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Abstract. We present and analyze a new stable multi-patch space-
time Isogeometric Analyis (IgA) method for the numerical solution of
parabolic diffusion problems. The discrete bilinear form is elliptic on the
IgA space with respect to a mesh-dependent energy norm. This prop-
erty together with a corresponding boundedness property, consistency
and approximation results for the IgA spaces yields a priori discretiza-
tion error estimates. We propose an efficient implementation technique
via tensor product representation, and fast space-time parallel solvers.
We present numerical results confirming the efficiency of the space-time
solvers on massively parallel computers using more than 100.000 cores.

Keywords: Parabolic initial-boundary value problems, space-time iso-
geometric analysis, a priori discretization error estimates, parallel solvers.

1 Introduction

The standard discretization methods for parabolic initial-boundary value prob-
lems (IBVP) are based on a separation of the discretizations in space and time,
i.e., first space, then time, or, vice versa, first time, then space. The former
one is called vertical method of lines, whereas the latter one is called horizontal
method of lines or Rothe’s method. Both methods use some kind of time-stepping
method for time discretization. This is a sequential procedure that needs some
smart ideas for the parallelization with respect to time, see [5] for a historical
overview of time-parallel methods. Other disadvantages of these approaches are
connected with a separation of adaptivity with respect to space and time, and
with difficulties in the numerical treatment of moving interfaces and spatial do-
mains. To overcome this curse of sequentiality of time-stepping methods, one
should look at the time variable t as just another variable, say, xd+1 if x1, . . . , xd
are the spatial variable, and at the time derivative as a strong convection in the
direction xd+1. In [11], we were inspired by this view at parabolic problems, and
proposed upwind-stabilized single-patch space-time IgA schemes for parabolic
evolution problems. For comprehensive overview on the literature on different
space-time methods for solving parabolic IPVP, we also refer to [11].



In this paper, we generalize the results of [11] from the single-patch to the
time dG multi-patch IgA case. As in [11], we consider the linear parabolic IBVP:
find u : Q→ R such that

∂tu−∆u = f in Q, u = 0 on Σ, and u = u0 on Σ0, (1)

as a typical model problem posed in the space-time cylinder Q = Ω × [0, T ] =
Q∪Σ ∪Σ0 ∪ΣT , where ∂t denotes the partial time derivative, ∆ is the Laplace
operator, f is a given source function, u0 are the given initial data, T is the
final time, Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), Σ0 := Ω × {0}, ΣT := Ω × {T},
and Ω ⊂ Rd (d = 1, 2, 3) denotes the spatial computational domain with the
boundary ∂Ω. The spatial domain Ω is supposed to be bounded and Lipschitz.
Later we will assume that Ω has a single- or multipatch NURBS representation
as is used in CAD respectively IgA.

2 Space-time variational formulation

Using the standard procedure and integration by parts with respect to both x
and t, we can easily derive the following space-time variational formulation of
(1): find u ∈ H1,0

0 (Q) = {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d, u = 0 on Σ} such that

a(u, v) = l(v), ∀v ∈ H1,1
0,0̄

(Q), (2)

with the bilinear form

a(u, v) = −
∫

Q

u(x, t)∂tv(x, t) dx dt+

∫

Q

∇xu(x, t) · ∇xv(x, t) dx dt (3)

and the linear form

l(v) =

∫

Q

f(x, t)v(x, t) dx dt+

∫

Ω

u0(x)v(x, 0) dx, (4)

where H1,1

0,0
(Q) = {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d, ∂tu ∈ L2(Q), u = 0 on Σ, and

u = 0 on ΣT }. The space-time variational formulation (2) has a unique solution,
see, e.g, [9,10]. In these monographs, beside existence and uniqueness results,
one can also find useful a priori estimates and regularity results. For simplicity,
we below assume that u0 = 0.

3 Stable multi-patch space-time IgA discretization

Let us now assume that the space-time cylinder Q = ∪Nn=1Qn consists of N
subcylinders (patches or time slices) Qn = Ω × (tn−1, tn), n = 1, . . . , N , where
0 = t0 < t1 < . . . < tN = T is some subdivision of time interval [0, T ]. The time
faces between the time patches are denoted by Σn = Qn+1 ∩ Qn = Ω × {tn}.
We obviously have ΣN = ΣT . Every space-time patch Qn = Φn(Q̂) in the



physical domain Q can be represented as the image of the parameter domain
Q̂ = (0, 1)d+1 by means of a sufficiently regular IgA (B-Spline, NURBS etc.)
map Φn : Q̂→ Qn, i.e.,

Φn(ξ) =
∑

i∈In
Pn,iϕ̂n,i(ξ), (5)

where {ϕ̂n,i}i∈In are the IgA basis functions, and {Pn,i}i∈In ⊂ Rd+1 are the
control points for the patch Qn. The IgA basis functions are usually multivariant
B-Splines or NURBS defined on a mesh given by the knot vector wrt to each
direction in the parameter domain Q̂, and the underlying polynomial degrees
and multiplicities of the knots defining the smoothnesses of the basis functions,
see, e.g., [2] or [12] for more detailed information.

Now, we can construct our finite-dimensional IgA (B-Spline, NURBS etc.)
space V0h = {vh : vn = vh|Qn

∈ V0n, n = 1, . . . , N}, the functions of which
are smooth in each time patch Qn in correspondence to the smoothness of the
splines, but in general discontinuous across the time faces Σn, n = 1, . . . , N − 1.
The smooth IgA spaces V0n = V0hn = span{ϕn,i}i∈In ⊂ H1,1

0 (Qn) are spanned
by IgA basis functions {ϕn,i}i∈In that are nothing but the images of the basis
functions {ϕ̂n,i}i∈In , which were already used for defining the patch Qn, by the
map Φn, i.e., ϕn,i = ϕ̂n,i ◦Φ−1

n . The basis functions ϕ1,i should vanish on Σ0 for
all i ∈ I1. Therefore, all functions vh from V0h fulfil homogeneous boundary and
initial conditions. The discretization parameter hn denotes the average mesh-
size of the mesh induced by the corresponding mesh in the parameter domain
Q̂ via the map Φn. The IgA technology of using the same basis functions for
describing the patches of the computational domain (geometry) and for defining
the approximation spaces V0h was introduced by Hughes, Cottrell and Bazilevs
in 2005 [8] and analyzed in [1], see also monograph [2] for more comprehensive
information.

In order to derive our dG IgA scheme for defining the IgA solution uh ∈ V0h,
we multiply the parabolic PDE (1) by a time-upwind test function of the form
vn + θnhn∂tvn with an arbitrary vn ∈ V0n and a positive, sufficiently small
constant θn, and integrate over the space-time subcylinder Qn. After integration
by parts wrt x, we get

∫

Qn

(∂tu(vn + θnhn∂tvn) +∇xu · ∇xvn + θnhn∇xu · ∇x∂tvn) dxdt

−
∫

∂Qn

nx · ∇xu (vn + θnhn∂tvn) ds =

∫

Qn

f(vn + θnhn∂tvn) dxdt. (6)

We mention that ∂tvn is differentiable wrt x due to the special tensor product
structure of V0n. Using the facts that vn and ∂tvn are always zero on Σ, and
the x-components nx = (n1, . . . , nd)

> of the normal n = (n1, . . . , nd, nd+1)
> =

(nx, nt)
> are zero on Σn−1 and Σn, we observe that the integral over ∂Qn is

always zero. Now, adding to the left-hand side of (6) a consistent time-upwind



term for stabilization, and summing over all time patches, we get the identity

N∑

n=1

∫

Qn

(∂tu(vn + θnhn∂tvn) +∇xu · ∇xvn + θnhn∇xu · ∇x∂tvh) dxdt

+
N∑

n=1

∫

Σn−1

[|u|] vn dx =
N∑

n=1

∫

Qn

f(vn + θnhn∂tvn) dxdt (7)

that holds for a sufficiently smooth solution u of our parabolic IBVP, where
[|u|] := u|Qn

− u|Qn−1
on Σn−1 denotes the jump of u across Σn−1 that is

obviously zero.
The time multipach space-time IgA scheme for solving the parabolic IBVP

(1) respectively (2) can now be formulated as follows: find uh ∈ V0h such that

ah(uh, vh) = lh(vh), ∀vh ∈ V0h, (8)

where

ah(uh, vh) =
N∑

n=1

an(uh, vh) =
N∑

n=1

(∫

Qn

(∂tun(vn + θnhn∂tvn) +∇xun · ∇xvn

+ θnhn∇xun · ∇x∂tvn) dxdt+
∫

Σn−1

[|uh|] vn dx
)
, (9)

lh(vh) =
N∑

n=1

ln(vh) =
N∑

n=1

∫

Qn

f(vn + θnhn∂tvn) dxdt. (10)

Here and below we formally set [|u1|] on Σ0 to zero since we assumed homoge-
neous initial conditions. It is clear that this jump term can be used to include
inhomogeneous initial conditions in a weak sense. In this case, the test functions
vn are not forced to be zero on Σ0. The derivation of the IgA scheme given
above immediately yields that this scheme is consistent for sufficiently smooth
solution, cf. identity (7). Indeed, if the solution u ∈ H1,0

0 (Q) of (2) belongs to
H1,1

0 (Q), then it satisfies the consistency identity

ah(u, vh) = lh(vh), ∀vh ∈ V0h, (11)

yielding Galerkin orthogonality

ah(u− uh, vh) = 0, ∀vh ∈ V0h. (12)

Now we will show that the bilinear form ah(·, ·) is V0h-elliptic wrt the norm
‖v‖h defined by

‖v‖2h =
N∑

n=1

(1
2
‖∇xv‖2L2(Qn)+θn hn ‖∂tv‖2L2(Qn)+

1

2
‖ [|v|] ‖2L2(Σn−1)

)
+
1

2
‖v‖2L2(ΣN ).



In order to show the V0h-ellipticity of ah(·, ·), we need the inverse inequality

‖∇xvn‖2L2(Σn−1) ≤ c2inv,0h−1
n ‖∇xvn‖2L2(Qn) (13)

that is valid for all vn ∈ V0n and n = 1, . . . , N , see [1,4].

Lemma 1. The bilinear form ah(·, ·) defined by (9) is V0h-elliptic, i.e., there
exist a generic positive constant µe such that

ah(vh, vh) ≥ µe‖vh‖2h, ∀vh ∈ V0h. (14)

provided that the parameters θn are sufficiently small. More precisely, µe = 1
if 0 < θn ≤ c−2

inv,0 for all n = 1, 2, . . . , N , where cinv,0 is the constant from the
inverse inequality (13).

Proof. Using integration by parts with respect to t and the inverse inequality
(13), we can derive the following estimates:

an(vh, vh) =

∫

Qn

(
1

2
∂tv

2
n + θnhn(∂tvn)

2 + |∇xvn|2 +
θnhn
2

∂t|∇xvn|2
)
dx dt

+

∫

Σn−1

[|vh|] vn dx

=
1

2

∫

Σn

v2
ndx−

1

2

∫

Σn−1

v2
ndx+

∫

Qn

(
θnhn(∂tvn)

2 + |∇xvn|2
)
dx dt

+
θnhn
2

∫

Σn

|∇xvn|2dx−
θnhn
2

∫

Σn−1

|∇xvn|2dx+

∫

Σn−1

[|vh|] vn dx

≥ θnhn‖∂tvn‖2L2(Qn) + ‖∇xvn‖2L2(Qn) − 0.5 θnhn‖∇xvn‖2L2(Σn−1)

+
1

2

∫

Σn

v2
ndx−

1

2

∫

Σn−1

v2
ndx+

∫

Σn−1

v2
n dx−

∫

Σn−1

vn−1vn dx

≥ θnhn‖∂tvn‖2L2(Qn) + (1− 0.5 θnc
2
inv,0)‖∇xvn‖2L2(Qn)

+

∫

Σn−1

(
1

2
v2
n − vn−1vn

)
dx+

1

2

∫

Σn

v2
ndx

Summing over all n = 1, . . . , N , we obtain

ah(vh, vh) =

N∑

n=1

an(vh, vh)

≥
N∑

n=1

θnhn‖∂tvh‖2L2(Qn) +
(
1− 0.5 θn c

2
inv,0

)
‖∇xvh‖2L2(Qn)

+

N∑

n=1

1

2
‖ [|vh|] ‖2L2(Σn−1) +

1

2
‖vN‖2L2(ΣN ).

Choosing 0 < θn ≤ c−2
inv,0 for all n = 1, 2, . . . , N , we immediately arrive at (14)

with µe = 1. �



Lemma 1 immediately implies that the solution uh ∈ V0h of (8) is unique. Since
the IgA scheme (8) is posed in the finite dimensional space V0h, the uniqueness
yields existence of the solution uh ∈ V0h of (8).

Once the basis is chosen, the IgA scheme (8) can be rewritten as a huge linear
system of algebraic equations of the form

Lhuh = fh (15)

for determining the vector uh = ((u1,i)i∈I1 , . . . , (uN,i)i∈IN ) ∈ RNh of the control
points of the IgA solution

uh(x, t) =
∑

i∈In
un,iϕn,i(x, t), (x, t) ∈ Qn, n = 1, . . . , N, (16)

solving the IgA scheme (8). The system matrix Lh is the usual Galerkin (stiffness)
matrix, and fh is the corresponding right-hand side (load) vector.

4 A priori discretization error estimates

In order to derive a priori discretization error estimates, we will first show that
the IgA bilinear form ah(·, ·) is bounded on V0h,∗×V0h, where the space V0h,∗ =
V + V0h is equipped with the norm ‖ · ‖h,∗ defined by the relation

‖v‖2h,∗ = ‖v‖2h +
N∑

n=1

(θnhn)
−1‖v‖2L2(Qn) +

N∑

n=2

‖v|Qn
‖2L2(Σn−1), (17)

and V is a suitable infinite-dimensional space containing the solution u, e.g., we
can choose V = H1,1

0,0 (Q) = {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d, ∂tu ∈ L2(Q), u =
0 on Σ, and u = 0 on Σ0} assuming that the solution u belongs to this space.
In order to prove the boundedness of ah(·, ·), we need the inverse inequality

‖∇x∂tvn‖2L2(Qn) ≤ c2inv,1h−2
n ‖∇xvn‖2L2(Qn) (18)

that is valid for all vn ∈ V0n and n = 1, . . . , N , see [1,4].

Lemma 2. The bilinear form ah(·, ·) defined by (9) is bounded on the space
V0h,∗ × V0h, i.e., there exists a generic positive constant µb such that

|ah(u, vh)| ≤ µb‖u‖h,∗‖vh‖h, ∀u ∈ V0h,∗, ∀vh ∈ V0h. (19)

with the boundedness constant µb = 2max{
√

1 + cinv,1/c2inv,0,
√
2}, where cinv,0

and cinv,1 are the constants from inequalities (13) and (18). We always assume
that the parameters θn are chosen as in Lemma 1.



Proof. For the first and the interface jump terms of ah, we use Green’s formula
and the Cauchy inequality to derive the following estimates:
N∑

n=1

(∫

Qn

∂tu vh dx dt+

∫

Σn−1

[|u|] vn ds
)

=
N∑

n=1

(
−
∫

Qn

u ∂tvh dx dt+

∫

Σn

u vn ds−
∫

Σn−1

u vn ds+

∫

Σn−1

[|u|] vn ds
)

≤
(

N∑

n=1

(θnhn)
−1
(∫

Qn

u2 dx dt
)2
) 1

2
(

N∑

n=1

θnhn

(∫

Qn

(∂tvn)
2 dx dt

)2
) 1

2

+

N∑

n=1

∫

Σn−1

(vn−1 − vn)u ds+
∫

ΣN

vnu ds

≤
(

N∑

n=1

(θnhn)
−1
(∫

Qn

u2 dx dt
)2
) 1

2
(

N∑

n=1

θnhn

(∫

Qn

(∂tvn)
2 dx dt

)2
) 1

2

+
√
2
(1
2

N∑

n=1

[|vh|]2L2(Σn−1) +
1

2
‖vN‖2L2(ΣN )

) 1
2√

2
( N∑

n=1

‖u‖2L2(Σn−1) +
1

2
‖u‖2L2(ΣN )

) 1
2

.

Using again Cauchy’s inequality, we get the estimates
N∑

n=1

∫

Qn

(θnhn)
1
2 ∂tu (θnhn)

1
2 ∂tvn dx dt+

N∑

n=1

∫

Qn

∇xu · ∇xvn dx dt

≤
( N∑

n=1

θnhn‖∂tu‖2L2(Qn)

) 1
2
( N∑

n=1

θnhn‖∂tvn‖2L2(Qn)

) 1
2

+
√
2
(1
2

N∑

n=1

‖∇xu‖2L2(Qn)

) 1
2√

2
(1
2

N∑

n=1

‖∇xvn‖2L2(Qn)

) 1
2

for the second and third terms. Finally, for the last but one term, we apply
Cauchy’s and inverse inequalities to show

N∑

n=1

∫

Qn

∇xu · (θnh)∇x∂tvn dx dt

≤
(

N∑

n=1

‖∇xu‖2L2(Qn)

) 1
2
(

N∑

n=1

(θnhn)
2‖∇x∂tvn‖2L2(Qn)

) 1
2

≤
(

N∑

n=1

‖∇xu‖2L2(Qn)

) 1
2
(

N∑

n=1

(θnhn)
2c2inv,1h

−2
n ‖∇xvn‖2L2(Qn)

) 1
2

≤ cinv,1θn
√
2
(1
2

N∑

n=1

‖∇xu‖2L2(Qn)

) 1
2√

2
(1
2

N∑

n=1

‖∇xvn‖L2(Qn)

) 1
2

.



Gathering together the bounds obtained above yields estimate (19) with µb =
2max{

√
1 + cinv,1θ,

√
2}, where θ = maxn=1,...,N{θn} ≤ c−2

inv,0. �

Let vh be an arbitrary IgA function from Vh0. Using the fact that vh−uh ∈ Vh0,
the Vh0-ellipticity of the bilinear form ah(·, ·) as was shown in Lemma 1, the
Galerkin orthogonality (12), and the boundedness (19) of ah(·, ·) on V0h,∗×V0h,
we can derive the following estimate

µe‖vh − uh‖2h ≤ ah(vh − uh, vh − uh) = ah(vh − u, vh − uh)
≤ µb‖vh − u‖h,∗‖vh − uh‖h.

Therefore, we can proceed as follows:

‖u− uh‖h ≤ ‖u− vh‖h + ‖vh − uh‖h
≤ ‖u− vh‖h + (µb/µe)‖vh − u‖h,∗
≤ (1 + µb/µc)‖vh − u‖h,∗,

which proves the following Cea-like Lemma providing an estimate of the dis-
cretization error wrt the norm ‖ · ‖h by the best approximation error wrt to the
‖ · ‖h,∗ norm.

Lemma 3. Under the assumption made above, the discretization error wrt the
‖ · ‖h norm can be estimated from above by the best approximation error wrt to
the ‖ · ‖h,∗ norm as follows:

‖u− uh‖h ≤ (1 +
µb
µc

) inf
vh∈V0h

‖u− vh‖h,∗. (20)

Theorem 1. Let the solution u ∈ H1,0
0 (Q) of the parabolic initial-boundary

value model problem (2) belong to V = H1,1
0,0 (Q) globally, and patch-wise to

Hsn(Qn) with some sn ≥ 2 for n = 1, . . . , N , and let uh ∈ V0h be the solu-
tion to the IgA scheme (8) with fixed positive θn, n = 1, . . . , N , defined as in
Lemma 1. Then the discretization error estimate

‖u− uh‖h ≤ (1 +
µb
µc

)
N∑

n=1

cnh
rn−1
n ‖u‖Hrn (Qn) (21)

holds, where cn are generic positive constants, rn = min{sn, pn + 1}, and pn
denotes the underlying polynomial degree of the B-splines or NURBS used in
patch Qn with n = 1, . . . , N .

Proof. Let Πn be a projective operator from L2(Qn) to V0n that delivers optimal
approximation error estimates in the L2(Qn) and H1(Qn) norms, see, e.g., [1]
or [3]. We define the multi-patch projective operator (Πhu)|Qn

= Πn(u|Qn
) for

all n = 1, . . . , N . Employing the approximation results given in [1] or [3], we can
easily derive the approximation error estimates

‖∇x(u−Πnu)‖2L2(Qn)+θn hn‖∂t(u−Πnu)‖2L2(Qn) ≤ C1h
2(rn−1)
n ‖u‖2Hrn (Qn) (22)



and
θn h

−1
n ‖u−Πnu‖2L2(Qn) ≤ C2h

2rn−1
n ‖u‖2Hrn (Qn), (23)

with positive generic constants C1 and C2. Based on the previous estimates and
the trace inequality

‖u‖2L2(∂Qn) ≤ Ctrh−1
n

(
‖u‖2L2(Qn) + h2

n |u|2H1(Qn)

)
,

we can further show the approximation error estimate

‖u−Πnu‖2L2(∂Qn) ≤ C3h
2rn−1‖u‖2Hrn (Qn)

that in turn implies

‖u−Πnu‖2L2(Σn) ≤ C4h
2rn−1‖u‖2Hrn (Qn) (24)

and

1

2
‖ [|u−Πhu|] ‖2L2(Σn−1) ≤‖un −Πnu‖2L2(Σn−1) + ‖un−1 −Πn−1u‖2L2(Σn−1)

≤ C4h
2rn−1
n ‖u‖2Hrn (Qn)+C5h

2rn−1−1
n−1 ‖u‖2Hrn−1 (Qn−1), (25)

with positive generic constants C4 and C5. Finally, gathering together (22), (23),
(24) and (25), summing over all space-time patches Qn, and recalling definition
(17), we get the approximation error estimate

‖u−Πhu‖h,∗ ≤
N∑

n=1

cnh
rn−1
n ‖u‖Hrn (Qn). (26)

Inserting (26) into (20) yields the desired result. �

Remark 1. The above estimate has been derived under the isotropic assumption
u ∈ Hsn(Qn) for the patch-wise regularity of the solution. In the forthcoming
work [7], we will present a discretization error analysis for the case when the
solution can have anisotropic regularity behavior with respect to time and space.

5 Matrix representation and space-time multigrid solvers

We now assume that the IgA map Φn : Q̂ → Qn preserves the tensor product
structure of the IgA basis functions ϕn,i = ϕ̂n,i ◦Φ−1

n . Hence, for each time slice
Qn, n = 1, . . . , N , the basis functions ϕn,i, i ∈ In, can be rewritten in the form

ϕn,i(x, t) = φn,ix(x)ψn,it(t), with ix ∈ {1, . . . , Nn,x} and it ∈ {1, . . . , Nn,t},



where dim(V0n) = Nn,xNn,t. Using this representation in the definition of the
bilinear form an(·, ·), we obtain
∫

Qn

(
∂tϕn,j(ϕn,i + θnhn∂tϕn,i) +∇xϕn,j · ∇xϕn,i + θnhn∇xϕn,j · ∇x∂tϕn,i

)
dxdt

+

∫

Σn−1

[|ϕn,j |]ϕn,i dx

=
[ ∫

Ω

φn,jxφn,ix dx
][ ∫ tn

tn−1

∂tψn,jt(ψn,it + θnhn∂tψn,it) dt
]

+
[ ∫

Ω

∇xφn,jx · ∇xφn,ix dx
][ ∫ tn

tn−1

ψn,jt(ψn,it + θnhn∂tψn,it) dt
]

+
[ ∫

Ω

φn−1,kxφn,ix dx
][(

ψn,jt(tn−1)− ψn−1,kt(tn−1)
)
ψn,it(tn−1)

]

= Mn,x[ix, jx]Kn,t[it, jt] + Kn,x[ix, jx]Mn,t[it, jt]− M̃n,x[ix, kx]Nn,t[it, kt],

with the standard mass and stiffness matrices wrt to space

Mn,x[ix, jx] :=

∫

Ω

φn,jxφn,ix dx, Kx[ix, jx] :=

∫

Ω

∇xφn,jx · ∇xφn,ix dx,

M̃n,x[ix, kx] :=

∫

Ω

φn−1,kxφn,ix dx,

and the corresponding matrices wrt to time

Kn,t[it, jt] :=

∫ tn

tn−1

∂tψn,jt(ψn,it + θnhn∂tψn,it) dt+ ψn,jt(tn−1)ψn,it(tn−1),

Mn,t[it, jt] :=

∫ tn

tn−1

ψn,jt(ψn,it + θnhn∂tψn,it) dt,

Nn,t[it, kt] := ψn−1,kt(tn−1)ψn,it(tn−1).

With this computations, we have shown that the Galerkin matrix Lh can be
rewritten in the block form

Lh =




A1

−B2 A2

. . . . . .
−BN AN


 ,

with the matrices An := Mn,x ⊗ Kn,t + Kn,x ⊗Mn,t for n = 1, . . . , N , and
Bn := M̃n,x ⊗Nn,t for n = 2, . . . , N .

Thus, the linear system (15) can sequentially be solved from one time slice
Qn−1 to the next time slice Qn, where a linear system with the system matrix
An has to be solved. This can be done, for example, by means of an algebraic
multigrid method, which was already successfully used for the single patch case



in [11]. More advanced solvers for the linear system (15) are given by space-
time multigrid methods, which allow parallelization wrt to space and time. The
problem given in (15) perfectly fits into the framework of space-time multigrid
methods introduced in [6].

6 Numerical Results

In this section, we demonstrate the proposed method for the spatial compu-
tational domain Ω = (0, 1)3 and T = 1, i.e., Q = (0, 1)4. We consider the
manufactured solution u(x, t) = sin(πx1) sin(πx2) sin(πx3) sin(πt) for problem
(1). Here, we only show results for the case pn = 1, n = 1, . . . , N , i.e., for lowest
order splines. We start with an initial space-time mesh consisting of 64 elements
in space and one time slice (N = 1) which is subdivided into 8 elements. We then
apply uniform refinement wrt space, and increase the number of time slices by a
factor of two. At the same time, we keep the number of subdivision per time slice
constant. For each time slice, we always use the same parameter θn = 0.2. Using
the results of Section 5, we can generate the linear system (15) very fast. More-
over, we can apply the solver technology given in [11] to solve the linear system
in parallel wrt space and time. In detail, we use the space-time multigrid method
(1 V -cycle in time and space, and 1 hypre algebraic multigrid (AMG) V -cycle in
space) as a preconditioner for the GMRES method, and we stop the iterations
until a relative residual error of 10−8 is reached. In Table 1, we show the conver-
gence of this approach with respect to the L2(Q)-norm. We observe the optimal
convergence rate of 2. The number of cores used for the hypre AMG is denoted
by cx, whereas ct gives the number of cores with respect to time. Overall, we use
cxct cores, which is also listed in this table. We also observe quite small itera-
tion numbers. Finally, we can solve the global linear system with 9 777 365 568
unknowns in less than 5 minutes on a massively parallel machine with 131 072
cores. The weak parallel efficiency corresponding to the last two rows of Table 1
is about 50%. This is due to the massive space parallelization of the AMG that
is not especially adapted to the problem under consideration. All computations
have been performed on the Vulcan BlueGene/Q at Livermore, U.S.A, MFEM.

N dof per slice overall dof ||u− uh||L2(Q) eoc cx ct cores iter time [s]
1 1 125 1 125 1.8815E-02 - 1 1 1 1 0.04
2 6 561 13 122 4.8619E-03 1.95 1 2 2 9 1.35
4 44 217 176 868 1.2294E-03 1.98 1 4 4 12 18.72
8 323 433 2 587 464 3.0834E-04 2.00 4 8 32 13 58.81
16 2 471 625 39 546 000 7.7092E-05 2.00 32 16 512 15 109.79
32 19 320 201 618 246 432 1.92621E-05 2.00 256 32 8192 16 133.31
64 152 771 337 9 777 365 568 4.81335E-06 2.00 2048 64 131072 18 273.27

Table 1. Convergence results for the space-time IgA as well as iteration numbers and
solving times for the parallel space-time multigrid preconditioned GMRES method.



7 Summary and Conclusion

We presented new time-upwind stabilized multi-patch space-time IgA schemes
for parabolic IBVP, derived a priori discretization error estimates, and provided
fast generation and solution methods, which can be efficiently implemented on
massively parallel computers as the first numerical results show. This space-time
method can be generalized to more general parabolic evolution problems.

Acknowledgments

The authors gratefully acknowledge the financial support by the Austrian Sci-
ence Fund (FWF) under the grants NFN S117-03. We also want to thank the
Lawrence Livermore National Laboratory for the possibility to perform numeri-
cal test on the Vulcan Cluster. In particular, the second author wants to thank
P. Vassilevski for the support and the fruitful discussions during his visit at the
Lawrence Livermore National Laboratory.

References
1. Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, and G. Sangalli.

Isogeometric analysis: Approximation, stability and error estimates for h-refined
meshes. Comput. Methods Appl. Mech. Engrg., 194:4135–4195, 2006.

2. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward
Integration of CAD and FEA. John Wiley & Sons, Chichester, 2009.

3. L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. Mathematical analysis
of variational isogeometric methods. Acta Numerica, 23:157–287, 5 2014.

4. J.A. Evans and T.J.R. Hughes. Explicit trace inequalities for isogeometric analysis
and parametric hexahedral finite elements. Numer. Math, 123(2):259–290, 2013.

5. M. Gander. 50 years of time parallel time integration. In T. Carraro, M. Geiger,
S. Körkel, and R. Rannacher, editors, Multiple Shooting and Time Domain De-
composition, pages 69–114. Springer-Verlag, 2015.

6. M. Gander and M. Neumüller. Analysis of a new space-time parallel multigrid
algorithm for parabolic problems. SIAM J. Sci. Comput., 38(4):A2173–A2208,
2016.

7. C. Hofer, U. Langer, M. Neumüller, and I. Toulopoulos. Multipatch time discon-
tinuous Galerkin space-time isogeometric analysis of parabolic evolution problems.
under preperation, 2017.

8. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Engrg., 194:4135–4195, 2005.

9. O. A. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physics.
Springe, New York, 1985.

10. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva. Linear and Quasi-
linear Equations of Parabolic Type. AMS, Providence, RI, 1968.

11. U. Langer, S. Moore, and M. Neumüller. Space-time isogeometric analysis of
parabolic evolution equations. Comput. Methods Appl. Mech. Engrg., 306:342–363,
2016.

12. L. Piegl and W. Tiller. The NURBS Book. Springer-Verlag, Berlin, Heidelberg,
1997.


