〉F − 〈CR,φ⊗ψ〉F ‖L∞

= max
ξ∈Ω1×Ω2

|〈C − CR, (φ⊗ψ)(ξ)〉F |

≤
(

max
ξ∈Ω1×Ω2

‖(φ⊗ψ)(ξ)‖F
)
‖C − CR‖F .

The result now follows from (5).

This result is useful if we are able to control the constant that appears in front
of the square root. For instance, this constant can be evaluated easily when using
tensor-product B-splines.

Another result can be derived for the approximation error in the L2 norm if one
uses L2–orthonormal bases {φi}µi=1 and {ψj}νj=1. Indeed, the coefficient-based inner

products defined on Φ, Ψ and Φ⊗Ψ are then equal to the corresponding L2 products.
Consequently, the rank-R approximation is the best approximation with respect to
the L2-norm and the error satisfies

(6) ‖f − fR‖L2 =

√√√√
min(µ,ν)∑

r=R+1

σ2
r .

In this case, the representation (3) is equal to the SVD of an L2 function, which exists
for any function in L2(Ω1 ×Ω2), see [13, Corollary 4.115]. In the infinite dimensional
case, any function f ∈ L2(Ω1 × Ω2) has a decomposition

f =
∞∑

r=1

σrurvr

where {ur}∞r=1 is an orthonormal system of L2(Ω1) and {vr}∞r=1 is an orthonormal
system of L2(Ω2). The singular values are known to decay like

σr . r
− s

min(d1,d2) ,

if f ∈ Hs(Ω1 × Ω2), see [12, Theorem 3.1].

2.2. Model problem and isogeometric formulation. Let L be a differential
operator

(7) Lu = −∇ · (A(x)∇u) + b(x) · ∇u+ c(x)u.

We assume L to be elliptic, the coefficients to be in L∞ and A to be symmetric.
Our goal is to approximate the weak solution of the boundary value problem

(BVP)

(8)

{
Lu = f in Ω,
u = 0 on ΓD,
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on a domain Ω ⊂ R3 which we assume to be parametrized by a regular diffeomorphism

G : Ω̂ −→ Ω

on the parameter domain Ω̂ = [0, 1]3.
Since we only want to work on the parameter domain and not on the physical

domain, the next step is to transform the differential operator L to functions û = u◦G
on the parameter domain. A short computation confirms that

L
(
û ◦G−1

)
=

−1

|det JG|
∇̂ ·
(
|det JG|J−1

G AJ−TG ∇̂û
)

+ (J−1
G b) · ∇̂û+ cû.

Thus, we transform the original BVP to an equivalent BVP

(9)

{
L̂û = f̂ in Ω̂,

û = 0 on Γ̂D,

on the parameter domain Ω̂ by setting f̂ = |det JG|f ◦G and

L̂û = |det JG|L
(
û ◦G−1

)
= −∇̂ · (K∇̂û) + ` · ∇̂û+mû,

where

K = |det(JG)|(JG)−1A(JG)−T ,(10)

` = |det(JG)|(JG)−1b,(11)

m = |det(JG)|c.(12)

The associated bilinear form of L̂ on V × V , where V = H1
0 (Ω̂), is defined as

(13) b̂(û, v̂) =

∫

Ω̂

∇̂û · (K∇̂v̂) + (` · ∇̂û)v̂ +mûv̂ dξ

and the weak formulation of the transformed problem on the parameter domain is

(14) b̂(û, v̂) = λ̂(v̂) for all v̂ ∈ V,

where the right hand side is given by the linear functional

(15) λ̂(v̂) =

∫

Ω̂

f̂ v̂ dξ.

Finally we note that if û ∈ V is a weak solution to the BVP on the parameter domain,
then

u = û ◦G−1 ∈ H1
0 (Ω)

is a weak solution to the BVP on the physical domain.

2.3. Isogeometric discretisation. Under certain conditions on the coefficients,
the weak problem (14) has a unique solution, see [10, Section 6.2]. Assuming that
a unique solution to (14) exists, we approximate it using an isogeometric Galerkin
method, which means that we perform a discretization based on tensor–product spline
functions.
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More precisely, we choose three univariate spline spaces Sp`τ` of degree p` with
open knot vectors τ`, ` = 1, 2, 3, and consider their tensor-product

S = Sp1τ1
⊗ Sp2τ2

⊗ Sp3τ3
.

To simplify notation, we shall omit the indices for the polynomial degrees. We denote
by

{β1
i }i∈{1,...,n1}, {β2

j }j∈{1,...,n2}, and {β3
k}k∈{1,...,n3}

the basis functions of the univariate spline spaces. We assume that homogeneous
Dirichlet boundary conditions have been implemented in each of the spaces. The
basis functions of the tensor–product spline space S are given as the tensor product
of the univariate bases. We denote them by

βijk(ξ) = β1
i (ξ1)β2

j (ξ2)β3
k(ξ3).

In addition we will use the basis functions

βij(ξ12) = βij(ξ1, ξ2) = β1
i (ξ1)β2

j (ξ2)

of the bivariate spline space Sp1τ1 ⊗ Sp2τ2 , were we use the notation ξ12 = (ξ1, ξ2).
Whenever it is clear from context we will omit the upper indices on the univariate
basis functions.

In order to assemble the system matrix for the Galerkin method we need to
evaluate the bilinear form (13) for all pairs of basis functions of S. In particular we
have to compute the stiffness matrix S with elements

S(ijk),(i′j′k′) =

∫

(0,1)3
∇̂βijk(ξ)

(
K(ξ)∇̂βi′j′k′(ξ)

)
dξ

=

3∑

p,q=1

∫

(0,1)3

∂

∂ξp
βijkKpq

∂

∂ξq
βi′j′k′ dξ,(16)

the advection matrix C with elements

C(ijk),(i′j′k′) =

∫

(0,1)3
(`(ξ) · ∇̂βijk(ξ))βi′j′k′(ξ) dξ =

3∑

p=1

∫

(0,1)3
`p

∂

∂ξp
βijkβi′j′k′ dξ

(17)

and the mass matrix M with elements

M(ijk),(i′j′k′) =

∫

(0,1)3
m(ξ)βijk(ξ)βi′j′k′(ξ) dξ.

(18)

Here, we use (ijk) to denote a lexicographical ordering of the components.
The approximation uh of the exact solution to the weak problem (14) is then

uh =

n1∑

i=1

n2∑

j=1

n3∑

k=1

uijkβijk ,
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where the coefficients uijk are obtained by solving the linear problem

Bu = F.

The matrix representation B of the bilinear form b̂(·, ·) with respect to the B-spline
basis is the sum of S, C and M . The right hand side vector F is computed accordingly
and its entries are inner products of the form (f̂ , βijk)L2 .

The spline discretization uh ∈ S of the transformed problem (9) is an isogeometric
discretization of the original boundary value problem (8) if the regular diffeomorphism
G, which is called the geometry mapping, is an element of the space S3. In this
situation one uses the same space for discretizing the problem and for representing
the geometry.

More generally, one considers geometry mappings of the form G/w, where w ∈ S
is a non-negative denominator. In this situation, the transformation of the original
problem (8) to an equivalent BVP on the parameter domain needs to use the sub-
stitution u = (û/w) ◦G−1. We omit any details, since this leads to slightly involved
formulas for the quantities K, ` and m that define the equivalent BVP (9). The
remaining results of this paper apply to the more general situation also. Again, one
obtains an isogeometric discretization by considering spline functions uh ∈ S.

3. Decoupling the isogeometric Galerkin discretisation. In order to eval-
uate the trivariate integrals in the components of the system matrices in an efficient
way, we will replace the components of K, ` and m as well as the right hand side f̂
by sums of products of bivariate and univariate functions. These components define
weight functions that are present in the trivariate integrals. By performing the re-
placement step we are able to replace the expensive trivariate numerical integration
by a number of univariate and bivariate ones. Clearly, the error introduced by this
operation needs to be controlled carefully.

As the first step, we project each weight function into an appropriate spline space.
In some cases, the weight function is already contained in some spline space, hence the
projection does not introduce any error. Otherwise we choose the spline space such
that the error εΠ does not exceed a given error tolerance. The resulting approximate
weight function is represented by tensor–product splines.

In the second step, we decompose the approximate weight function using the
results presented in Section 2.1. To this end, we consider the factorization of its
domain as the Cartesian product [0, 1]2× [0, 1] (or any of the three possible splittings
of [0, 1]3) and use the associated low-rank approximation. Given a tolerance εΛ, we
obtain a rank-R approximation of the approximate weight function.

3.1. Spline projection. Let g be one of the weight functions, i.e., any compo-
nent Kpq of K, any component `p of ` or either of the functions m and f̂ . We project
g into some tensor–product spline space

(19) S̄ = Sp̄1γ1 ⊗ Sp̄2γ2 ⊗ Sp̄3γ3 =
(
Sp̄1γ1 ⊗ Sp̄2γ2

)
⊗ Sp̄3γ3

In general, this space will be different from the discretisation space S. Since the
weight functions depend on the geometry mapping, we keep the knots of its spline
representation. Additional information on the choice of S̄ will be given later.

Using the notation of Section 2.1, the splitting (19) of S̄ corresponds to

(20) S̄ = Φ⊗Ψ, where Φ = Sq1γ1 ⊗ Sq2γ2 , Ψ = Sq3γ3 .
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Instead of separating the last variable of the tensor–product spline space from the
first two, we could have selected each of the three variables. The potential benefits
will be analyzed experimentally in Section 7.

Choosing bases φ = {β̄ij} of Φ = Sp̄1γ1 ⊗ Sp̄2γ2 and ψ = {β̄k} of Ψ = Sp̄3γ3 results in
the usual tensor-product basis functions

β̄ijk(ξ) = β̄ij(ξ1, ξ2)β̄k(ξ3)

of the spline space Φ⊗Ψ = S̄. The particular choice of the basis will be determined
by the error norm that we want to control. In particular we will use either B-splines
or an L2-orthonormal basis of the spline space, see next section.

We now consider a spline projection operator

Π : C([0, 1]3)→ S̄,

which will be either interpolation at the Greville points or orthogonal L2 projection.
Both can be implemented efficiently by exploiting the tensor-product structure Π =
Π1 ⊗Π2 ⊗Π3, since one can realize them by sequentially applying the corresponding
univariate operators. The particular choice of the projector is again related to the
error norm that we want to control.

Applying the operator Π to the weight function g gives a tensor-product spline
function

(Πg) (ξ) =

n̄1∑

i=1

n̄2∑

j=1

n̄3∑

k=1

Gijkβ̄ij(ξ12)β̄k(ξ3),

where the Gijk form the coefficient tensor with respect to the chosen basis. We assume
that the projection error satisfies

‖g −Πg‖ ≤ εΠ

for a given tolerance εΠ. We will use the L∞ norm if g is one of the components of
K, ` or m and the L2 norm if g = f̂ .

The standard error bounds for spline functions can be used to analyze the asymp-
totic behavior of the error as the number of knots of S̄ increases. These will be
used later for the theoretical analysis. In the implementation, we rely on a simple
sampling-based approach in order to estimate the norm of the approximation error
for any specific choice of S̄ and Π.

There is no error in some cases: The function m = |det(JG)|c, which is needed
when computing the mass matrix M , is itself a spline function if c is a spline function,
too. One may choose the space S̄ such that m can be represented exactly. This also
applies to the components of ` = |det(JG)|(JG)−1b if the elements of b are spline
functions, too.

For the stiffness matrix, every component of K is a rational function with differen-
tiability reduced by one compared to G if the components of A are sufficiently smooth
spline functions, too. We then use a high-degree tensor–product spline space for the
approximation, see [25, Section 6.1], since it provides a highly accurate approximation
while simultaneously requiring only very few knots.

3.2. Partial tensor decomposition. We apply the theory presented in Sec-
tion 2.1 to decompose the spline function Πg in the space Φ⊗Ψ = S̄. Since we only
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split one of the three directions of the coefficient tensor instead of computing a full
(canonical) decomposition, we call it partial tensor decomposition.

Taking the considered factorization (20) into account, the coefficients Gijk of Πg
form the matrix (C(ij)k) with elements C(ij)k = Gijk, the notation (ij) again indicates
that several indices are combined into a single one by a lexicographic ordering. By
computing the SVD of this coefficient matrix, as described in Section 2.1, we obtain the
decomposition (3) of Πg into a sum of products of bivariate and univariate functions,

(Πg)(ξ) =

min(n̄1·n̄2,n̄3)∑

r=1

Ur(ξ12)Vr(ξ3),

with the bivariate and univariate factors

Ur(ξ12) =
√
σr

n̄1∑

i=1

n̄2∑

j=1

urij β̄ij(ξ12) and Vr(ξ3) =
√
σr

n̄3∑

k=1

vrkβ̄k(ξ3).

We truncate the sum to obtain an low-rank approximation of Πg. For a given rank
value R we define the partial rank-R approximation

(21) (Λg)(ξ) =
R∑

r=1

Ur(ξ12)Vr(ξ3).

We present two error bounds for the truncation. First we consider the L∞ norm,
which is closely related to using B-splines:

Lemma 3. The truncation error of the partial rank-R approximation satisfies

||Πg − Λg||L∞ ≤

√√√√
min(n̄1·n̄2,n̄3)∑

r=R+1

(σr)2

if the basis functions {β̄ijk} are tensor–product B-splines.

Proof. Recall that the tensor-product splines form a non-negative partition of
unity. Consequently, the constant in Lemma 2 does not exceed 1, since

‖(φ⊗ψ)(ξ)‖F =

n̄1∑

i=1

n̄2∑

j=1

n̄3∑

k=1

(β̄ijk(ξ))2 ≤
n̄1∑

i=1

n̄2∑

j=1

n̄3∑

k=1

β̄ijk(ξ) = 1.

In practice, we select the smallest rank R, such that the approximation error does
not exceed a given tolerance εΛ. Combining the effects approximation and truncation
gives the bound

‖g − Λg‖L∞ ≤ ε = εΠ + εΛ.

Clearly, the L∞-norm also provides an upper bound on the L2-norm.
Second, we obtain an optimal bound on the L2-norm of the truncation error

by considering orthonormal bases. Such bases can be obtained by applying Gram-
Schmidt orthogonalization to B-splines. An alternative construction is described
in [31].
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Lemma 4. If {β̄ij} and {β̄k} are L2-orthonormal bases, then the truncated func-
tion Λg is the best approximation with respect to the L2-norm among all functions of
rank R with respect to the factorization S̄ = Φ ⊗ Ψ. Moreover, the truncation error
satisfies

||Πg − Λg||L2 =

√√√√
min(n̄1·n̄2,n̄3)∑

r=R+1

(σr)2.

Proof. Since we consider L2-orthonormal bases, the Frobenius norm of the coef-
ficient matrix of a function is equal to its L2-norm. Thus we can prove the result by
applying Lemma 1(i).

Again, we select the smallest rank R, such that the approximation error does not
exceed the given tolerance εΛ, now considering the L2-norm. Combining the effects
approximation and truncation gives the bound

‖g − Λg‖L2 ≤ ε = εΠ + εΛ.

4. Matrix assembly. The decomposition of the integrands in (16), (17) and
(18) of the components of the system matrix results in a decomposition of the system
matrix itself. We represent the approximate mass, advection and stiffness matrix in
the general form

(22)

%∑

r=1

Xr ⊗ Yr

with Xr ∈ Rn1n2×n1n2 and Yr ∈ Rn3×n3 . We refer to the integer % as the Kronecker
rank of the matrix.

The low-rank approximation of the components of K makes it possible to assemble
the stiffness matrix by computing bivariate and univariate integrals. Replacing Kpq

by

ΛKpq =

Rpq∑

r=1

Urpq(ξ12)Vrpq(ξ3)

in (16), where Rpq is the rank value used for generating the approximation of the
matrix element Kpq, gives the approximate stiffness matrix

S̃(ijk),(i′j′k′) =

3∑

p,q=1

Rpq∑

r=1

∫

[0,1]2
Urpq

(
(1−δp3)

∂βij
∂ξp

+ δp3βij

)(
(1−δq3)

∂βi′j′

∂ξq
+ δq3βi′j′

)
dξ12

︸ ︷︷ ︸
=Xr

pq,(ij)(i′j′)

(23)

·
∫ 1

0

Vrpq
(
δp3

∂βk
∂ξp

+ (1−δp3)βk

)(
δq3

∂βk′

∂ξq
+ (1−δq3)βk′

)
dξ3

︸ ︷︷ ︸
=Y r

pq,kk′

.(24)

This can be verified by using the identity

∂

∂ξp
βijk =

(
(1−δp3)

∂βij
∂ξp

+ δp3βij

)(
δp3

∂βk
∂ξp

+ (1−δp3)βk

)
,
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with the Kronecker delta δp3.

The approximate stiffness matrix can thus be written as a sum of % =
∑3
p,q=1Rpq

Kronecker products

S̃ =
3∑

p,q=1

Rpq∑

r=1

Xr
pq ⊗ Y rpq

where the elements of the n1n2 × n1n2 matrices Xr
pq and of the n3 × n3 matrices

Y rpq have been defined in (23) and (24), respectively. Consequently, we obtain an
approximate representation of the stiffness matrix in the form (22) with Kronecker
rank %. The other two matrices can be dealt with analogously.

5. Error analysis. Next, we investigate the convergence of the discretized so-
lution of the weak formulation using the approximate bilinear form and right hand
side. Similarly to Section 2.2, we set V = H1

0 (Ω̂) and denote by û ∈ V the solution
to the transformed problem (14).

Furthermore, we consider a sequence of discretizations, see Section 2.3, which are
based on spline spaces Vh = S with decreasing diameter of the elements h → 0, and
denote by uh ∈ S the solution of

b̂h(uh, vh) = λ̂h(vh) for all vh ∈ Vh,
where

(25) b̂h(uh, vh) =

∫

Ω̂

∇̂ûh · ((ΛhK)∇̂v̂h) + ((Λh`) · ∇̂ûh)v̂h + (Λhm)ûhv̂h dξ

and

(26) λ̂h(vh) =

∫

Ω̂

(
Λhf̂

)
wh dξ.

We shall see that convergence can be guaranteed only by considering an associated
sequence of partial rank-R approximations with h-dependent values of the rank value
R. We thus use Λh to denote the operator defined in (21) that transforms a weight
function into its approximation.

The analysis is based on Strang’s first lemma, see [30]: Since b̂h is uniformly ellip-
tic, there is a constant C such that the overall approximation error can be estimated
by

‖û− uh‖V ≤ C
(

inf
vh∈Vh

(
‖û− vh‖V + sup

wh∈Vh

|b̂(vh, wh)− b̂h(vh, wh)|
‖wh‖V

)
+(27)

+ sup
wh∈Vh

|λ(wh)− λh(wh)|
‖wh‖V

)
.

We control the consistency error, i.e. the second and third term of the right hand side
in Strang’s lemma, by suitably choosing the error tolerance as described in Section 3.2.
First we consider the second term, which corresponds to the approximation of the
bilinear form b̂ in (13) by the approximate bilinear form b̂h in (25):

Lemma 5. The approximate bilinear form satisfies the inequality

sup
wh∈Vh

|b̂(vh, wh)− b̂h(vh, wh)|
‖wh‖V

≤ εh‖vh‖V
12



for all vh ∈ Vh, where the parameter εh on the right hand-side is determined by the
error of the low rank approximation Λh,

εh = 3 ·max{‖Kpq − (ΛhK)pq‖L∞(Ω̂) , ‖`p − (Λh`)p‖L∞(Ω̂) , ‖m− Λhm‖L∞(Ω̂)}.

Proof. Considering the the first term of |b̂(vh, wh)−b̂h(vh, wh)|, using the Cauchy-
Schwarz inequality confirms that

∣∣∣∣
∫

Ω̂

∇̂vh ·K∇̂wh − ∇̂vh · (ΛhK)∇̂wh dξ

∣∣∣∣ =

∣∣∣∣∣
3∑

pq=1

∫

Ω̂

(Kpq − (ΛhK)pq)
∂vh
∂ξp

∂wh
∂ξq

dξ

∣∣∣∣∣

≤
3∑

p,q=1

‖Kpq − ΛhKpq‖L∞(Ω̂)

∥∥∥∥
∂vh
∂ξp

∥∥∥∥
L2(Ω̂)

∥∥∥∥
∂wh
∂ξq

∥∥∥∥
L2(Ω̂)

≤ εh
3
‖vh‖V ‖wh‖V .

Since we can estimate the L2-norm by the H1-norm, the same bound applies to the
two remaining terms.

Second we consider the third term, which corresponds to the approximation of
the linear form λ̂ in (15) by the approximate linear form λ̂h in (26):

Lemma 6. The approximate linear form satisfies the inequality

sup
wh∈Vh

|λ̂(wh)− λ̂h(wh)|
‖wh‖V

≤ ε′h,

where the right-hand side is given by

ε′h = ‖f̂ − Λhf̂‖L2(Ω̂).

Here, f̂ = |det JG|f ◦ G is the right hand side of the transformed problem on the
parameter domain.

Proof. By using the Cauchy-Schwarz inequality,

|λ̂(wh)− λ̂h(wh)| =
∫

Ω̂

(
f̂ − Λhf̂

)
wh dξ

≤ ‖f̂ − Λhf̂‖L2(Ω̂)‖wh‖L2(Ω̂) ≤ ε′h‖wh‖V .

Thus, when approximating the right-hand side, it can be beneficial to use an
L2-orthonormal basis for the projection space since this guarantees the best approx-
imation in the L2-norm and thus the minimal rank value. Moreover, since the right
hand side f may only be in L2 and not in L∞ we might not be able to measure the
projection error in the L∞-norm. While the L2-orthonormal basis guarantees the
minimal rank value, we certainly can also use simply the B-spline basis for the low
partial rank approximation, using the fact that the L2-norm of functions on the unit
cube can be bounded by the L∞ norm.

When using a spline space VhS of degree p1 = p2 = p3 = p, the first term in
(27), which represents the discretization error, can be estimated as Chp, where the
constant C depends only on û. In order to obtain an optimal rate of convergence of
the overall problem, we need to make sure that the consistency error possesses the
same order of convergence. This is guaranteed by choosing an appropriate sequence
of operators Λh:

13



The operators Λh are said to be order p-convergent if there exists an h-independent
constant C, such that the error bounds in Lemmas 5 and 6 satisfy εh ≤ Chp and
ε′h ≤ Chp. We can now state the desired convergence result:

Theorem 7. The solution obtained using the approximated bilinear form b̂h at-
tains the the optimal rate of convergence

‖û− ûh‖V ≤ Chp,
if the low–rank approximation operators Λh are order p-convergent.

The proof is obtained by combining the previous observation concerning the two
sources of error (discretization and consistency error).

We conclude this section by describing a particular choice of the discretization
and projection spaces that guarantees optimal rate of convergence. Let p and p̄ denote
the polynomial degrees of the three univariate factors of the tensor-product spaces S
and S̄, respectively (for simplicity we choose uniform degrees). Similarly, we denote
by n and n̄ the numbers of degrees of freedom of these univariate factors. The total
number of degrees of freedom equals n3 and n̄3, respectively.

We consider an h-dependent sequence of discretization and projection spaces and
the associated operators Πh, Λh, where the element size h of the discretization space
satisfies h = O(1/n). Note that the element size h̄ of the projection space is generally
different. Nevertheless we use h to parametrize the operators.

When choosing the polynomial degree of the projection spaces as

(28) p̄ = µp

for some constant integer µ ≥ 1, we obtain order p-convergent interpolation operators
Πh if

(29) n̄ = O(n1/µ).

Indeed, since h̄ = O(1/n̄), we may use the approximation properties of splines (see
[29]) to conclude that

‖g −Πg‖L∞(Ω̂) ≤ Cg
(

1

n̄

)p̄+1

≤ C ′g
(

1

n

)p
≤ C ′′g hp.

Furthermore, we obtain order p-convergent low–rank approximation operators Λh by
choosing the rank value R = R(g, h) such that the truncation error has the same order
of magnitude as the interpolation error. A trivial upper bound is

(30) R ≤ n̄ = O(n1/µ), hence also % ≤ O(n1/µ),

where % is the total rank in (22), since the right-hand side is the maximum rank of
the coefficient matrix, which has dimension n̄2 × n̄. We will later see that a much
smaller rank can be used for most geometries. In particular, it is possible to use less
degrees of freedom of the projection space if additional information on the properties
of the weight function is available, see Section 3.1.

6. Computational complexity. We analyze the computational complexity of
our method with respect to n and p, and compare it with the complexity of the
classical element-wise Gauss quadrature and the complexity of the low-rank tensor
decomposition method based on HOSVD, which is described in [25]. For all methods,
the computational effort is bounded from below by the number of its non-zero entries,
which is Ω(n3p3).
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6.1. Partial tensor decomposition method (PDM). We briefly recall the
algorithm. The input consists of the geometry map, the discretisation basis, the coef-
ficients in (7), and a consistency tolerance. In order to perform the matrix assembly,
we execute the following steps:

1. Perform the projection of the weight functions into the spline space S̄ chosen
as described Section 5. When exploiting the tensor-product structure, the
complexity of this step is equal to

O(n̄p̄2) = µ2O(n1/µp2),

cf. [25].
2. Perform partial low rank approximation of the weight functions by applying

partial SVD on the resulting spline function. The complexity of computing
the SVD including the relevant singular vectors equals

O(n̄4) = O(n4/µ),

see [11]. this can be reduced to O(%n̄3) = O(%n3/µ) if either the total rank %
(or, more precisely, the rank of all weight functions) is known in advance or it
is estimated based on the error bound in Lemma 3 during the computation.

3. Assemble the matrices Xr and Yr for r = 1, . . . , % using bivariate (tensor-
product) and univariate Gauss quadrature, respectively. This step is domi-
nated by the bivariate Gauss quadrature1, whose total complexity is

O(%n2p6).

4. Generate the full system matrix by evaluating the sum of Kronecker products
(22). Since each entry is the sum of % products, the complexity of this step
equals

O(%n3p3).

In practice we always have n � p and – as analyzed in the end of the previous

section – we can choose n̄ = O(n
1
µ ), where the positive integer µ determines the degree

p̄ = µp. Therefore, the generation of the global matrix is dominated by the last step,
that is, the computation of the sum of Kronecker products. The total complexity of
PDM is thus

O(%n3p3).

Consequently, our method is optimal if the rank % does not increase with h refinement.

Even if we do not truncate the partial tensor decomposition, we get % = n̄ = O(n
1
µ )

and thus the computational complexity equals O(n3+ 1
µ p3).

Note that there are three different split directions for the partial tensor decom-
position, each resulting in a potentially different rank value for the given accuracy.
Since the overall complexity is governed by the computation of the sum of Kronecker
products, we choose the split direction that provides the lowest rank even if it is not
the one which results in the smallest number of bivariate integrals.

1We use Gauss quadrature with p + 1 Gauss nodes per knot span in each coordinate direction.
Strictly speaking, this corresponds to another approximation of the bilinear and linear forms. The
overall accuracy of the simulation is again preserved, since the assumptions of Strang’s first lemma
are again satisfied.
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6.2. Element-wise Gauss quadrature. For an element-wise Gauss quadra-
ture we need to iterate over O(n3) elements and compute O(p6) values and derivatives
of basis functions on each quadrature point. Since the number of quadrature points
in each direction is in O(p), we arrive at a total complexity of

O(n3p9).

6.3. Comparison with the full tensor decomposition method (FDM).
In FDM, which is described in [25], the case of arbitrary dimensions is considered.
The weight functions are projected to a spline space in the same way as described
above and then decomposed into products of d univariate components using higher
order SVD.

In the same way as in PDM, this decomposition is then truncated with respect
to a rank value %̃ depending on the given error tolerance ε. In general, the rank
ρ̃ in the full decomposition is larger than the rank ρ obtained in the partial tensor
decomposition.

In the 3-dimensional case, FDM leads to a complexity of O(n̄p̄2 + n̄4 + %̃np3)
for the assembly in the Kronecker format. The assembly of the full matrix from the
Kronecker format is the same as in PDM and thus its complexity is in

O(%̃n3p3).

The quadrature in FDM is less expensive as we only have to integrate univariate
integrals but the dominating step of computing the Kronecker products remains of the
same complexity and is proportional to the rank needed to fulfill the given tolerance
for the consistency error.

One advantage of PDM over FDM is the optimality of the rank with respect to
the Euclidean norm of the coefficient tensor as described in Section 2.1. If we find a
full rank %̃ tensor decomposition

Λ̄g =

%̃∑

r=1

Ur ⊗ Vr ⊗Wr =

%̃∑

r=1

(Ur ⊗ Vr)⊗Wr,

we also have a rank %̃ partial tensor decomposition by combining the first two vectors
into a matrix. Since the rank value obtained by using partial SVD is optimal, it
follows that

% ≤ %̃,

where % is the rank needed to satisfy the same error tolerance in the partial decom-
position.

Summing up, we conclude that – for n � p – the complexity of PDM is at
most of the same order as the one of FDM and has the potential to be much smaller.
Additionally, the total rank % in the partial tensor decomposition is bounded by O(n̄),
while the rank %̃ that appears in the full decomposition is bounded by O(n̄2).

7. Experiments and numerical results. We present results of numerical ex-
periments, in order to demonstrate the behavior of PDM. We choose a test suite of
different patches that possess different rank values for the Jacobian of the geometry
mapping as well as the matrix-valued factor in the stiffness matrix. Figure 1 visualizes
the patches that we used to test our method, as well as the degrees of freedom and
polynomial degrees of the geometry mapping.
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Fig. 1: The patches of the test suite.

(a) (b) (c) (d)

p1 = p2 = p3 = 2 p1 = p2 = 2, p3 = 1 p1 = p3 = 2, p2 = 1 p1 = p2 = 4, p3 = 1
n1 = n2 = n3 = 4 n1 = n2 = 3, n3 = 2 n1 = 9, n2 = 2, n3 = 5 n1 = n2 = 5, n3 = 2

We will compare the rank values and the computing times with those of FDM.
As an additional benchmark, we use the computing times of a classical element-wise
Gauss quadrature. All numerical experiments were performed on a standard PC using
the G+Smo C++ library [17, 20, 26].

7.1. Rank comparison. Consider the operator (7) with A = I, b = 0 and c = 1.
We analyze the ranks of the weight functions defined by the Jacobian determinant m
and the matrix K, see (10) and (12). In particular, we will study the stability of the
rank as the prescribed truncation error εΛ tends to zero.

The experiments were done using the B-spline basis of the spline space S̄ which is
used for interpolating the weight functions. Consequently, as discussed in Section 3.2,
we measure the approximation error in the L∞-norm using Lemma 3.

Table 1 shows the rank values that are needed to approximate the Jacobian de-
terminant for varying accuracy εΛ, using the three different split directions. No pro-
jection error is present since the Jacobian determinant can be represented exactly in
a tensor–product spline space S̄. In addition we provide information about the full
tensor rank.

Table 1: Ranks needed to approximate the Jacobian determinant m with varying
accuracy. The bold font indicates the lowest ranks among the different split directions.

(a)

log10(εΛ) -4 -8 -10
rank for split direction 1 1 1 1
rank for split direction 2 1 1 1
rank for split direction 3 1 1 1
tensor rank 1 1 1

(b)

log10(εΛ) -4 -8 -10
rank for split direction 1 1 2 3
rank for split direction 2 1 3 3
rank for split direction 3 1 2 2
tensor rank 1 3 4

(c)

log10(εΛ) -4 -8 -10
rank for split direction 1 2 2 3
rank for split direction 2 2 2 2
rank for split direction 3 2 2 3
tensor rank 4 4 5

(d)

log10(εΛ) -4 -8 -10
rank for split direction 1 6 7 7
rank for split direction 2 6 7 7
rank for split direction 3 1 1 1
tensor rank 6 7 7

As analyzed in Section 6.3, the rank obtained by the partial decomposition in all
directions never exceeds the tensor rank. The Jacobian determinant of model (a) has
tensor rank 1 which is recognized by both methods. For the volumes (b) and (d),
which were generated by approximate offsetting, the rank obtained by decomposing
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the parametrization with respect to the offset direction is the lowest one. This effect
is particularly strong for (d).

We now proceed to the ranks of the elements of the matrix K, see (12). This
matrix does not admit an exact representation in the spline space S̄ (except for trivial
geometries). To minimize the influence of the spline approximation error, we choose
the interpolation spaces S̄ such that the L∞-norm of the interpolation error does not
exceed εΠ = 10−10.

Table 2 shows the total rank for different prescribed tolerances in the low-rank
approximation, i.e. the sum of the ranks of the components of K. Again, we compare
the rank values of the full decomposition with the partial decomposition in all three
directions.

Table 2: The total ranks needed to approximate the matrix-valued function K with
varying accuracy. The bold font indicates the lowest ranks among the different split
directions.

(a)

log10(εΛ) -4 -8 -10
rank for split direction 1 5 5 5
rank for split direction 2 5 5 5
rank for split direction 3 5 5 5
tensor rank 5 5 5

(b)

log10(εΛ) -4 -8 -10
rank for split direction 1 13 22 31
rank for split direction 2 13 28 38
rank for split direction 3 9 16 16
tensor rank 13 29 42

(c)

log10(εΛ) -4 -8 -10
rank for split direction 1 27 31 35
rank for split direction 2 18 22 24
rank for split direction 3 18 18 19
tensor rank 38 44 49

(d)

log10(εΛ) -4 -8 -10
rank for split direction 1 48 85 101
rank for split direction 2 48 85 101
rank for split direction 3 5 5 8
tensor rank 48 85 101

Since we consider the total rank, the difference in the rank values between the
full and partial decompositions is more prominent in the case of the stiffness matrix.
Similar to the the case of the mass matrix, we observe that the splitting with respect
to the direction of the sweep gives the lowest values of the total rank for volumes (b)
and (d).

For the mass matrix, both methods result in quite stable rank values. For the
stiffness matrix, however, the rank may increase as the error tolerance goes to zero.
However, while the worst-case upper bound for the tensor rank is n̄2, it is only n̄ for
the rank generated by the partial decomposition.

In the following sections, when comparing PDM with FDM and with the element-
wise Gauss quadrature, we always choose the split direction which provides the small-
est rank value. This is motivated by the observation that the overall complexity is
dominated by this rank.

7.2. Decomposition step. We investigate the computational costs of the de-
composition step (HOSVD or SVD), in relation to the total cost of the matrix assem-
bly. These costs are reported in Table 3 for the mass and the stiffness matrix.

We choose the projection spaces S̄ for the mass matrix and the stiffness matrix
such that the interpolation error accuracy is below 10−8. The resulting numbers of
degrees of freedom are reported in the third column of both tables. The same accuracy
is used when performing the rank truncation.
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Table 3: Efficiency of the decomposition step when assembling the mass matrix (top)
and the stiffness matrix (bottom) for the coarsest discretization.

mass matrix

Model
Disc.
DOF

Intpl.
DOF

HOSVD
time(s)

Assembly
time(s)

Ratio
SVD

time(s)
Assembly
time(s)

Ratio

(a) 4 × 4 × 4 11 × 11 × 11 1.6 · 10−3 8.1 · 10−3 20% 2.7 · 10−4 8.0 · 10−3 3%
(b) 3 × 3 × 2 6 × 6 × 3 6.3 · 10−4 2.1 · 10−3 30% 7.5 · 10−5 1.5 · 10−3 5%
(c) 9 × 2 × 5 24 × 3 × 12 3.2 · 10−3 1.3 · 10−2 25% 6.1 · 10−4 1.0 · 10−2 6%
(d) 5 × 5 × 2 12 × 12 × 3 1.0 · 10−3 7.4 · 10−3 14% 9.5 · 10−5 4.8 · 10−3 2%

stiffness matrix

Model
Disc.
DOF

Intpl.
DOF

HOSVD
time(s)

Assembly
time(s)

Ratio
SVD

time(s)
Assembly
time(s)

Ratio

(a) 4 × 4 × 4 31 × 31 × 31 1.2 · 10−1 3.7 · 10−1 32% 5.5 · 10−2 2.8 · 10−1 20%
(b) 3 × 3 × 2 13 × 13 × 9 8.2 · 10−3 2.2 · 10−2 37% 2.0 · 10−3 1.4 · 10−2 13%
(c) 9 × 2 × 5 64 × 12 × 32 1.6 · 10−1 2.9 · 10−1 55% 7.4 · 10−2 3.8 · 10−1 19%
(d) 5 × 5 × 2 32 × 32 × 20 1.3 · 10−1 4.0 · 10−1 33% 4.1 · 10−2 3.1 · 10−1 13%

We then compare the decomposition time with the total time needed for the ma-
trix assembly, for the coarsest possible approximation as determined by the geometry
mapping (reported in the second column of the tables). Consequently, the number n̄
is always larger than n in this experiment. Even in this situation, the total cost is
dominated by the assembly step.

More precisely, the tables report the decomposition time needed for both methods
(columns 4 and 7), the associated assembly times (columns 5 and 8), and their ratio.
For the partial decomposition, the decomposition time never contributes more than
20% to the total time, even for these very sparse discretizations. In addition we
observe that the SVD is always significantly faster than HOSVD.

Even for this experiment, where n̄ ≥ n, the decomposition step only takes up a
relatively small part of the total computation time. As we will see in the next section,
the assembly time increases linearly with the number of degrees of freedom of the
discretisation space, while the refinement of S has no effect on the decomposition.
Indeed, the latter step only depends on the dimension of the projection space S̄.
Thus, the contribution of the decomposition step becomes even less significant as n
is increased.

7.3. Order of convergence. The consistency error in Strang’s first lemma –
and consequently the overall error of the isogeometric discretization – can be controlled
by the combined error of spline projection and rank truncation, ε = εΠ + εΛ. Fig. 2
reports the convergence rates for the solution of the Poisson problem

−∆u = f in Ω,

u = u0 on ∂Ω,

with known exact solution

u(x, y, z) = sin(πx) sin(πy) sin(πz).

on the domain Ω represented by patch (b) in Fig. 1, using PDM. We consider dis-
cretizations of degree p = 2, 3, 4 and an error tolerance ε = 10−10, which results in
rank-16 approximations of the stiffness matrices. These realize the optimal rates of
convergence for the considered range of n, both with respect to the L2 norm (left)
and H1 seminorm (right).
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Fig. 2: Numerical errors for the solution to a Poisson problem on model (b) for degrees
p = 2, 3, 4..

7.4. Computational complexity of matrix assembly. We investigate the
dependence of the computation times on n (the number of degrees of freedom per
direction used for the discretization) and p (the corresponding polynomial degrees).
The experiments were performed on the computational represented by patch (c), using
different polynomial degrees for the discretization. The overall accuracy was chosen
to be ε = 10−8, and the degrees of the projection spline space S̄ were kept constant,
(5, 2, 5) in the mass case and (11, 7, 11) in the stiffness case.

First we explore the dependence on the number n3 of degrees of freedom. Figure
3 reports the computation times (including interpolation, decomposition, numerical
quadrature and sum of Kronecker products) required for assembling the mass and
stiffness matrices for various values of n and degrees p = 2, 3, 4.

All three methods scale linearly with the dimension n3 of the discretisation space
S. Both decomposition-based methods are much faster than the element-wise Gauss
quadrature, even for small polynomial degrees p. PDM is faster than FDM for suffi-
ciently large values of n, since the rank is smaller. For small values of n and larger
degrees p, however, the overall effort of PDM is dominated by the bivariate quadra-
ture, and hence FDM performs slightly better.

Now we continue with the dependence on the polynomial degree p. Figure 3
reports the computation times required for assembling the mass and stiffness matrices
for three different values of n and degrees p = 1, . . . , 8.

These plots confirm the expected asymptotic scaling with p3 for both of the
decomposition-based methods, while the computational costs of the element-wise
Gauss quadrature grow much faster. We also note that the complexity (of order
6 with respect to the degree) of the bivariate quadrature dominates the overall effort
for large values of p, hence (again) FDM becomes slightly faster than PDM. However,
this effect is only noticeable for constant values of n.

Finally we address the Kronecker format. For certain applications (for instance,
when using iterative solvers that require only matrix-vector multiplications), it suffices
to represent the matrices in Kronecker format (22). This can be achieved simply by
omitting the last step of the algorithm. The computation time is then dominated by
the Gauss quadrature needed when evaluating the bivariate and univariate integrals.
Consequently, PDM and FDM have complexity O(ρn2p6) and O(ρ̃np3), respectively.
This is confirmed by the numerical experiments reported in Fig. 5. However, the cost
of matrix-vector multiplications using the Kronecker format grows linearly with the
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(b) Stiffness, p = 2
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(c) Mass, p = 3
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(d) Stiffness, p = 3
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(e) Mass, p = 4
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Fig. 3: n-dependence of the assembly times of the mass and stiffness matrices on
model (c) for different polynomial degrees p.

rank of the representation, and hence PDM (which typically generates a much lower
rank value) has an advantage when considering the overall computational effort.

8. Conclusion. We introduced partial tensor decomposition method (PDM) as
a new approach to matrix assembly in isogeometric analysis. As a major advantage,
the implementation of PDM is considerably simpler than the one of the full decom-
position method (FDM) introduced in [25]. This is due to the fact that PDM relies
on standard singular value decomposition (SVD) and does not require HOSVD/ALS
or similar tools. After discussing theoretical aspects (convergence and computational
complexity), we presented several numerical experiments to test the performance of
the new method. While both FDM and PDM are significantly faster than tradi-
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(c) Mass, 37 × 37 × 37
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(e) Mass, 50 × 50 × 50
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(f) Stiffness, 50 × 50 × 50

Fig. 4: p-dependence of the assembly times of the mass and stiffness matrices on
model (c) for different values of n.
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Fig. 5: n- and p-dependence of the computation time for the Kronecker format of the
mass matrix on model (c). 22



tional Gauss quadrature, the new method even provides a further reduction of the
computational costs when considering standard matrix representations.

The exposition in the present paper was restricted to three-dimensional domains.
Future work will be devoted to the extension to higher dimensions, such as time-
dependent problems on four-dimensional space-time domains.
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[6] M. Bartoň and V. M. Calo, Gauss–galerkin quadrature rules for quadratic and cubic spline
spaces and their application to isogeometric analysis, Computer-Aided Design, 82 (2017),
pp. 57 – 67.
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[22] A. Mantzaflaris and B. Jüttler, Exploring matrix generation strategies in isogeomet-
ric analysis, in Mathematical Methods for Curves and Surfaces, M. Floater et al., eds.,
vol. 8177 of Lecture Notes in Computer Science, Springer, 2014, pp. 364–382.
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