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Abstract. In this paper, a stabilized space-time finite element method for solving linear parabolic evolution
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1 Introduction

Parabolic evolution equations are used to describe numerous physical phenomena, as for example
heat transfer. The traditional methods for parabolic problems apply usually a separated method
for the time discretization, e.g., implicit Runge-Kutta methods. Last decades, efficient disconton-
uous Galerkin finite element methods (DGFEM) have been presented for the time discretization
of parabolic problems, see, e.g., an analysis for Galerkin time-stepping methods in [15], [12], [1],
we also refer to the monograph [29]. Adaptive algorithms based on a posteriori error estimates
have also been presented and successfully tested for linear and nonlinear problems, see e.g., [13],
[14] and the references therein. In [27] and [10], space-time adaptive wavelet methods for parabolic
evolution problems have been studied. Also in the literature, p and hp finite element methods for
parabolic problems have been presented, see [5], [6].

Another approach that has been followed is the derivation of space-time finite element methods
based on appropriate space-time variational setting. The basic idea is to consider the time variable
t as just another variable, lets say xd+1, if we consider that x = (x1, . . . , xd) are the spatial
variables. In that way, the time derivative, which appears in the parabolic PDE model, plays the
role of a convection term in the time direction xd+1. Multiplying the given parabolic problem
by a space-time test function and applying integration by parts we can derive the weak space-
time formulation. The derived weak formulation helps on the unified space-time discretization
by finite element techniques, this means that we discretize the problem in space and in time by
using a common finite element space. In this spirit in [21], space-time finite element methods
have been developed for elastodynamics. In particular, the method uses discontinuous Galerkin
techniques for the time discretization and incorporates Petrov-Galerkin techniques, see [22], to
ensure stability. Stream line diffusion techniques that are presented in [22], have been also used
for developing space-time finite element methods for conservation laws and fluid flow problems,
see e.g., [20], [19] and the references there. In [2, 3], the stability of Petrov-Galerkin discretizations
of parabolic problems have been studied and stable space-time trial and test functions have been
proposed. In [28] conforming space-time finite element approximations to parabolic problems
have been investigated. In [24], upwind-stabilized single-patch space-time Isogeometric analysis
(IgA) schemes for parabolic evolution problems are proposed. In [25], the authors based on [24],
analysed a time discontinuous Galerkin multipatch (IgA) scheme and demonstrated the efficiency
of a space-time solver implemented on a parallel environment.
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In this paper, we focus on the model problem ∂tu − κ∆u = f , with appropriate initial and
boundary conditions, and the diffusivity parameter κ is taken to be positive and constant. We
propose a new space-time finite element method, which is stabilized by introducing classical bubble
spaces, see [9], [7], [26]. The bubble basis functions vanish on the edges of the mesh elements and
in addition do not affect the continuity properties of the solution. By enriching in that way
the underlying finite element space, the numerical solution consists of two components, where
the first lives in the underlying finite element space, and the second lives in the bubble space.
For developing our analysis, we are motivated and inspired by the subgrid scale stabilization
techniques presented in [17], [18], for solving linear first order problems. There, the idea is to
couple, the initial finite element space with subgrid scale spaces and to construct artificial diffusion
terms in these new spaces. The artificial diffusion terms are added in the numerical scheme in
order to ensure stability. The innovation in our approach is that, instead of using subgrid spaces on
different meshes, we use bubble spaces and the artificial diffusion terms are formed in these spaces.
In addition here, in the bubble diffusion terms, we include a positive parameter θ, that can control
the strength of the artificial diffusivity in the scheme. We prove stability of the discrete problem
with respect to the produced norm, which is a mesh depended norm. Also, optimal error estimates
for the full numerical solution containing the bubble component are shown. These error estimates
are not affected by the choice of θ. Furthermore, we point out that during the discretization error
analysis, we give analytically the dependence of the several appearing constants with respect to
the diffusivity parameter κ. At the end, this helps us to have a more complete idea, about the
convergence properties of the numerical solution, when the mesh size h is close to the value of κ.
In Section 5, we perform tests where h and κ are very close.

The paper is structured as follows. In Section 2, the model parabolic problem is presented. In
Section 3, we formulate the stabilized space-time finite element scheme. In Section 4, we present
the error analysis and derive the error estimates. We discuss numerical examples in Section 5.
The paper closes with the conclusions.

2 The model problem

2.1 Preliminaries

Let Ω be a bounded Lipschitz domain in Rd, d ≥ 1. Let α = (α1, . . . , αd) be a multi-index of
non-negative integers α1, . . . ,αd with degree |α| = ∑d

j=1 αj. For any α, we define the differential
operator Dα

x = Dα1
x1
. . . Dαd

xd
, with Dxj = ∂/∂xj, j = 1, . . . , d. As usual, L2(Ω) denotes the Sobolev

space for which
∫
Ω
|φ(x)|2 dx <∞, endowed with the norm ‖φ‖L2(Ω) =

( ∫
Ω
|φ(x)|2 dx

) 1
2 , and

L∞(Ω) denotes the functions that are essentially bounded. Let ` be a non-negative integer, define

H`(Ω) = {φ ∈ L2(Ω) : Dα
x φ ∈ L2(Ω), for all |α| ≤ `},

the standard Sobolev spaces endowed with the following norms ‖φ‖H`(Ω) =
(∑

0≤|α|≤` ‖Dα
x φ‖2

L2(Ω)

) 1
2 ,

and by H
1
2 (∂Ω) we denote the trace space of H1(Ω). Also we define the subspace H1

0 (Ω) of H1(Ω)

H1
0 (Ω) = {φ ∈ H1(Ω) : φ = 0 on ∂Ω}.

Let I = [0, T ] with T > 0 be the time interval. For later use, we define the space-time cylinder
Q = Ω × (0, T ) and its boundary parts Σ = ∂Ω × (0, T ), ΣT = Ω × {T} and Σ0 = Ω × {0}, see
an illustration Fig. 1(a). We denote the gradient by ∇u = (∇xu, ∂tu), where ∇xu is the gradient
with respect to the spatial variables. Similarly we denote by n = (nx, nt) the normal component
on ∂Q, with nx the components related to space direction and nt the component related to time
direction. Let `,m be positive integers, for functions defined in Q, we define the Sobolev spaces

H`,m(Q) = {φ ∈ L2(Q) : Dα
x φ ∈ L2(Q)with 0 ≤ |α| ≤ `, and ∂itφ ∈ L2(Q), i = 1, ...,m} (2.1a)
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and the subspaces

H1,0
0 (Q) ={φ ∈ L2(Q) : ∇xφ ∈ [L2(Q)]d, φ = 0 onΣ}, (2.1b)

H1,1
0,0̄

(Q) ={φ ∈ L2(Q) : ∇xφ ∈ [L2(Q)]d, ∂tφ ∈ L2(Q), φ = 0 onΣ, φ = 0 onΣT}. (2.1c)

For a function φ ∈ H`,m(Q) with `,m ≥ 1, we define the norms and the seminorms

‖φ‖H`,m(Q) :=
( ∑

|α|≤`
‖Dαφ‖2

L2(Q) +
m∑

i=0

‖∂itφ‖2
L2(Q)

) 1
2 , (2.2a)

|φ|H`,m(Q) :=
( ∑

|α|=`
‖Dαφ‖2

L2(Q) + ‖∂mt φ‖2
L2(Q)

) 1
2 . (2.2b)

We recall Hölder’s and Young’s inequalities
∣∣∣∣
∫

Q

uv dx

∣∣∣∣ ≤ ‖u‖L2(Q)‖v‖L2(Q) and
∣∣∣∣
∫

Q

uv dx

∣∣∣∣ ≤
ε

2
‖u‖2

L2(Q) +
1

2ε
‖v‖2

L2(Q), (2.3)

that hold for all u ∈ L2(Q) and v ∈ L2(Q) and for any fixed ε ∈ (0,∞).
We will use the following Poincare’s inequality: Let Ω ⊂ Rd, d = 1, 2, ... be a bounded rect-

angular domain and let Γ ⊂ ∂Ω with |Γ | > 0. For simplicity we assume that Γ lies on the plane
with x1 = 0. Let v ∈ C∞(Ω) and v(xΓ ) = 0 for all xΓ ∈ Γ . For any interior point x = (x1, ..., xd),
we have

v(x1, ..., xd) = v(xΓ ) +

∫ x1

xΓ,1

∂v

∂x1

(τ, x2, ..., xd) dτ. (2.4)

The first inequality in (2.3) yields

(
v(x1, ..., xd)

)2
=
(∫ x1

xΓ,1

1
∂v

∂x1

(τ, x2, ..., xd) dτ
)2

≤ CΩ

∫ x1

xΓ,1

∣∣ ∂v
∂x1

(τ, x2, ..., xd)
∣∣2 dτ, (2.5)

where the constant CΩ depends on the length of Ω. Integrating (2.5) over all Ω, we can obtain

∫

Ω

v2(x) dx ≤ C2
Ω

∫

Ω

(∂x1v)2 dx. (2.6)

In what follows, positive constants c and C appearing in inequalities are generic constants
which do not depend on the mesh-size h. In many cases, we will indicate on what may the
constants depend for an easier understanding of the proofs. Frequently, we will write a ∼ b
meaning that c a ≤ b ≤ C a.

2.2 The model parabolic problem

In the space-time cylinder Q = Ω × [0, T ], we consider the initial boundary value problem

ut − κ∆u =f in Q and (2.7)
u =0 on Σ, u(·, 0) = u0 on Σ0,

as model problem, where the diffusivity parameter 0 < κ ≤ 1 is taken to be constant, f : Q→ R,
with f ∈ L2(Q), and u0 : Ω → R, with u0 ∈ L2(Ω) are given functions, and u : Q → R is the
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unknown. The space-time weak formulation related to (2.7) has as follows: find u ∈ H1,0
0 (Q) such

that

ā(u, v) =l̄(v), for all v ∈ H1,1
0,0̄

(Q) (2.8)

with

ā(u, v) =−
∫

Q

u(x, t) ∂tv(x, t) dx dt+ κ

∫

Q

∇xu(x, t) · ∇xv(x, t) dx dt, (2.9)

l̄(v) =

∫

Q

f(x, t)v(x, t) dx dt+

∫

Q

u0(x)v(x, 0) dx. (2.10)

For simplicity, we only consider homogeneous Dirichlet boundary conditions on Σ and u0 = 0.
However, the analysis presented in our paper can easily be generalized to other constellations of
boundary conditions. The variational problem (2.11) is known to have a unique weak solution,
see [23] and in [30] for a more comprehensive analysis for existence and uniqueness results.

Assumption 2.1 We assume that the solution u of (2.11) belongs to V0,0 = H1,1
0,0 (Q) ∩H`,m(Q)

with some ` ≥ 2 and m > 1.

Under Assumption 2.1, by applying integration by parts, we can show that the weak solution
satisfies the form

a(u, v) =l(v), for all v ∈ H1,1
0,0̄

(Q), with (2.11a)

a(u, v) =

∫

Q

∂tu(x, t)v(x, t) dx dt+ κ

∫

Q

∇xu(x, t) · ∇xv(x, t) dx dt, (2.11b)

l(v) =

∫

Q

f(x, t)v(x, t) dx dt. (2.11c)

3 The discrete problem

3.1 The stabilized scheme

Let Th(Q) be a partition of space-time domain Q into triangular (or quadrilateral elements), that
is Q = ∪E∈ThE, see Fig 1(a). We denote by hE the diameter of E ∈ Th(Q) and the mesh size
is defined as h = maxE{hE}. We assume that Th(Q) is quasi-uniform, i.e., there exist a positive
constant Cum such that hE ≤ h ≤ CumhE for all E ∈ Th(Q).
Associated with Th(Q), we define the finite element subspace Vh0 of H1,1

0,0 (Q), consisting of con-
tinuous functions in space and in time, by

Vh0 = {vh ∈ H1,1
0,0 (Q) : vh|E ∈ Pp=1(E), for everyE ∈ Th(Q)}, (3.1)

where Pp=1(E) is the polynomial space of total degree p = 1, see e.g., [8, 11, 16].
The usual finite element approximation of (2.11) is to find uh ∈ Vh0 such that

a(uh, vh) = (f, vh), ∀ vh ∈ Vh0. (3.2)

It is known, that when κ is small, the coercivity properties of (2.11) can not ensure that the usual
finite element scheme given in (3.2) performs well. Thus, we introduce the a larger finite subspace
Vh,b of H1,1

0,0 (Q) that can be written as a direct sum as follows

Vh,b = {vh ∈ H1,1
0,0 (Q) : vh|E ∈ P1(E)⊕ VB(E), for everyE ∈ Th(Q)}, (3.3)

with VB(E) := VB|E, where VB denotes the space of bubble functions, that vanishing entirely on
the boundary of the mesh elements and having exactly one degree of freedom in each E ∈ Th(Q).
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For example, for triangular elements is spanned by a cubic functions VB := {vb ∈ H1
0 (Q) : vb|E =

CEλ1λ2λ3}, where λi, i = 1, 2, 3 are linear polynomials vanishing on one side of ∂E and taking
the value one at the opposite vertex. The constant CE is chosen such that max

x∈E
vb(x) = 1. Every

bubble basis function φ ∈ VB(E) satisfies, (i) φ(x) > 0 for x ∈ E and (ii) φ(x) = 0 for x ∈ ∂E,
(iii)

∫
E
φ2(x) dx = CEh

2
E, with CE depending on the uniformity of Th but is interdependent of hE.

An illustration of bubble functions on two-dimensional elements is presented in Fig. 1(b) and (c).
Based on Vh,b defined in (3.3), any vh ∈ Vh,b can be decomposed into two parts, i.e., vh = v1

h + vbh
with v1

h ∈ Vh0 and vbh ∈ VB. In view of these, we introduce the discrete problem: find uh ∈ Vh,b
such that

a(uh, vh)+bh(u
b
h, v

b
h) = (f, vh), ∀vh ∈ Vh,b, (3.4a)

where

a(w, v) =

∫

Q

∂tw v dx dt+ κ

∫

Q

∇xw · ∇xv dx dt, (3.4b)

bh(w
b, vb) =θh

∫

Q

∂tw
b ∂tv

b dx dt,

with θ > 0 a positive constant, which will be determined later. We recall the following inverse
estimate and the scaled trace inequality, where the proofs can be found in [8].

Lemma 3.1. There exist constants cinv, ctrac > 0 independent of h such that

‖∇vh‖L2(Q) ≤cinv h−1 ‖vh‖L2(Q), vh ∈ Vh,b, (3.5)

‖v‖L2(∂Q) ≤ctrac h
−1
2 (‖v‖L2(Q) + h ‖∇v‖L2(Q)), v ∈ H1(Q). (3.6)

T     t

   Ω

u(x,0)

X

 Th

u(x,t)=0

Σ

Σ

ΣT

Σ0

(a)

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6
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0.4

0.35
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0.2
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0.1

0.05

X

Y

1­X­Y
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(0,1)
(0,0)

(b)
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0.9
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0.8
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0.7
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0.6

0.55

0.5

0.45

0.4

0.35
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0.25

0.2

0.15

0.1

0.05
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(0,1)

(1,1)

(0,0)

(c)

Fig. 1: (a) The space-time domain Q with the boundary parts and its mesh Th(Q). (b) The bubble function on the reference
triangular mesh element. (c) The bubble function on the reference rectangular element.

For convenience, we introduce the discrete bilinear form

ah(uh, vh) = a(uh, vh) + bh(u
b
h, v

b
h), (3.7)

and the mesh dependent norm

‖vh‖h =
(
κ‖∇xvh‖2

L2(Q) + θh‖∂tvbh‖2
L2(Q) +

1

2
‖vh‖L2(ΣT )

) 1
2
. (3.8)
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Lemma 3.2. The discrete form ah(·, ·) : Vh,b × Vh,b → R defined in (3.7), is Vh,b-coercive with
respect the norm ‖ · ‖h, i.e.,

ah(vh, vh) ≥ Cs ‖vh‖2
h, ∀ vh ∈ Vh,b. (3.9)

Proof. Let vh ∈ Vh. Since vh(x, 0) = 0 and nt|Σ = 0, it follows by Green’s formula∫

Q

∂tvh vh + vh ∂tvh dx dt =

∫

∂Q

ntv
2
h ds, that

∫

Q

∂tvh vh dx dt =
1

2

∫

Q

∂t v
2
h dx dt =

1

2

∫

ΣT

v2
h ds−

1

2

∫

Σ0

v2
h ds =

1

2
‖vh‖2

L2(ΣT ). (3.10)

The definition of ah and (3.10) imply

ah(vh, vh) =

∫

Q

1

2
∂tv

2
h + θh(∂tv

b
h)

2 + κ|∇xvh|2 dx dt

=
1

2
‖vh‖2

L2(ΣT ) + κ‖∇xvh‖2
L2(Q) + θh‖∂tvbh‖2

L2(Q), (3.11)

which is (3.9) with Cs = 1 and this completes the proof. �

Proposition 3.1. Let uh be a solution given by (3.4). Then there is a Cκ > 0 such that the
solution uh satisfies the following a priori estimate

‖uh‖h ≤ Cκ ‖f‖L2(Q). (3.12)

Proof. Using uh ∈ Vh,b as a test function in (3.4), and utilizing (2.3) together with Poincare
inequality (2.6), we successively obtain

ah(uh, uh) ≤
1

κ
1
2

∣∣∣
∫

Q

κ
1
2f uh dx dt

∣∣∣ ≤ 1

κ
1
2

‖f‖L2(Q)‖κ
1
2 ∇xuh‖L2(Q) ≤

1

κ
‖f‖L2(Q)

(
κ‖∇xuh‖2

L2(Q) +
1

2
‖uh‖2

L2(ΣT ) + θh‖∂tubh‖2
L2(Q)

) 1
2 , (3.13)

where, we have previously used that κ ≤ 1. Setting Cκ =
1

κ
we get (3.12). �

A direct result of (3.12) and (3.9) is the following corollary.

Corollary 3.1. The discrete problem defined in (3.4) is well posed, i.e., it has a unique solution
which satisfies the stability estimate (3.9).

Next, we show the boundedness of a(·, ·) on V0,0 × Vh,b. We define the norms

‖v‖h,∗ =
(
κ‖∇xv‖2

L2(Q) + θh‖∂tv‖2
L2(Q) +

1

2
‖v‖2

L2(ΣT )

) 1
2
. (3.14a)

‖v‖h,V =
(
κ‖∇xv‖2

L2(Q) + θh‖∂tv‖2
L2(Q) +

1

2
‖v‖2

L2(ΣT ) + (θh)−1)‖v‖2
L2(Q)

) 1
2
. (3.14b)

Lemma 3.3. There is a constant Cb(κ, θ, h) > 0 such that

|a(u, vh)| ≤ Cb(κ, θ, h) ‖u‖h,V ‖vh‖h, ∀(u, vh) ∈ (V0,0 × Vh,b) (3.15)
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Proof. Let vh = v1
h + vbh ∈ Vh,b. We treat every term of the form a(·, ·) separately. We apply

integration by parts and (2.3) to infer
∫

Q

∂tu v
1
h dx dt = −

∫

Q

u ∂tvh dx dt+

∫

ΣT

u vh dσ

≤
(
(θh)−1‖u‖2

L2(Q)

) 1
2
(
(θh)‖∂tvh‖2

L2(Q)

) 1
2 + ‖u‖L2(ΣT ) ‖v1

h‖L2(ΣT )

(3.5)

≤
(
(θh)−1‖u‖2

L2(Q)

) 1
2
(c1θh

h2 κ
κ‖vh‖2

L2(Q)

) 1
2 + 2

(1

2
‖u‖2

L2(ΣT )

) 1
2
(1

2
‖vh‖2

L2(ΣT )

) 1
2

(2.6)

≤
(
(θh)−1‖u‖2

L2(Q)

) 1
2
(
c2θ(κh)−1

) 1
2
(
κ‖∇xvh‖2

L2(Q) + θh‖∂tvbh‖2
L2(Q) +

1

2
‖vh‖2

L2(ΣT )

) 1
2

+ 2‖u‖L2(ΣT )

(
κ‖∇xvh‖2

L2(Q) + θh‖∂tvbh‖2
L2(Q) +

1

2
‖vh‖2

L2(ΣT )

) 1
2

≤
(
c2θ(κh)−1

) 1
2‖u‖h,V ‖vh‖h + 2‖u‖h,V ‖vh‖h ≤ c3

(
θ(κh)−1 + 1

) 1
2‖u‖h,V ‖vh‖h,

(3.16)

where c3 depends on the constants appearing in (3.5) and (2.6). Similarly for the second term,
applying (2.3), we get

∫

Q

κ
1
2∇xu · κ

1
2∇xvh dx dt ≤

(
κ‖∇xu‖2

L2(Q)

) 1
2
(
κ‖∇xvh‖2

L2(Q)

) 1
2 ≤ ‖u‖h,V ‖vh‖h. (3.17)

Combining all the bounds above and setting Cb(κ, θ, h) = 2c3

(
θ(κh)−1 + 1

) 1
2 , we can derive the

desired result. �

4 Error analysis

Lemma 4.1 (weak consistency). Let uh the solution given by (3.4) and u the continuous
solution given by (2.11), and furthermore let zh ∈ Vh,b and v1

h ∈ Vh0. Then

ah(uh, zh) =a(u, zh), and (4.1a)
ah(v

1
h, zh) =a(v1

h, zh). (4.1b)

Proof. For the first relation, we recall the problems (2.11) and (3.4) and directly have

ah(uh, zh) = (f, zh) = a(u, zh). (4.2)

For the second relation, we observe that bh(v1
h, zh) = 0 for any v1

h ∈ Vh0 and the assertion directly
follows. �

Proposition 4.1. Let u solve (2.11) and uh solve (3.4) and z1
h ∈ Vh0. Under Assumption 2.1,

there exist a c, independent of h such that

(
‖u− uh‖2

L2(ΣT ) + κ‖∇xu−∇xuh‖2
L2(Q) + θh‖∂tubh‖2

L2(Q)

)
≤ c

κ

(
‖∇u−∇z1

h‖2
L2(Q) + ‖u− z1

h‖2
L2(ΣT )

)
.

(4.3)

Proof. Let an arbitrary z1
h ∈ Vh0. By (4.1) and by subtracting similar terms, we have that

∫

Q

(∂tuh − ∂tz1
h)φh + κ

∫

Q

∇x(uh − z1
h) · ∇xφh + θh

∫

Q

∂tu
b
h ∂tφ

b
h

=

∫

Q

(∂tu− ∂tz1
h)φh + κ

∫

Q

∇x(u− z1
h) · ∇xφh, ∀φh ∈ Vh,b.

(4.4)
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Setting above φh = u1
h + ubh − z1

h and applying integration by parts on the first term on the left
side, we have

∫

ΣT

|∂tuh − ∂tz1
h|2 dσ + κ

∫

Q

|∇x(uh − z1
h)|2 dx dt+ θh

∫

Q

|∂tubh|2 dx dt

≤
(1

κ

∫

Q

|∂tu− ∂tz1
h|2
) 1

2
(
κ

∫

Q

|uh − z1
h|2
) 1

2 +
( ∫

Q

κ|∇x(u− z1
h)|2
) 1

2
( ∫

Q

κ|∇x(uh − z1
h)|2
) 1

2 ,

(4.5)

and by applying (2.3) and (2.4) on the right hand side, yields

‖uh − z1
h‖2

L2(ΣT ) + κ‖∇xuh −∇xz
1
h‖2

L2(Q) + θh‖∂tubh‖2
L2(Q) ≤

1

cεκ
‖∂tu− ∂tz1

h‖2
L2(Q)+

cεκ‖∇xuh −∇xz
1
h‖2

L2(Q) +
κ

cε
‖∇xu−∇xz

1
h‖2

L2(Q) + cεκ‖∇xuh −∇xz
1
h‖2

L2(Q).
(4.6)

Gathering the same terms and setting 0 < cε <
1
2
, we get

(
1− 2 cε

)(
‖uh − z1

h‖2
L2(ΣT ) + κ‖∇xuh −∇xz

1
h‖2

L2(Q) + θh‖∂tubh‖2
L2(Q)

)

≤ 1

cεκ
‖∂tu− ∂tz1

h‖2
L2(Q) +

κ

cε
‖∇xu−∇xz

1
h‖2

L2(Q) + ‖u− z1
h‖2

L2(ΣT ).
(4.7)

Using 0 < κ ≤ 1, applying triangle inequality and setting c = 1(
1−2 cε

) 1
cε
, the assertion follows. �

Below, we give the main error bound for the finite element solution uh ∈ Vh,b.

Theorem 4.1. Let u solve (2.11) and uh = u1
h − ubh solve (3.4). Under Assumption 2.1, there

exist a c∗,V , depending on cinv, such that

‖u− uh‖h,∗ ≤ c∗,V
(

1 +
(
θh γ2(κ, θ, h) + 1

)
γ̃(κ, θ, h)

) 1
2‖u− z1

h‖h,V , for z1
h ∈ Vh0, (4.8)

with γ(κ, θ, h) =
(

1

(θ h)
1
2

+ cinvκ
1
2

h

)
and γ̃(κ, θ, h) =

[
1 + (θh)

1
2 γ(κ, θ, h) + θh γ2(κ, θ, h)

]
.

Proof. Let z1
h ∈ Vh0 and σh = (u1

h +ubh)− z1
h. Using triangle inequality, we decompose the error as

1

2
‖u− uh‖2

h,∗ = (θh)‖∂tu− ∂tuh‖2
L2(Q) + κ‖∇xu−∇xuh‖2

L2(Q) +
1

2
‖u− uh‖2

L2(ΣT )

≤

T1︷ ︸︸ ︷
(θh)‖∂tu− ∂tz1

h‖2
L2(Q) + κ‖∇xu−∇xz

1
h‖2

L2(Q) +
1

2
‖u− z1

h‖2
L2(ΣT ) +

T2︷ ︸︸ ︷
(θh)‖∂tu1

h − ∂tz1
h‖2

L2(Q)

+

T3︷ ︸︸ ︷
(θh)‖∂tubh − 0 · ∂tzbh‖2

L2(Q) + κ‖∇xuh −∇xz
1
h‖2

L2(Q) +
1

2
‖uh − z1

h‖2
L2(ΣT ) (4.9)

≤‖u− z1
h‖2

h,V + T2 + ‖σh‖2
h,

where we previously used that T1 := ‖u−z1
h‖2

h,∗ ≤ ‖u−z1
h‖2

h,V and T3 = ‖σh‖2
h.We will proceed by

giving bounds for every term appearing in (4.9). For doing this, we first show few auxiliary results.
Let vh ∈ Vh,b and σ1

h = u1
h− z1

h, then using (3.5), (3.7) and (4.1) and the fact that 0 < h, θ, κ ≤ 1,
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we can obtain that

‖∂tu1
h − ∂tz1

h‖L2(Q) = ‖∂tσ1
h‖L2(Q) ≤ sup

vh∈Vh,b

∫
Q
∂t
(
(u1

h + ubh)− z1
h − ubh

)
vh dx dt

‖vh‖L2(Q)

≤ sup
vh∈Vh,b

−
[ ∫

Q
∂tu

b
h vh + κ∇xσh · ∇xvh + θh∂tu

b
h∂tv

b
h dx dt

]

‖vh‖L2(Q)

+ sup
vh∈Vh,b

[ ∫
Q
∂t(u− ∂tz1

h) vh + κ∇x(u− z1
h) · ∇xvh +

]

‖vh‖L2(Q)

≤
((θ h)

1
2

(θ h)
1
2

‖∂tubh‖L2(Q) +
θ

1
2 (θ h)

1
2

h
1
2

‖∂tubh‖L2(Q)

)
+ ‖∂t(u− z1

h)‖L2(Q)

+ κ
1
2

(
κ

1
2‖∇x(u− z1

h)‖L2(Q) + κ
1
2‖∇xσh‖L2(Q))

)
sup

vh∈Vh,b

‖∇vh‖L2(Q)

‖vh‖L2(Q)

≤ 1

(θ h)
1
2

(
θ h‖∂tubh‖2

L2(Q) + κ‖∇xσh‖2
L2(Q) +

1

2
‖σh‖2

L2(ΣT )

) 1
2

+
cinvκ

1
2

h

(
θ h‖∂tubh‖2

L2(Q) + κ‖∇xσh‖2
L2(Q) +

1

2
‖σh‖2

L2(ΣT )

) 1
2

+
cinvκ

1
2

h

(
κ

1
2‖∇x(u− z1

h)‖L2(Q)

)
+

(θh)
1
2

(θh)
1
2

‖∂t(u− z1
h)‖L2(Q)

≤
( 1

(θ h)
1
2

+
cinvκ

1
2

h

)
‖σh‖h +

( 1

(θ h)
1
2

+
cinvκ

1
2

h

)
‖u− z1

h‖h,V

≤γ(κ, θ, h)
(
‖u− z1

h‖h,V + ‖σh‖h
)
.

(4.10)

By using (4.10) and the relation

(θh)
1
2‖∂tu1

h − ∂tz1
h‖L2(Q) + (θh)

1
2‖∂tubh − 0∂tz

b
h‖L2(Q) ≥ (θh)

1
2‖∂t(u1

h + ubh)− ∂tz1
h‖L2(Q), (4.11)

and observing that (θ h)
1
2 γ(κ, θ, h) ≥ 1, it follows that

(θh)
1
2‖∂tσh‖L2(Q) ≤ 2(θh)

1
2 γ(κ, θ, h)

(
‖u− z1

h‖h,V + ‖σh‖h
)
. (4.12)

Furthermore, working as in the proof of (3.15) and using (4.18) and (2.3), we can find

a(u− z1
h, σh) = −

∫

Q

(u− z1
h) ∂tσh dx dt+

∫

ΣT

(u− z1
h)σh dσ +

∫

Q

κ
1
2∇x(u− z1

h) · κ
1
2∇xσh dx dt

≤
(
(θh)−1‖u− z1

h‖2
L2(Q)

) 1
2
(
(θh)‖∂tσh‖2

L2(Q)

) 1
2 + ‖u− z1

h‖L2(ΣT ) ‖σh‖L2(ΣT )

+
(
κ‖∇x(u− z1

h)‖2
L2(Q)

) 1
2
(
κ‖∇xσh‖2

L2(Q)

) 1
2

≤2‖u− z1
h‖h,V (θh)

1
2 γ(κ, θ, h)

(
‖u− z1

h‖h,V + ‖σh‖h
)

+ ‖u− z1
h‖h,V ‖σh‖h

≤2(θh)
1
2 γ(κ, θ, h) ‖u− z1

h‖2
h,V + 4cε θh γ

2(κ, θ, h) ‖u− z1
h‖2

h,V + ε‖σh‖2
h

+ cε‖u− z1
h‖2

h,V + ε‖σh‖2
h

≤4 cε

[
1 + (θh)

1
2 γ(κ, θ, h) + θh γ2(κ, θ, h)

]
‖u− z1

h‖2
h,V + 2ε ‖σh‖2

h

≤4 cεγ̃(κ, θ, h)‖u− z1
h‖2

h,V + 2ε ‖σh‖2
h

(4.13)

where we used that 0 < ε < 1
2
and cε > 1. Now, using the properties of ah(·, ·) and a(·, ·), we have

Cs‖σh‖2
h ≤ah(σh, σh) = ah(uh, σh)− ah(z1

h, σh)
(4.1)
= a(u, σh)− a(z1

h, σh) = a(u− z1
h, σh), (4.14)
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and by (4.13) and by replacing Cs = 1, we obtain that

‖σh‖2
h ≤ (1− 2ε)−14cεγ̃(κ, θ, h)‖u− z1

h‖2
h,V = γ̃ε(κ, θ, h)‖u− z1

h‖2
h,V . (4.15)

Now, we can bound the terms in (4.9). Inequality (4.15) immediately implies

T3 := ‖σh‖2
h ≤ γ̃ε(κ, θ, h)‖u− z1

h‖2
h,V . (4.16)

Combining (4.10) and (4.15), we have that

T2 :=θh ‖∂tu1
h − ∂tz1

h‖2
L2(Q) ≤ 2 θh γ2(κ, θ, h)

(
γ̃ε(κ, θ, h)‖u− z1

h‖2
h,V + γ̃ε(κ, θ, h)‖u− z1

h‖2
h,V

)

= 4 θh γ2(κ, θ, h)γ̃ε(κ, θ, h)‖u− z1
h‖2

h,V . (4.17)

Finally, gathering together the bounds (4.17) and (4.16), we obtain

‖u− uh‖2
h,∗ ≤ ‖u− zh‖2

h,V

[
1 + 4 θh γ2(κ, θ, h)γ̃ε(κ, θ, h) + γ̃ε(κ, θ, h)

]
. (4.18)

Setting c2
∗,V = 16 (1− 2ε)−1cε, we can derive estimate (4.8). �

Remark 4.1. Let us consider a fixed Th(Q) and let us denote

µ(κ, θ, h) =
(

1 +
(
θh γ2(κ, θ, h) + 1

)
γ̃(κ, θ, h)

) 1
2 , that is the factor appearing on the right hand

side in (4.8). Then (i) for θ = 1 and κ > h, it holds µ(κ, θ, h) ∼ h−
1
2 , (ii) for θ = 1 and κ ∼ h, it

holds µ(κ, θ, h) ∼ 1, (iii) for θ ∼ h and κ ∼ h, it holds µ(κ, θ, h) ∼ 1.

Remark 4.2. In the proof of (4.8), we used (4.13). If instead of (4.13), we use (3.15), then we
produce a corresponding new factor µ(κ, θ, h), which has a suboptimal behavior wrt h. Precisely,
the negative exponent of κ in Cb(κ, θ, h), i.e., see the factor θ(κh)−1, makes the corresponding
produced µ(κ, θ, h) factor to be O(h−

1
2 ).

Below, we recall some approximation estimates of the finite element space. For the proof we refer
to [8].

Lemma 4.2. Let s, m be integers such that 0 ≤ m ≤ 1 ≤ s and let the space Vh0 defined in
(3.1). Then for every v ∈ V := H1,1

0,0 (Q) ∩ Hs(Q), there exist a linear interpolation operator
πhv : V → Vh0 such that

|v − πhv|Hm(Q) ≤ cintp h
min(p+1,s)−m ‖v‖Hs(Q), (4.19)

where cintp = c(m, s,Q) and p = 1.

Lemma 4.3. Let the space Vh0 defined in (3.1). Let s ≥ 2 be an integer, and let a function
v ∈ V := H1,1

0,0 (Q) ∩Hs(Q). There exist a linear interpolation operator πhv : V → Vh0 such that

‖v − πhv‖2
L2(ΣT ) ≤c1 h

2r−1 ‖v‖2
Hs(Q), (4.20a)

‖v − πhv‖2
h,∗ ≤c2 h

2r−1
(
κh−1 + θ + 1

)
‖v‖2

Hs(Q), , (4.20b)

‖v − πhv‖2
h,V ≤c3 h

2r−1
(
κh−1 + θ + θ−1 + 1

)
‖v‖2

Hs(Q), (4.20c)

where r = 2 and c1, c2, c3 depend on the constants appearing in (3.6) and in (4.19), but not on h
and v.
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Proof. Introducing the operator πhv of Lemma 4.2 and by applying (3.6) and (4.19), we have

‖u− πhv‖2
L2(ΣT ) ≤ 2 c2

trac h
−1
(
‖v − πhv‖2

L2(Q)) + h2 ‖∇(v − πhv)‖2
L2(Q)

)
≤ c1 h

2r−1‖v‖2
Hs(Q).

(4.21)

In the same way, we have

κ‖∇x(v − πhv)‖2
L2(Q) ≤cintp κh2r−2‖v‖2

H2(Q),

θh‖∂t(v − πhv)‖2
L2(Q) ≤cintp θh2r−1‖v‖2

H2(Q),

(θh)−1‖(v − πhv)‖2
L2(Q) ≤cintp θ−1 h2r−1 ‖v‖2

H2(Q),

(4.22)

Collecting the estimates (4.21) and (4.22), we easily obtain

‖v − πhv‖2
h,V ≤c3

(
κh2r−2 + θ h2r−1 + θ−1 h2r−1 + h2r−1)‖v‖2

H2(Q), (4.23)

which is (4.20c). The estimate given in (4.20b) follows similarly. �

Remark 4.3. The interpolation estimates presented in (4.20) have been derived for linear polyno-
mial spaces, see (3.1). Analogous estimates can be derived for higher polynomial spaces. In that
case we set r = min(p+ 1, s).

Theorem 4.2 (error estimates). Let a fixed Th(Q). Let u ∈ V := H1,1
0,0 (Q)∩Hs(Q), with s ≥ 2

be the solution of (2.11) and let uh be the solution of (3.4). The solution uh satisfies the estimates

‖u− uh‖h,∗ ≤c1 h
1.5 ‖u‖Hs(Q), for θ = 1, and κ ∼ h, (4.24a)

‖u− uh‖h,∗ ≤c2 h ‖u‖Hs(Q), for θ ∼ h, and κ > h, (4.24b)
‖u− uh‖h,∗ ≤c3 h ‖u‖Hs(Q), for θ ∼ h, and κ ∼ h, (4.24c)

and moreover for any θ > 0,

(
‖u− uh‖2

L2(ΣT ) + κ‖∇xu−∇xuh‖2
L2(Q) + θh‖∂tubh‖2

L2(Q)

) 1
2 ≤ c4

κ
h ‖u‖Hs(Q), (4.25)

with ci, i = 1, 2, 3 depending on the constants in (4.8) and in (4.20) and c4 on the constants in
(4.3) and (4.19).

Proof. The estimates (4.24) follow directly from Remark (4.1) and (4.20c). The estimate (4.25)
follows form (4.3) and (4.19). �

Remark 4.4. In realistic cases, the solutions of parabolic evolution problems may present an
anisotropic regularity behavior, for example different regularities properties with respect to time
and space direction. In such cases, it is more appropriate to discretize the problem using anisotropic
meshes, using small mesh size in the directions where the solution is less smooth and larger mesh
size in the directions where the solution is smoother, [4]. This is a topic that we will investigate
in a forthcoming paper.

5 Numerical examples

In this section, we present several several numerical examples for validate the theoretical estimates.
Although in the analysis, we used linear polynomial spaces, next we perform tests using both
linear, (p = 1), and second order, (p = 2), polynomial spaces, which are combined with the
associated cubic bubble space. For all tests, we use triangular or tetrahedral mesh elements.
Every example has been solved applying several mesh refinement steps with corresponding mesh
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size hs = h0
2s
, s = 1, 2, . . . , s = 6. Every Ths(Q) satisfies the properties mentioned in Section 3.

We present tables with the asymptotic behavior of the error convergence rates r. The numerical
convergence rates r have been computed by the ratio r = ln(es/es+1)

ln(hs/hs+1)
, where the error es :=

‖u − uh‖h,∗ is computed on Ths(Q). We mention that, in the test cases, we use highly smooth
solutions, i.e., min(p + 1, `) = p + 1, see (4.19). We study the behavior of the rates r for θ = 1
and for θ ∼ h. Furthermore, we investigate the behavior of r when the mesh size is close to the
number of κ, and in particular, we performed tests setting κ ∼ h5. The results are displayed in
tables with headline columns κ ∼ h5. Lastly, we point out that since the support of a bubble
function is restricted to the interior of the element, we eliminate the the associated variable from
the produced linear system by static condensation.

Example 1: Q ⊂ R2, p = 1. In the first example, the problem is considered in Q = (0, 1)× (0, 2).
The exact solution is given by the formula

u(x, t) = sin(2πx) sin(πt). (5.1)

The source function f is determined by (5.1). Note that u = 0 on Σ and u0 = 0, see (2.7). In Fig.
2, we plot the exact solution on Q. We solve the problem using linear polynomials, p = 1. We
begin by first setting κ = 1 and θ = 1 and continue by setting θ ∼ hs. The numerical convergence
rates for the several levels of mesh refinement are presented in the first columns in Table 1. They
are in very good agreement with the theoretically predicted estimates given in 4.24. We observe
that the numerical solution uh ∈ Vh,b gives optimal convergence rates, i.e., the values of r are very
close to one, for all the refinement steps. Next, we perform the same computations by setting
κ = 0.92h5. The associated convergence rates are presented in the last columns in Table 1. For
the case θ = 1, we observe that the rates r at the last refinement steps approaching the value
1.5, which is in agreement with the predicted rates in (4.24a). Similarly, for the case θ ∼ hs, the
value of r are little higher than one, for the firs mesh levels. However, as we move on to the next
mesh levels, the values of r are close to one, and thus are in agreement with the values predicted
by the theory.
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Fig. 2: Example 1: The solution u on Q.

hs p = 1, κ = 1 p = 1, κ ∼ h5

h0/2
s θ = 1 θ ∼ hs θ = 1 θ ∼ hs
Convergence rates r

s = 1 1.09 1.10 0.93 1.35
s = 2 1.04 1.06 1.20 1.31
s = 3 1.13 1.11 1.35 1.14
s = 4 0.97 0.99 1.38 1.10
s = 5 1.13 1.10 1.41 1.03
s = 6 1.04 1.01 1.47 1.02

Table 1: Example 1: The convergence rates r.

Example 2: Q ⊂ R2, p = 2. In the second example, we consider the problem on Q = (0, 1) ×
(0, 1).The exact solution is given by the formula

u(x, t) = sin(2 π t) sin(2π x). (5.2)

The source function f is defined to match the solution in (5.2). In Fig. 3, we plot the exact
solution u on a relative coarse mesh with h = 0.25. We solve the problem using second order,
p = 2, polynomial space. For the first group of computations we set κ = 1, θ = 1 and θ ∼ hs.
In the first columns in Table 2, we show the convergence rates r. As in the previous example,
the values of r are approaching the value two, and confirm the theoretical predicted rates given
in Theorem 4.2. We repeat the same computations setting κ = 0.1 and keeping the same values
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for θ. The produced rates r are shown in last columns in Fig. 2. We observe that, for the first
mesh levels, the values of r are higher than the expected values. The reason can be that the mesh
size hs for these meshes is close to the value of κ, see also the rates in third column in Table 1.
Moving to the next mesh levels, we can see that the rates are approaching the expect value and
are in agreement with the predicted estimates in (4.24). For the case θ ∼ hs, we can see that the
rates r are close to two, as it was expected.
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Fig. 3: Example 2: The solution u on Q

hs p = 2, κ = 1 p = 2, κ = 0.1

h0/2
s θ = 1 θ ∼ hs θ = 1 θ ∼ hs

Convergence rates r
s = 1 2.10 2.70 2.28 1.75
s = 2 1.90 1.80 2.21 1.92
s = 3 1.91 1.95 2.25 2.20
s = 4 1.90 1.99 2.06 2.19
s = 5 1.93 1.96 2.09 2.11
s = 6 1.94 1.97 2.10 2.00

Table 2: Example 2: The convergence rates r.

Example 3: Q ⊂ R3, p = 1. The this third example, the problem is considered on Q = Ω × (0, 1)
with Ω = (0, 1)2. The exact solution is given by the formula

u(x, y, t) =
(

cos(2π(x− y))− cos(2π(x+ y))
)

sin(2πt). (5.3)

Note that u = 0 on Σ and u0 = 0. The function f is determined by (5.3). In Fig. 4, we plot the
contours of u for t = 0.8. The problem has been solved on a sequence of meshes as in the previous
tests using linear polynomial space, p = 1. We perform similar computations as before, choosing
κ = 1 and κ = 0.2. In the first columns in Table 3, we can see the values of the convergence
rates r for κ = 1. We observe that the numerical solution exhibits first order convergence for both
cases θ = 1 and θ ∼ hs. These rates are compatible with the theoretical estimates presented in
Theorem 4.2. The last columns in Table 3 show the rates for κ = 0.2. For the first coarse meshes,
the rates related to θ = 1 are little higher than the expected. This can be explained by the fact
that the magnitude of the diffusivity κ is close to the mesh sizes. The next rates related to the
finer meshes are close to one and are in agreement with the theory. Also, the rates related to
θ ∼ hs are optimal for linear polynomial spaces and in agreement with the theoretical predicted
estimates.

Finally, we can conclude that the proposed bubble stabilization finite element scheme performs
well for all the examples. The produced numerical solution gives optimal order of convergence in
the ‖ · ‖h,∗-norm, when problems with smooth solutions are solved.
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Fig. 4: Example 3: The solution u on Q ⊂ R3

hs p = 1, κ = 1 p = 1, κ = 0.2

h0/2
s θ = 1 θ ∼ h θ = 1 θ ∼ hs
Convergence rates r

s = 1 1.09 1.02 0.61 0.60
s = 2 0.90 0.90 1.38 1.26
s = 3 0.92 0.90 1.30 1.16
s = 4 0.97 0.97 1.17 1.15
s = 5 1.05 1.05 1.10 1.11

Table 3: Example 3: The convergence rates r.
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6 Conclusions

In this article, we have proposed and analyzed a bubble stabilized space-time finite element
method for solving linear parabolic evolution problems. The construction of the method was based
on a space-time variational formulation of the initial PDE problem, which allows the unified space-
time discretization by finite element techniques. We presented a discretization error analysis and
proved that the method has optimal convergence properties, when the PDE problem has smooth
solution. We showed that the optimal order of convergence is not affected by the choice of the
value of the parameter θ appearing in the additional bubble stabilization terms. The theoretical
foundlings have been verified by performing several numerical examples. A possible extension of
the presented work is to combine the proposed method with time or space-time mesh adaptivity
techniques.
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