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Abstract. This paper presents an implementation framework for spline
spaces over T-meshes (and their d-dimensional analogs). The aim is to
share code between the implementations of several spline spaces. This is
achieved by reducing evaluation to a generalized Bézier extraction.
The approach was tested by implementing hierarchical B-splines, trun-
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variation presented here), truncated B-splines for partially nested refine-
ment and hierarchical LR-splines.
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1 Introduction

A common method to represent shapes in Computer-Aided Design (CAD),
Computer-Aided Engineering (CAE) and Computer-Aided Manufacturing (CAM)
is to parametrize the desired geometry (or its boundary) with Non-Uniform Ra-
tional B-Splines (NURBS). B-splines have a global tensor-product structure,
where each d-variate basis function is a product of d univariate basis functions.
This means that changes in spatial resolution cannot be confined to a small
region; they necessarily spread to a union of stripes of the domain (Fig. 1).

Fig. 1: Limitation of the tensor-product construction. Left: the coarse grid; Mid-
dle: the desired refinement; Right: the coarsest tensor-product grid refined on
the grey area.
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Different constructions that allow for local refinement were proposed during
the last two decades and gained support with the introduction of IsoGeometric
Analysis (IGA) [24]. Indeed, IGA pushed the use of splines in numerical simula-
tion where local refinement is a prerequisite of adaptive methods. The following
list includes the best known constructions:

– Hierarchical B-splines (HB) [16]. This is a multiscale approach: each scale
is associated to a different tensor-product B-spline space. Functions from
each scale are selected depending on the locally required resolution and to-
gether they form the hierarchical B-spline basis. There are many variations
of HB, among them: the Truncated Hierarchical B-splines (THB) [17], the
Truncated Decoupled Hierarchical B-splines (TDHB) [32], the Truncated
B-splines for partially nested refinement (TBPN) [43] and Decoupled Hier-
archical B-splines (DHB) introduced here for the first time.

– T-splines (T) [39,38]. The central notion is the T-mesh: a planar graph with
lengths. A B-spline corresponds to each vertex of the graph and its knot vec-
tors depend on the length of the neighboring edges. These B-splines generate
the space. Unfortunately, they can be linearly dependent. Analysis Suitable
T-splines (AST) avoid linear dependencies by restricting the class of allowed
T-meshes [31,11]. AST spaces can be constructed in 2D [35] and also defined
for 3D domains [34].

– Locally Refined splines (LR) [14]. Their definition is given in terms of mini-
mally supported B-splines contained in a space of piecewise polynomials. The
generators are not always linearly independent. A bivariate construction that
avoids linear dependencies is the hierarchical LR-splines (HLR) [5].

Several other spaces and alternative bases exist, e.g., [36,13,8,27,6]. On the one
hand, the mentioned spaces contain piecewise polynomials over box-shaped sub-
domains and allow for smooth functions. On the other hand, each construction
was defined for a specific application and, as a consequence, described and ana-
lyzed with its own set of tools. Thus it is difficult to make a comparison involving
more than a few spaces and having criteria that are not application-specific. A
comparison of HB, THB and LR based on the conditioning of the mass matrix
is presented in [25]. A similar approach was used in [23].

Our aim is to describe a software framework allowing to implement vari-
ous spline spaces in a systematic way. The main criterion is the versatility of
the code, that is, the possibility to include further spline spaces to this frame-
work with relative ease. In this way we hope to facilitate both the comparison
of different spline spaces and experimenting with alternative definitions. The
proposed method is a generalization of Bézier extraction [2,37,15], which is a
well-established tool in IGA. As a proof of concept, three spline spaces available
in the literature and a newly designed space were implemented. The choice of
the spaces has been basen on authors’ personal research interests and contains
only spaces with multilevel structure. Less structured spaces such as LR-splines
or T-splines could be implemented as well, but they would probably require
more effort due to their intrinsic complexity, particularly so when non-dyadic
refinement and knot lines with multiplicities would be considered.
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The framework is presented in Section 2 without any reference to specific
spline spaces. Section 3 discusses the space and time complexity of the proposed
approach and presents possible optimizations. Section 4 highlights the differ-
ences from Bézier extraction, while Section 5 describes how the framework can
be applied to HB, THB, DHB, TBPN and HLR splines. These spaces were im-
plemented and their implementations are used in Section 6 to show how the
different spaces behave in a few selected cases.

The following notation conventions are used throughout the paper.
style example used for
lowercase Latin letters a, b, . . . real numbers
bold lowercase Latin letters a, b, . . . vectors of real numbers
lowercase Greek letters α, β, . . . functions
bold lowercase Greek letters α, β, . . . vectors of functions
uppercase Greek letters Ω, ∆, . . . subsets of Rd or Rd−1

uppercase Latin letters A, B, . . . sets
bold uppercase Latin letters A, B, . . . matrices and operators
calligraphic uppercase Latin letters A, B, . . . function spaces

2 Implementation Method

The aim of an implementation is to evaluate the generators of a spline space
at a set X of points contained in the domain Ω ⊆ Rd. This is sufficient for the
application to interpolation problems and for the implementation of Galerkin
methods based on numerical quadrature.

The spline spaces of interest are generated by piecewise polynomials on a
partition of Ω into axis-aligned boxes called elements. Thus their restriction to
an element can be expressed in terms of tensor-product Bernstein polynomials.
By doing so it is possible to repurpose Finite Element Method (FEM) codebases
to IGA. This approach was proposed for NURBS in [2] under the name Bézier
extraction and later extended to other spaces [37,15].

The main idea of this paper is to replace the elements with more general
subdomains and the Bernstein basis with an arbitrary local basis, possibly a
different one for each subdomain. This allows the implementations to be closer
to the mathematical definitions of the spline spaces, which are typically described
in terms of B-splines and not of Bernstein polynomials. A detailed comparison
with Bézier extraction is provided in Section 4.

2.1 Description

Let G = {γ1, . . . , γn} be the generating set of a spline space and assume that
there exists a partition T = {∆1, . . . ,∆s} of the domain Ω and a corresponding
set of local bases3 B = {B1, . . . , Bs} such that the restriction of each γ ∈ G to
any ∆i admits a representation in spanBi. More precisely,

∀γ ∈ G, ∀si=1, ∀x ∈ ∆i : γ(x) =
∑

β∈Bi
mβ,γβ(x) , (1)

3 (or, more generally, generating sets)
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M =


 Ms

...

M2

M1




γ ∈ G

β ∈ B2

Fig. 2: Structure of the representation matrix.

and thus
γ(x) = βi(x)Mi , (2)

where γ(x) and βi(x) are the row vectors

γ(x) =
(
γ1(x), . . . , γn(x)

)
=
(
γ(x)

)
γ∈G ,

βi(x) =
(
β(x)

)
β∈Bi

(3)

and Mi =
(
mβ,γ

)
β∈Bi, γ∈G is the matrix containing the coefficients from (1).

The matrices Mi can be collected as blocks of the matrix M with
∑s
i=1 #Bi

rows and #G columns as depicted in Fig. 2.
The generating set G is uniquely determined by T , B and M through (2).

This suggests an implementation in which T , B and M are provided by the
space-specific code and the evaluation of γ(x) is performed using (2). Note that
different choices of T , B and M can describe the same G and thus there is a
certain freedom to optimize for different scenarios (see Section 5).

For such implementation T requires a method findSubdomain that given a
point x ∈ Ω returns the index i of the corresponding subdomain ∆i 3 x. The
implementation of the local bases Bi should contain a method eval that returns
a matrix containing the values of the basis functions β ∈ Bi in a given set of
points X ⊂ Ω. For consistency the same interface should be implemented by the
resulting spline space.

Before describing a suggested implementation of the three components T ,
B and M it is worth describing the eval interface in more detail. For the ex-
pected applications it is necessary to compute both function values and function
derivatives at a set of points X ⊂ Ω. As shown in (2) the values (and also
the derivatives) can be transformed by a matrix multiplication. This suggest a
format that allows the transformation of all the data with a single operation.
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Let W = {v1, . . . ,vw} be the list of the multiindices corresponding to the
desired derivatives. For instance, in two dimensions, the value corresponds to
(0, 0), the first partial derivative with respect to the first direction to (1, 0) and
the second mixed derivative to (1, 1) and W = {(0, 0), (1, 0), (1, 1)} means that
all these three are computed. Then for a set of functions F = {ϕ1, . . . , ϕf} the
base format can be

EF (x,W ) =



∂v1ϕ1(x) · · · ∂v1ϕf (x)

...
. . .

...
∂vwϕ1(x) · · · ∂vwϕf (x)


 .

The values at multiple points can be stored by collecting similar blocks. In
particular, for X = {x1, . . . ,xr} let

Bi(X,W ) =



EBi(x1,W )

...
EBi(xr,W )


 and G(X,W ) =



EG(x1,W )

...
EG(xr,W )


 .

Assuming the above format, a general implementation of eval for G is given
by the following procedure.

Procedure: eval(X,W )
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Output: G(X,W )
foreach x ∈ X do

i = findSubdomain(x)
EBi(x,W ) = Bi.eval(x,W )
EG(x,W ) = EBi(x,W )Mi

/* EG(x,W ) is directly written into G(X,W ) */
end

For the common case when X is contained in one Bézier element of the space
it can be useful to provide the following optimized procedure that accepts the
containing subdomain as an input parameter.

Procedure: evalSubdomain(X,W,i)
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Input: the index i of the subdomains containing X
Output: G(X,W )
Bi(X,W ) = Bi.eval(X,W )
G(X,W ) = Bi(X,W )Mi

Now T , B and M will be described in more detail.
A suitable implementation of T is a binary decision tree (more precisely a

binary space partition, cf. [40,41]). For the spaces of interest it is possible to
assume that the subdomains ∆i are polytopes with axis-aligned faces. Each fork
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false
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true

true

x = (x1, x2)

Fig. 3: A partition of Ω in ∆1 and ∆2 and a decision tree describing it. The
darkened area next to each branch highlights the region corresponding to the
branch.

in the tree corresponds to a spatial split along an axis-aligned affine hyperspace,
i.e., to a comparison for a specific coordinate. Each branch corresponds to taking
one of the corresponding half-spaces. Each leaf of the tree corresponds to the
intersection of the taken half-spaces and Ω. Thus T can be represented by a tree
storing in each leaf the index of the subdomain containing the corresponding
box. Fig. 3 depicts a partition and a corresponding tree.

Binary space partitions not only provide an efficient implementation of the
method findSubdomain but also offer useful representations of piecewise con-
stant maps Ω → N. They enable efficient computation of binary operations (see
the references above for union and intersection) that can be employed both for
the geometrical computation required by the construction of the different spaces
and by refinement strategies.

For instance, given two trees that assign to each point a refinement level, it
is easy to compute the coarsest common refinement by the pointwise-max oper-
ation. Similarly, the finest common submesh can be computed with a pointwise-
min operation.

The collection of local bases B = {B1, . . . , Bs} is simply a list of polymorphic
objects implementing the eval interface. This allows for arbitrary local bases and
thus, for example, Bernstein polynomials as in Bézier extraction, B-splines as in
all the implementations presented here, or enriched spaces such as generalized
B-splines [3] with piecewise trigonometric or exponential functions.

Finally, M is a sparse matrix. However, the initialization of the matrix for a
particular spline space usually requires most of the space-specific code.

2.2 Subspaces and Functions

Consider a subspace spanG′ ⊂ spanG generated by G′ = {γ′1, . . . , γ′k}. If N =
(nγ,γ′)γ∈G,γ′∈G′ is a matrix that contains in the i-th column the expansion of γ′i
in γ1, . . . , γn, i.e.,

∀x ∈ Ω, γ′(x) = γ(x)N ,
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then G′ can be implemented by T,B,M′ with

M′ = MN .

As a consequence, eval is not only a suitable implementation of G, but
also of a single function ϕ ∈ spanG. Indeed, this corresponds to M′ having a
single column and N being the column vector of the coefficients of ϕ. Another
application of this method is enforcing homogeneous linear constraints on the
space, such as boundary condition or smoothness constraints.

2.3 Multipatch Domains

The proposed framework can be extended to allow for multipatch domains. Mul-
tipatch domains are used to describe geometries Ω with nontrivial topology and
for which no regular parametrization G : Ω̂ → Ω with a box Ω̂ ⊂ Rd ex-
ists. A simple example is the unit sphere in 3D for which there exists no regu-
lar parametrization defined on a rectangle. However, it is possible to partition
such a domain Ω into mutually disjoint (except at their boundaries) patches
Ω1, . . . , Ωw, each with its own regular parametrization Gp : Ω̂p ⊂ Rd → Ωp.
Then Ω can be thought of as the image of G : Ω̂ → Ω, where Ω̂ is the disjoint
union of Ω̂1, . . . , Ω̂w and the points with the same image have been identified,
i.e.,

Ω̂ =
∐w
p=1 Ω̂p /∼

for a proper ∼. The proposed method can be extended to describe functions
defined on Ω̂ by simply changing findSubdomain to take the different patches
into account. This can be achieved by an optional parameter p. In particular,
evalSubdomain does not need modifications as long as ∆i is contained in Ω̂j if
Bi is defined on Ω̂j .

The construction of Ck function spaces on multipatch domains is an active
research topic in IGA [28,7,10]. This corresponds, by the isoparametric approach,
to the construction of subspaces of patchwise Ck functions on Ω̂. The relations
that define the subspace depend on G and its derivatives and do not necessarily
correspond to smoothness conditions on Ω̂ after simple point identification.

The space of patchwise Ck functions can be described in the proposed frame-
work by a block-diagonal matrix M, where each block represents the space of
Ck functions on each patch. As described in the previous subsection, the rep-
resentation of a subspace is obtained by multiplying M by an appropriate N.
This strategy was used in [7], where, due to a different implementation of the
patch spaces, the multiplication by N is done at a post-processing stage and
thus incurs in an additional cost.

3 Complexity

Delegating the evaluation to a local basis and computing the linear combination
incurs in an additional computational cost. Moreover, storing the coefficients of
M can require a substantial amount of memory.
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3.1 Space Complexity

The tested implementation uses a row-compressed format: only the nonzero co-
efficients are stored in lexicographic order of their indices. The column position
of the nonzero entries is stored in a second vector. The row position is deduced
by storing a pointer to the first nonzero of each row. This means that the to-
tal required memory is proportional to the sum of the number of rows plus the
number of nonzero entries of M.

The number of rows of M equals
∑s
i=1 #Bi and thus there is a memory cost

associated to functions of the local bases even if they are not used in any ∆i to
represent G.

The number of nonzero coefficients in M depends on the complexity of the
mesh and on the shape of the generators. The number of nonzero coefficients in
the column corresponding to γ ∈ G is

∑

i:γ|∆i 6=0

#{β : mβ,γ 6= 0} . (4)

Thus it is minimized if γ is supported in a single ∆i and if γ = β for some
β ∈ Bi. In contrast, the generators γ whose supports intersect many subdomains
or whose shape requires many coefficients to be represented in a subdomain
require more memory.

3.2 Time Complexity

The time cost of the eval procedure is proportional to the cardinality of X and
depends on the cost of the local basis evaluation, which is unknown. Denoting
C(matrix) the cost of the computation of Bi(x,W )Mi, it can be written as

C(eval) = #X
(
C(Bi.eval) + C(matrix) + C(findSubdomain)

)
.

Remembering that w = #W is the number of rows in the blocks E�,W it is
possible to describe each term in more detail.

The complexity of Bi.eval depends on the specific local basis used and is
clearly bounded from below by the output size w#Bi. For d ≥ 2 tensor-product
B-splines can be implemented in such a way that the cost is quasi-optimal, i.e.,
proportional to the output size with a factor that does not depend on their
degree but which depends on the dimension:

C(Bi.eval) ∼= dw#Bi .

The cost of the matrix-matrix product Bi(x)Mi using standard algorithms
is proportional to the product of the three dimensions of the two matrices:

C(matrix) ∼= w#Bi#G .

The cost of findSubdomain depends on the tree structure and on the com-
plexity of the mesh. For a balanced tree this would be proportional to log2 `,
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where ` is the number of leaves in T . However, a balanced tree is not necessarily
optimal, as the tree should take the usage pattern into account. For instance, if
we assume a uniform sampling of the domain, then the optimal tree will have
leaves of depth inversely proportional to the measure of the corresponding region.
Already when avoiding unnecessary splits (without any balancing), the cost of
findSubdomain was negligible in the profiling tests.

The total evaluation cost is thus of the following magnitude

C(eval) ∼= #XC(matrix) ∼= w#X#Bi#G . (5)

The same result is obtained for evalSubdomain with the difference that w#X
then means the number of rows in Bi(X).

Comparing this with the output size w#X#G shows that the method is
rather expensive if #Bi is big. The next sections show how this cost can be
reduced.

3.3 Local Basis and Compression

If the functions in G and Bi have small supports, then the number of nonzero
columns inBi(X,W ) and inG(X,W ) is small compared to #Bi and #G, respec-
tively. This suggests the use of a compressed format for Bi(X,W ) and G(X,W ),
where only the nonzero values and their positions are stored. This is standard in
FEM as well as in other numerical methods and it is used in our implementation
too.

Assume that X ⊂ ∆i. Let L be the set of functions in Bi such that the
corresponding columns in Bi(X,W ) are not zero and let A be the corresponding
set of functions in G defined by

A = {γ ∈ G : ∃β ∈ L : mβ,γ 6= 0} .

A function ϕ is called active on X if ϕ ∈ L or ϕ ∈ A.
Let L(X,W ) and A(X,W ) be the corresponding submatrices of Bi(X,W )

and G(X,W ),

L(X,W ) =



EL(x1,W )

...
EL(xr,W )


 , A(X,W ) =



EA(x1,W )

...
EA(xr,W )


 .

ThenBi(X,W ) can be implemented with the pair (L,L(X,W )) where the set
L is implemented as a list of indices. This reduces the lower bound on C(Bi.eval)
to

C(Bi.eval) ∼= w#X#L .

Similarly, G(X,W ) can be implemented by the pair (A,A(X,W )). The co-
efficients in A are computed by

A(X,W ) = L(X,W )ML,A ,
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where ML,A is the submatrix of M containing the mβ,γ , β ∈ L and γ ∈ A. This
reduces the cost of the linear combination to

C(matrix) ∼= w#X#L#A ,

improving (5) by the factor
#L#A

#Bi#G
. (6)

The described compression can be applied both to eval and evalSubdomain.
In eval it is applied to the evaluation at single points. Then either the list
containing the (per point) compressed matrices is returned or all of the matrices
are merged into one matrix. The first approach is faster and simpler, the second
returns a standard matrix.

The application of compression to evalSubdomain is straightforward but it
is important to limit X to points contained in a small region so that (6) is
minimized.

When using compression, the cost of evaluation is proportional to the output
size w#X#A multiplied by #L. For polynomial splines and with X contained in
a single element, #L depends only on the polynomial degree. As a consequence
the cost of the evaluation per unit of output data does not depend on the mesh
(h-refinement) but depends on the degree (p-refinement).

3.4 Tensor Factorization

The tensor-product structure allows to reduce d-variate computations to com-
putations on univariate objects. In our case it allows to replace the computation
of the linear combination of d-variate functions with d linear combinations of
univariate functions. This is advantageous because the cost of the matrix-matrix
product is roughly proportional to the product of the three involved dimensions.
In the optimal case this optimization reduces one of the dimensions to its d-th
root.

The above strategy can be applied under the weaker assumption that each
γ ∈ G and each β ∈ Bi can be factored into products of univariate functions:

γ(x) =
d∏

c=1

γ(c)(xc), β(x) =
d∏

c=1

β(c)(xc) , (7)

where �(c) means the factor of � corresponding to the c-th coordinate. Of the
implemented spaces only HB and HLR satisfy (7), thus this optimization was
not implemented and the following is only a theoretical analysis.

In analogy with (7), the same notation is used to denote the factors corre-
sponding to the coordinate directions of tensors � =

⊗d
c=1 �(c) and of Cartesian

grids of points � =×d

c=1
�(c). This should not be confused with the components
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of vectors and tensors that are denoted by subscripts as in x = (x1, x2). In par-
ticular, the following factors are defined:

B
(c)
i = {β(c) : β ∈ Bi} ;

G(c) = {γ(c) : γ ∈ G} ;

X(c) = {xc : x = (x1, . . . , xd) ∈ X} ;

W (c) = {vc : v = (v1, . . . , vd) ∈W} .

In the following w(c) denotes #W (c), i.e., the number of derivatives of γ(c) that
are required to compute all requested partial derivatives in W .

Necessarily G(c) ⊆ spanB
(c)
i , which means that there exists a matrix M

(c)
i

such that

∀x ∈ ∆i : γ(c)(xc) = β
(c)
i (xc)M

(c)
i .

Here, analogously to (3), γ(c)(xc) and β(c)
i (xc) denote the vectors having com-

ponents indexed by G(c) and B(c)
i , respectively, i.e.,

γ(c)(xc) =
(
γ(c)(xc)

)
γ(c)∈G(c) ,

β
(c)
i (xc) =

(
β(c)(xc)

)
β(c)∈B(c)

i

.

Let S be the set of the multiindices that define G as a subset of
⊗d

c=1G
(c):

G =

{
d∏

c=1

γ(c)sc : (s1, . . . , sd) ∈ S, γ(c)sc ∈ G(c)

}
⊆

d⊗

c=1

G(c) .

For simplicity it is assumed that Bi =
⊗d

c=1B
(c)
i and X =×d

c=1
X(c), but a

proper subset (similarly as for G) can be considered at the expense of a more
involved notation and implementation.

The tensor-product structure propagates to the set of active functions. Here
L contains the multiindices of the functions of Bi corresponding to nonzero
columns of Bi. Similarly, A contains the subset of the multiindices in S, i.e.,
the multiindices of functions in G that correspond to nonzero columns in G.
Analogously to the other symbols, L(c) and A(c) denote the collection of the
entries relative to the c-th coordinate in L and A respectively.
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The procedure compose assembles the matrix � out of the matrices of its
factors �(c) and a list of the necessary products P as in the description of S
above.

Procedure: compose(�(1), . . . ,�(d), X,W,P)
Input: the tensor components �(c)

Input: the list of points X
Input: the list of derivatives W
Input: the list of required products P
Output: �
foreach p = (p1, . . . , pd) ∈ P do

foreach x = (x1, . . . , xd) ∈ X do
/* write row block of the derivatives of �p at x */
foreach v = (v1, . . . , vd) ∈W do

∂v�p(x) =
∏d
c=1 ∂

vc�(c)
pc (xc)

/* each value is written in �: the row
corresponds to the pair (x,v), the column to p
*/

end
end

end

If P is omitted, it is assumed that � =
⊗d

c=1 �(c) and thus that P contains
all the Cartesian multiindices.

For a given domain dimension d the cost of the procedure compose is pro-
portional to the size of its output with factor d,

C(compose) = dw#P#X .

Only an application of this optimization to evalSubdomain is presented, but
it can also be applied to eval. By using compose, the evaluation of the local basis
can be split in two steps: evaluation of the components of the local basis and
their composition. The original evalSubdomain can be equivalently rewritten as:

Procedure: evalSubdomain(X,W,i)
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Input: the index i of the subdomains containing X
Output: G(X,W )
for c = 1, . . . , d do

B(c) = B
(c)
i .eval(X(c),W (c)) /* local evaluation */

end
Bi(X) = compose(B(1), . . . ,B(d), X,W ) /* composition */
G(X,W ) = Bi(X,W )Mi /* linear combination */
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Table 1: Comparison of the cost for the standard and optimized evaluation for
spaces with tensor-product structure.

standard optimized

linear combination w#X#A#L

d∑

c=1

w(c)#X(c)#A(c)#L(c)

composition dw#X#L dw#X#A

As described, the computational cost of the above is determined by the compu-
tation of the matrix-matrix product. This can be reduced by leaving compose as
the last operation and computing d products of smaller matrices as follows:

Procedure: evalSubdomain(X,W,i)
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Input: the index i of the subdomains containing X
Output: G(X,W )
for c = 1, . . . , d do

B(c) = B
(c)
i .eval(X(c),W (c)) /* local evaluation */

G(c) = B(c)M
(c)
i /* linear combination */

end
A = S ∩×d

c=1
A(c) /* actives */

G(X,W ) = compose(G(1), . . . ,G(d), X,W,A) /* composition */

The cost estimates of each step for the two different versions are reported in
Table 1.

If there exists m such that for c = 1, . . . , d

#L(c)#A(c) ≤ m#A , (8)

then the evaluation cost of the optimized version is proportional to the output
size w#X#A. This result holds independently of the mesh size (h-refinement)
and the polynomial degree (p-refinement). Note however that the output size
depends on the number of active functions #A and on the size of the requested
data, thus on the polynomial degree, on the set of points X and on w.

The assumption in (8) holds in situations that are of interest for the applica-
tions. In particular, it holds for splines of degree p and for points X contained in
a single element if #A(c) ≤ m(p+ 1)d−1 for some m independent of the degree.
This is the case for m-admissible HB meshes [9], where #A(c) ≤ m(p+ 1), and
for the HLR basis described in [5], for which #A(c) ≤ 2(p+ 1).
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4 Comparison with Bézier extraction

Bézier extraction was proposed for NURBS [2] and extended to T-splines [37]
and THB [22]. It is an implementation technique aimed at reusing standard FEM
codebases in IGA by representing the basis functions as linear combinations of
Bernstein polynomials on each element. The extraction operator, i.e., the linear
transformation of the basis, is stored in a combination of a per element matrix
and a global index of the per element active functions called IEN.

The proposed framework reduces to Bézier extraction when the following
choices are made:

T is the partition of the domain into elements;
Bi is the Bernstein basis remapped to the element ∆i;
Mi contains the expansion of γj in the Bernstein basis in column j.

Thus all the spaces that can be implemented with Bézier extraction – such as
T-splines or LR-splines – can be also incorporated to the proposed framework.

Even if the underlying concepts are the same, the implementation differs as
the two approaches are optimized for different scenarios. The main differences
are collected in Table 2 and their consequences are described below.

Table 2: Qualitative comparison of the two frameworks.
Bézier extraction proposed framework

mesh description list tree
expansion in local basis per element global matrix
local basis Bernstein polynomials any

4.1 Mesh Description

Bézier extraction is based on per element data structures. This reflects the origi-
nal aim: IGA with per element quadrature integration. For such application it is
both simple and efficient. The drawback is that it does not provide a feature-rich
description of regions that can be used in the implementation of different spaces.
Every space must implement its own strategy both for identifying the element
containing a point and for the description of the mesh used in its construction.

The tree-based description of the subdomains in the proposed framework
provides an efficient tool to describe “arbitrary” regions contained in the domain,
to compute intersections, unions and for testing whether a region contains a
point (see findSubdomain in Section 2). This common code is shared by all the
implemented spaces, thus decreasing the per-space code requirements.

Iteration on the elements in this framework is done by nested iteration: the
outer iteration is on the tree leaves and the inner on the elements provided by
the local basis and contained in the region corresponding to the current leaf.
The nested loop is a part of the shared code.



A Versatile Strategy for the Implementation of Adaptive Splines 15

4.2 Expansion in Local Basis

Both approaches store the expansion of the generators with respect to a local
basis. In Bézier extraction the linear operator is represented by submatrices
(the extraction operators) together with their indices (the IEN), whereas in the
proposed framework it is represented by a sparse matrix.

From this point of view Bézier extraction can be seen as a specialized matrix
format. However, avoiding the specialized format makes the implementation of
subspaces and multipatch straightforward, for they correspond to matrix multi-
plication as has been described in Subsections 2.2 and 2.3 and the code is already
provided and optimized by the linear algebra library. It is true that products in-
volving submatrices of a sparse matrix are less efficient then products involving
full matrices, but by allowing different generators the total memory requirement
can be lowered as it is discussed in the next subsection.

4.3 Local Basis

While Bézier extraction was only described for spaces of piecewise tensor-product
polynomials with Bernstein polynomials as local generators, there is no practical
issue to extend it to other local bases such as enriched splines spaces as those
from [3]. This means that both techniques are roughly equally applicable. Never-
theless, there are two advantages of the proposed framework compared to Bézier
extraction.

The first is that most of the spaces of interest are defined in terms of collec-
tions of B-splines functions and not Bernstein polynomials. Thus the proposed
code stays closer to the definition of the space and it is easier to write.

The second is that by using B-splines as local generators the coefficients are
shared between many elements and thus the memory requirement is decreased.
Applying (4) shows that the amount of coefficients stored per a generator γ ∈ G
in Bézier extraction equals

eγ dimT ,

where eγ is the number of elements contained in support γ and T is the space
of tensor-product polynomials. This is an upper bound for the amount of coef-
ficients stored using B-splines as local generators. Increasing the number of co-
efficients does not only increase the memory requirements, but it also increases
the cost of space initialization.

In favor of Bézier extraction stands the fact that in IGA applications it is
not necessary to evaluate the Bernstein polynomials on the quadrature nodes: it
is enough to scale the derivatives computed on a reference element according to
the current element.

Summarizing, the proposed framework permits testing of various definitions
with a reduced development time. Bézier extraction optimizes the matrix assem-
bling in IGA applications for a specific space.
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5 Implemented spaces

The proposed strategy was tested by implementing HB, THB, TBPN, DHB and
HLR splines spaces in the G+Smo object oriented library [26]. The spaces were
coded as templated C++03 classes. They all derive from a common base class
that is the realization of the described approach.

The interested reader can compare with other implementations that are either
available or described in the literature. (T)HB are implemented in the G+Smo
open-source library [19]. The code, as of 2014, is described in [29]. Another
implementation of (T)HB tailored for IGA research is described in [42]. The
source code of bivariate LR-splines is available as a part of the goTools library
[20], but no technical description is available.

The first subsection describes the shared code. The following subsections
specialize to various spaces. The last subsection reports the size of the imple-
mentation measured in lines of code.

5.1 Shared code

The shared code contains the implementation of the ideas described in Section 2
as well as common utilities such as input-output, tensor-product B-splines and
debugging functions.

Part of the required code was already present in the G+Smo library, in
particular, vectors, matrices, sparse matrices (all of them based on the Eigen
library [21]) and tensor-product B-splines. Some parts were coded anew such
as a specialized version of Boehm’s knot-insertion algorithm, the binary tree,
functions for transforming between flat-indices and multiindices of multivariate
B-splines and others to export data in the ParaView format [1].

The implementation of T uses the binary tree as described in Section 2 and
includes an interface for performing arbitrary unary and binary operations, pos-
sibly by restricting the operation to a box contained in the domain. This mech-
anism is used in the construction of the spaces: for instance, the Kraft selec-
tion mechanism of (T)HB corresponds to finding the minimum of the indices
of the subdomains intersecting the support of a function, the decoupling pro-
cedure requires methods to compute intersections and unions of polytopes with
axis-aligned faces. The implementation of T automatically removes unnecessary
branches at construction by collapsing equal subtrees.

A component of G+Smo that was developed for smooth multipatch spaces
[7] was reused for M. At its core it is a sparse matrix with additional methods for
computing A from L and extracting ML,A, see Subsection 3.3. It also contains
conversion functions to and from other data types related to the implementation
of multipatch geometries and boundary conditions in G+Smo.

The base class of all the implemented spaces contains the reference to T , M
and B, the evaluation procedure, constructors allowing for multipatch domains
and utilities to obtain functions and subspaces as described in Subsection 2.2.
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5.2 (Truncated) Hierarchical B-Splines

The hierarchical basis is defined from a sequence P1, . . . , Ps of tensor-product
B-spline bases and a corresponding sequence Ω = Ω1 ⊇ · · · ⊇ Ωs = ∅ of closed
domains. For simplicity it is assumed here that Ω is a box in Rd and that the
bases have clamped knots on its boundary. It is required that the tensor-product
spaces form a hierarchy, i.e.:

i < j ⇒ spanPi ⊂ spanPj . (9)

The hierarchical basis (HB-splines) is defined by Kraft’s selection criteria [30]:

H =
s⋃

i=1

{ψ ∈ Pi : supportψ ⊆ Ωi and supportψ ∩ (Ωi \Ωi+1) 6= ∅} . (10)

The truncated hierarchical basis (THB-splines) described in [17] is defined by
recursive truncation

H ′ = {Ts · · ·Ti+1ψ : ψ ∈ H ∩ Pi} .
The truncation operator Ti : spanPi → spanPi is defined by

Ti(ϕ) =
∑

ψ∈Pi : ψ|Ω\Ωi 6=0

cϕ,ψψ ,

where the coefficients cϕ,ψ are taken from the expansion of ϕ in Pi:

ϕ =
∑

ψ∈Pi
cϕ,ψψ .

The matrix representation of Ti with respect to the basis Pi is thus diagonal
with entries

tψ,ψ =

{
1 if ψ|Ω\Ωi 6= 0 ,

0 otherwise .

The truncation procedure improves the locality of the resulting basis, guaran-
tees that H ′ forms a convex partition of unity and preserves the same coefficients
as Pi for polynomial expansion [18]. The drawback is that it breaks the tensor-
product structure, i.e., the functions ψ′ ∈ H ′ are not tensor-product B-splines.
Thus the optimization described in Section 3.4 cannot be applied for H ′.

Note that the composition of the truncation operators differs from the trun-
cation by the finest level: in general if ψ ∈ Pi then for any k ≥ i

Tk · · ·Ti+1ψ|Ωk 6= Tkψ|Ωk . (11)

The equality in (11) holds if the mesh is sufficiently graded.
Two implementations are described. Both assume that the bases P1, . . . , Ps

have the same degree (i.e., only h-refinement is allowed) and that the subdomains
Ωi are unions of elements of spanPi. The first implementation is closer to the
definition and has actually been coded. The second is described in order to show
that memory requirements can be lowered with more complex code.
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Implementation 1 The simplest implementation defines T by:

∆i = Ωi \Ωi+1, i = 1, . . . , s ,

and B by Bi = Pi, i = 1, . . . , s.
Most of the construction of M is common for HB and THB. In the coded

implementation truncation is controlled by a construction option in order to de-
crease code duplication. The procedure constructTHB describes the constructor.

Procedure: constructTHB(Ω1, . . . , Ωs,P1, . . . , Ps, t )
Input: Subdomains Ω1, . . . , Ωs
Input: Bases P1, . . . , Ps
Input: Option t: switch between HB and THB
for ` = s to 1 do

L` = {ψ ∈ P` : ψ|Ω` 6= 0}
foreach τ ∈ L` do

`m = minLevelIntersecting(support τ)
if `m == ` then /* τ ∈ H due to (10) */

γ = addGenerator()
mτ,γ = 1 /* New column of M with exactly one 1. */
d = (dψ)ψ∈P` = (0, . . . , 0, dτ = 1, 0, . . . , 0)
for j = `+ 1 to `m do

d = refine(d, j) /* Now d = (dψ)ψ∈Pj. */
if t then /* THB */

foreach ψ ∈ Pj do
if ψ ∈ Lj \H then /* Save the coeff. */

mψ,τ = dψ
else /* Truncate the coeff. */

dψ = 0
end

end
/* Now

∑
ψ∈Pj dψψ|Ωj = Tj . . .Tiτ |Ωj = γ|Ωj. */

else /* HB */
foreach ψ ∈ Lj do /* Save the coeff. */

mψ,γ = dψ
end

end
end

end
end

end

The lists L` are constructed by traversing the leaves of T and using the imple-
mentation of tensor-product B-splines. The procedure minLevelIntersecting(box)
returns the minimum of {i : ∆i∩box 6= ∅} and it is provided by the shared code.
The procedure refine(d, j) uses Boehm’s algorithm to compute the expansion
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of the following function σ in terms of level j,
∑

ψ∈Pj−1

dψψ = σ =
∑

ϕ∈Pj
cϕ,σϕ ,

and returns (cϕ,σ)ϕ∈Pj .
The levels are iterated from the finest to the coarsest. In this way the differ-

ence Lj \H can be computed because H ∩ Pj is already known. Consequently
the full construction of the space can be performed in one loop over the levels.
A different solution (used for instance in G+Smo) is to delay the computation
of the expansion after determining the selected functions from all levels.

The fact that only the coefficients mψ,τ with ψ ∈ Lj are saved is a memory
optimization, the same code runs with Pj in place of Lj except for the test for
ψ ∈ Lj \H that would be modified accordingly.

This strategy was tested against the reference implementation in G+Smo.
The comparison showed both faster evaluation and smaller memory consumption
for selected 2D examples.

Implementation 2 The choices above are the simplest, but they can cause a
very high memory consumption. According to Subsection 3.1 the memory usage
depends on the total number of rows in M. For dyadic refinement of the Pi the
number of rows grows as 2d(s+1), where d is the domain dimension and s is the
number of levels. Since each row requires a memory pointer, this means that an
empty M for a 3D example with 10 levels exceeds 10 gigabytes in size.

The problem can be solved with slightly more complex code. The main idea
is to remove the rows of M containing only zeros, that is, to define Bi and ∆i

so that ψ|∆i = 0 does not happen for any β ∈ Bi.
Denoting T̃i the set of leaves of the binary partition tree representing the

domains ∆̃i = Ωi \Ωi+1, define

T =

s⋃

i=1

T̃i .

For each ∆k ∈ T there is exactly one j such that ∆k ∈ T̃j ; define
Bk = {β ∈ Pj : β|∆k 6= 0} .

Since ∆k is a box (a Cartesian product of intervals), Bk is a tensor-product
basis. Note that typically #T > s but all Bk are quite small.

The construction of M is done as in the previous implementation except for
the necessary shifts of indices. This solution is not coded for (T)HB, but the
required machinery was implemented for DHB.

5.3 Truncated B-Splines for Partially Nested Refinement

This is a generalization of (T)HB-splines that was proposed in [43]. It allows
for independent refinement in different parts of the domain (see Fig. 4) and can
help for multipatch geometries as shown in Example 3.
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Λi Λj Λi Λj

Fig. 4: Left: TBPN-splines allow to refine the subdomains Λa and Λb indepen-
dently. Right: THB-splines require nested knot vectors for any pair of subdo-
mains.

The requirement (9) is dropped and the sequence of nested domains is re-
placed by a partition of Ω into patches Λ1, . . . , Λs. Note that here the word
“patch" has a different meaning from the context of multipatch domains, cf.
Subsection 2.3. The construction requires the following compatibility condition:
if Λi and Λj share a (d− 1)-dimensional interface Γi,j = ∂Λi ∩ ∂Λj , then

spanPi ⊂ spanPj or spanPj ⊃ spanPi .

This means that {spanPi : i = 1, . . . , s} is not totally ordered anymore, only
partially ordered. In particular, if the boundaries are disjoint or their intersection
is not (d−1)-dimensional, the spaces spanPi and spanPj do not have to be com-
parable for inclusion. Note that the construction requires “sufficient separation”
of the patches associated to two incomparable spaces. See [43] for details.

Basis functions are again a subset of
⋃s
i=1 Pi and are selected using a modifi-

cation of Kraft’s procedure based on slave functions. A function ψ ∈ Pi is called a
slave if it is active on an (n−1)-dimensional interface Γi,j with spanPj ⊂ spanPi.
The set of slaves of level i can be written as

Si = {ψ ∈ Pi : ∃j : ψ|Γi,j 6= 0, spanPj ⊂ spanPi, dimΓi,j = d− 1} .

The above can be explained as follow. Slave functions are the generators in Pi
whose coefficient is uniquely determined by the restriction of the function and
its derivatives (up to the smoothness) on the interfaces Γi,j with spanPj ⊂
spanPi. This means that their coefficients are determined by the coefficients of
the functions of coarser bases together by the smoothness on the interfaces.

The selected functions are defined by

M =

s⋃

i=1

Mi ,

where Mi contains the master functions of level i, i.e., the functions of Pi that
are active on Λi and that are not slaves:

Mi = {ψ ∈ Pi : ψ|Λi 6= 0, ψ 6∈ Si} . (12)
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Truncation is defined in the same way as in the case of THB-splines. The re-
sulting basis is called truncated B-splines for partially nested refinement (TBPN).
The set M forms a non-negative partition of unity, it is a basis and, similarly
to THB, it preserves the coefficients of polynomial representation. Moreover, if
(9) holds, then TBPN reduces to THB with the same bases and appropriate
subdomains. See [43] for details.

Implementation Only the truncated version of the construction was imple-
mented. The partition T can be defined as

∆i = Λi, i = 1, . . . , s

and B by
Bi = Pi, i = 1, . . . , s .

The matrix M is built iteratively while discovering the functions selected by
the modified Kraft procedure. First the bases P1, . . . , Ps are analyzed and the
nesting relations are stored in a matrix Z. Then, as for (T)HB, the lists Li of
the functions in Pi that are active on ∆i are computed.

For each function ψ ∈ Li, i = s, . . . , 1, the modified Kraft conditions (12) are
tested. The test requires the computation of the intersections Γi,j ∩ supportψ
that is achieved by computing supportψ∩Λi and then decomposing its boundary
into segments. If dim(Γi,j ∩ supportψ) = d − 1 for some j with spanPj ⊂
spanPi then ψ is a slave and it is saved in the list Si. Otherwise the conditions
(12) are satisfied and a new column is added to M. The coefficients mβ,γ are
computed using a recursive algorithm. For all j such that spanPi ⊂ spanPj and
dim(Γi,j ∩ supportψ) = d− 1 the expansion of ψ with respect of Pj is computed
by knot insertion. Then for each functions in Sj with a nonzero coefficient the
procedure is repeated, giving the coefficients of slaves of finer levels. It is possible
that the same β ∈ Bk appears during different recursions while computing the
representation of the same generator γ. In this case the sum of the coefficients
computed from functions of the same coarsest level must be saved in M.

The implementation described has the same problem as the first implemen-
tation of (T)HB: unreasonable memory consumption for the 3D case. This can
be solved by using the same strategy described for (T)HB.

5.4 Decoupled Hierarchical B-Splines

Contrarily to tensor-product B-splines, (T)HB do not always span the full space
of piecewise polynomials on their mesh [33]. This observation was the starting
point of the development of TDHB [32]. There decoupling is used in conjunc-
tion with truncation in order to enlarge the space and span the full piecewise
polynomial space for a broader class of meshes. A modification of TDHB called
decoupled hierarchical B-splines was coded and it is presented here for the first
time. The novelty is that truncation is abandoned in favor of recursive decou-
pling. By doing so the spanned space can be further enlarged as showed in
Example 1.
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First, decoupling will be introduced in a slightly more general version com-
pared to [32]. Let ϕ ∈ spanP be a function, let cϕ,ψ be the coefficients of its
expansion with respect to P ,

ϕ =
∑

ψ∈P
cϕ,ψψ ,

and let Θ ⊆ Ω be a domain. The decoupling graph R(ϕ, P,Θ) is the graph whose
vertices are

RV (ϕ, P,Θ) = {ψ ∈ P : cϕ,ψ 6= 0} (13)
and the edges are

RE(ϕ, P,Θ) = {(ψ,ψ′) : supportψ ∩ supportψ′ ∩Θ 6= ∅} . (14)

The decoupling operator DP,Θ associates to function ϕ ∈ spanP one or more
decoupled functions in spanP :

DP,Θ : ϕ 7→




∑

ψ∈K
cϕ,ψψ : K is a connected component of R(ϕ, P,Θ)



 .

Let P1 ⊂ · · · ⊂ Ps and Ω1 ⊇ · · · ⊇ Ωs ⊃ Ωs+1 = ∅ be as in (T)HB. Denote
Ds = Ps and

Di =
⋃

ψ∈Pi
DDi+1,Ω\Ωi+1

(ψ) . (15)

Then using Kraft’s method the decoupled hierarchical basis (DHB-splines) D is
defined as

D =
s⋃

i=1

{ϕ ∈ Di : supportϕ ⊆ Ωi and supportϕ ∩ (Ωi \Ωi+i) 6= ∅} .

Given P1, . . . , Ps and Ω1, . . . , Ωs, all of the HB, THB, TDHB and DHB bases
are defined. Denoting Z the TDHB basis from [32], the following inclusions hold

spanH = spanH ′ ⊆ spanZ ⊆ spanD .

Recall that H, H ′ and D are the HB, THB and DHB bases, respectively, cf.
Subsection 5.2. See also Example 1.

Implementation For DHB it is not possible to identify the local bases Bi with
the defining bases Pi. This is because a function ψ ∈ Pi can be decoupled in
multiple functions that must be distinguished.

The definitions of T and B are the same as in Implementation 2 in Subsec-
tion 5.2. The construction of M follows the definition of the space. First, each
Di is constructed: for each function in Di its expansion with respect of Di+1 and
its originating function in Pi are stored. Then the Kraft selection mechanism is
employed and for each selected function a column is inserted in M. Computing
the coefficient mβ,γ for γ ∈ Di and β ∈ Pj (j > i) is performed by first com-
posing the precomputed change of bases from Di to Dj and then storing the
obtained coefficients according to the subdomain and the originating function.
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5.5 Hierarchical Locally Refined Splines

HLR-splines are a special case of LR-splines. Let K denote a partition of Ω into
boxes and let µ denote a function that assigns each interface between two boxes
a nonnegative integer. To the triplet (K,µ, p) corresponds the spline space S of
the piecewise polynomials of degree p in each variable on K and such that their
smoothness across each interface Γ between two boxes is greater than or equal
to p− µ(Γ ).

A B-spline β is nested in a B-spline β′ relatively to S, written as β ≺ β′, if
there exists a sequence of B-splines β = β1, . . . , βn = β′ such that each βi ∈ S
and such that each βi+1 is obtained from βi by knot insertion.

LR-splines are the set of minimal elements for the ordering ≺ that are com-
parable with at least one Bernstein polynomial on Ω. They can be linearly
dependent and do not necessarily span the entire space of piecewise polyno-
mials satisfying the smoothness conditions [14,5]. However, many properties of
the generators are linked together, in particular local linear independence and
partition of unity property are equivalent [4].

HLR-splines are a class of LR-splines enjoying local linear independence and
thus also the partition of unity property. This is achieved by mimicking the HB
approach in constructing K. Take a sequence of tensor-product B-spline spaces
V1 ⊂ . . . ⊂ Vs with Vi = spanPi and a corresponding sequence of subdomains
Ω1 ⊇ . . . ⊇ Ωs ⊃ Ωs+1 = ∅. Then define

K =

s⋃

i=1

{Θ element of the partition corr. to Vi : Θ ⊆ Ωi \Ωi+1} (16)

and µ that describes the smoothness of the space Vi on Ωi\Ωi+1. Then assuming
that each Vi is obtained from Vi−1 by refining a single tensor-component of Vi−1
(i.e., h-refinement in a single direction denoted by ui) and that the borders of
the subdomains Ωi are sufficiently separated, the generators form a partition of
unity and they are locally linearly independent [5].

Implementation A simple choice is to define T by:

∆i = Ωi \Ωi+1, i = 1, . . . , s

and B by
Bi = Pi, i = 1, . . . , s .

The generators in HLR-splines are either function from Pi for some i or
are obtained from a function of Pi by inserting a sequence of knots in ui-th
component of its knot vector. Both types of functions must be active on Ωi. To
find these functions, Pi is projected to a (d− 1)-variate spaces P̄i by ignoring its
ui-th tensor factor. For each function ψ̄ ∈ P̄i the description of the subdomains
T is restricted to support ψ̄×R∩Ω, where R is in direction ui. This information
is used to build a sequence of knot-vectors for the ui-th direction that describes
all the functions in Pi or refinement of functions of Pi that are in LR and have
the same knot vector as ψ̄ in the directions different from ui. For each such
function a column is added to M and filled with the appropriate coefficients.
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5.6 Implementation Size

This subsection reports the amount of code that implements the spaces described
above. While this is a debatable metric, it is the standard approximation of the
coding effort and it highlights the amount of code shared between the different
spaces. The data reported is the result of the cloc tool [12] run on appropriate
subsets of the files.

The code is in C++03 standard and contains verbose template parts that
can be avoided. Only the (T)HB space is a complete implementation with ini-
tialization, refinement (with possible coefficient update) and serialization to the
G+Smo xml format. For the other spaces only the initialization is provided.

The line count for the different components can be read in Tables 3 and 4.
As shown, most of the code implements the shared functionality and the space-
specific code amounts to roughly 500 lines per space. The numbers compare
favourably with the size of the reference implementation of HB and THB in
G+Smo that together amount to roughly 6000 lines of code.

Table 3: Lines of the shared code
files blank comment code

utils 5 198 96 1008
domain code (T ) 11 352 302 1998
matrix code (M) 4 133 248 483
base-class (eval) 2 105 59 443
Total 22 788 705 3932

Table 4: Lines of code of specific spaces.
files blank comment code

(T)HB 1 88 73 421
TBPN 1 80 22 396
DHB 1 92 31 548
HLR 1 127 33 550
Total 4 387 159 1915

6 Examples

This section contains selected examples that can be useful to grasp the simi-
larities and the differences between the implemented spline spaces. The basis
functions have been plotted with ParaView [1] using the data produced with
the implementations described in the previous section. The only exception is
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Example 1 that has been created in Mathematica, because it involves TDHB
[32], which we did not implement.

Example 1. Compare the cubic univariate HB, THB, TDHB and DHB with
dyadic refinement, the level 0 knot vector (. . . ,−1, 0, 1, . . . ) and Ω0 = [0, 4],
Ω1 = [1, 3] and Ω2 = [2, 3]. Figure 5 shows all the basis functions of each spline
space and highlights the level of the B-spline from which they where derived by
truncation or decoupling. Table 5 lists the number of generators according to
the level of the original B-spline. Note that DHB is the only space that spans
the entire space of C2 piecewise cubic polynomials on the mesh.
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0.25

0.5

(a) HB-splines
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(b) THB-splines
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(c) TDHB-splines
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(d) DHB-splines

Fig. 5: Comparison of various hierarchical bases. Generators originating from
functions of level 0 in blue, from level 1 in orange and from level 2 in green.

Example 2. Consider bivariate hierarchical splines of bi-degree (4, 4) on a mesh
shown in Fig. 6. The function with the knot lines indicated in red is selected in
the hierarchical basis (Fig. 7 left), truncated in the truncated hierarchical basis
(Fig. 7 right) and decoupled into four different functions (that are selected) in
the decoupled hierarchical basis (Fig. 8).

Note that due to properties of DHB the sum of the four functions in Fig. 8
equals the truncated function in Fig. 7 right.
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Table 5: Number of generators by the level of the originating function for Ex-
ample 1.

HB THB TDHB DHB
level 0 7 7 8 8
level 1 1 1 1 2
level 2 1 1 1 1
total 9 9 10 11

Fig. 6: Hierarchical mesh and a support of a function from Example 2.

Example 3. The design process often involves several patches. To achieve con-
tinuity between the patches without losing accuracy, it is necessary that the
restrictions of the two spaces are compatible on the interface. That means that
one space has to be a subspace of the other.

Sometimes a new patch must be introduced to bridge between two given
patches that should not be modified. Thus the restriction of the space of the
bridge patch to each boundary must be a superspace of the restrictions of the
other space. If the two given patches have different knot vectors, THB-splines
would lead to significant refinement. On the other hand, the TBPN space can
achieve interface compatibility without adding unnecessary degrees of freedom.

The bicubic THB basis on the mesh depicted in Fig. 9 has 72 degrees of
freedom, whereas the TBPN basis on the same mesh has only 60.

Example 4. Cubic HB, THB, DHB and HLR are compared on a mesh shown in
Fig. 10. For each of these spaces all the basis functions are plotted in Fig. 11.
Note that the number of basis function in the middle of the patch is higher for
HLR and DHB. In particular, HB and THB basis have 49 elements each; HLR
and DHB have 53 and are complete, as the meshes fulfill the assumptions from
[5] and [32].
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Fig. 7: Function with the support in Fig. 6 as selected into the hierarchical basis
(left) and truncated in the truncated basis (right).

7 Conclusions

The effectiveness of the proposed implementation framework is demonstrated
by the implementation of various spline spaces that share the same evaluation
code. The space-specific code is reduced to the initialization of the required data
structures as demonstrated by the implementations of HB, THB, TBPN, DHB
and HLR. Moreover, the proposed approach grants the following advantages:

1. code reduction both by sharing evaluation between different spaces and be-
tween spaces and functions;

2. arbitrary local bases that, in principle, open the way to experimentation
with hierarchical constructions based on generalized splines [3], or to the use
of ad-hoc functions near a priori known singularities;

3. transparent handling of multipatch domains.
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