
Low rank interpolation of

boundary spline curves

Bert Jüttler and Dominik Mokrǐs

G+S Report No. 53

March 2017



Low rank interpolation of boundary spline curvesI

Bert Jüttlera,b, Dominik Mokrǐsa,∗

aInstitute of Applied Geometry, Johannes Kepler University, Linz, Austria
bRadon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences

Abstract

The coefficients of a tensor-product spline surface in Rd with m×n control points
form a tensor of order 3 and dimension (m,n, d). Motivated by applications in
isogeometric analysis we analyze the rank of this tensor. In particular, we propose
a new construction for low rank tensor-product spline surfaces from given boundary
curves. While the results of this construction are generally not affinely invariant,
we propose a simple standardization procedure that guarantees affine invariance
for d = 2. In addition we provide a detailed comparison with existing constructions
of spline surfaces from boundary data.

Keywords: spline surface interpolation, domain parametrization, low rank
approximation, Coons interpolation, biharmonic interpolation
2010 MSC: 65D17 68U07

1. Introduction and overview

The construction of (tensor-product) spline surfaces from four given boundary
curves is one of the classical problems in Computer Aided Geometric Design. Coons
interpolation is a well-established construction of such surfaces (Coons, 1964; Farin,
2001). A linear interpolant is created separately in each of the two parametric
directions and a bilinear interpolant of the patch corners is subtracted from their
sum. The method is robust and simple.

Farin and Hansford (1999) introduced the discrete version of Coons interpola-
tion as a special instance of using masks. They propose the class of permanence
patches. These are spline surfaces where the mask generating the interior control
points is a linear blend of the Lagrange-Euler mask (corresponding to discrete
Coons patch) and the Laplace mask (corresponding to Laplacian smoothing). In

IDedicated to the memory of the late Professor Gerald E. Farin.
∗Corresponding author
Email address: dominik.mokris@jku.at (Dominik Mokrǐs)
URL: www.ag.jku.at (Bert Jüttler)

Preprint submitted to Elsevier January 24, 2017



the special case of Bézier surfaces, the discrete Coons patch is the same as Coons
patch (Farin, 1992; Farin and Hansford, 1999).

In the case of Bézier surfaces, Monterde and Ugail (2004, 2006) choose the
inner control points such that the resulting surface satisfies certain fourth-order
partial differential equation (see also Jüttler et al., 2006). This also includes Coons
interpolation as a special case. Similarly to Coons interpolation, this approach can
also be modified to allow for Hermite interpolation (Centella et al., 2009).

Constructions of surfaces from their boundary curves have found new applica-
tions in isogeometric analysis, since they are able to generate spline parametriza-
tions for the computational domain of a numerical simulation from a given bound-
ary representation (see Falini et al., 2015, and the references therein). In this
context it has been observed that an analysis and subsequent optimization of the
rank of a parametrization (which will be discussed in more detail in Section 2 of
this paper) can lead to substantial improvements of the overall efficiency of the
numerical simulation (Mantzaflaris et al., 2014). This observation has motivated
us to explore interpolation techniques that are able to generate low rank spline
surfaces.

In the context of implicit surfaces, low rank spline representations were used
recently by Pan et al. (2016). Their research was motivated by the need to reduce
the memory consumption.

After recalling the concept of tensor rank and adapting to the context of
spline surfaces we propose an algorithm for coordinate-wise rank-2 interpolation
of boundary curves. We note that the results are not affinely invariant as the algo-
rithm does not commute with affine transformations. For the case of planar data
we use a transformation to a reference position in order to restore affine invariance.

We show that the new interpolation method satisfies a permanence principle,
which is similar to the case of Coons surfaces (Farin and Hansford, 1999), and that
it reproduces bilinear surfaces. Using a series of examples we compare the new
method with several existing techniques, which include biharmonic interpolation
(Monterde and Ugail, 2004), Laplacian smoothing and Coons interpolation. These
examples allow us to conclude that both Coons interpolation and our new method
produce low rank parametrizations. It should be noted that the methods discussed
in this paper do not provide direct theoretical guarantees for injectivity, since
they do not possess properties such as a min-max principle, which is known for
harmonic mappings. We refer to Gravesen et al. (2014) for a thorough discussion
of the injectivity of planar domain parametrizations.

The remainder of the paper is organized as follows. We first introduce the
notation and recall the notion of tensor rank. We then formulate our algorithm
CR2I for coordinate-wise rank-2 interpolation in Section 3, and we discuss the
permanence principle. The following section shows how to restore affine invariance

2



in the bivariate case by introducing a standard position. Other approaches to
boundary interpolation are summarized in Section 5, and this is followed by an
example-based comparison with the new methods. Finally we conclude the paper.

2. Preliminaries

We recall the notion of tensor rank and adapt it to the case of spline surfaces.

2.1. Rank of tensor-product spline surfaces

We consider two univariate B-spline bases

β(s) = [βi(s)]i=1,...,m and τ (t) = [τj(t)]j=1,...,n,

which are defined by two open knot vectors with boundary knots 0 and 1. It is
not assumed that the degrees of the two spline bases are equal but we assume that
m,n ≥ 3. Recall that their tensor product

β(s)⊗ τ (t) = [βi(s)τj(t)]i=1,...,m;j=1,...,n

defines the tensor product spline basis. Given a coefficient tensor

C = [cijk]i=1,...,m;j=1,...,n;k=1,...,d ∈ Rm×n×d

of order 3 and dimension (m,n, d), we define a tensor product spline surface in Rd,

p(s, t) = C : (β(s)⊗ τ (t)) =

[ m∑

i=1

n∑

j=1

cijkβi(s)τj(t)

]

k=1,...,d

, (1)

with the parameter domain [0, 1]2. Here we use the symbol : to denote the Frobe-
nius product, which compactly expresses the summation with respect to the indices
of the tensor-product basis. In the special case d = 1 we call p scalar-valued spline
function and sometimes write simply p instead of p. If d = 2, we call p a planar
parametrization, because if p is bijective, it parametrizes the domain enclosed by
the planar boundary curves.

Any tensor of order 3 admits a representation as a finite sum of tensor-products
of vector triplets,

C =
R∑

r=1

ur ⊗ vr ⊗wr, or, equivalently, cijk =
R∑

r=1

uriv
r
jw

r
k (2)

for some vectors

ur = [uri ]i=1,...,m ∈ Rm, vr = [vrj ]j=1,...,n ∈ Rn and wr = [wrk]k=1,...,d ∈ Rd.

3



Clearly, each tensor possesses infinitely many representations of this form. The
minimum number R for all possible representations is called the tensor rank of C.
In particular, the null tensor has rank 0.

This representation was introduced in order to address the “curse of dimension”
concerning the memory requirements, especially for higher order tensors. Storing
the representation (2) requires O(R(m+n+ d)) memory, while the full coefficient
tensor has mnd elements. Using the representation (2) is advantageous if the
tensor rank satisfies R� min{m,n}.

Any four vectors q, r, s, t satisfy the identity (q⊗ r) : (s⊗ t) = (q · s)(r · t).
Combining this fact with the representation (2), we see that the associated spline
surface can be written as

p(s, t) =
R∑

r=1

(ur · β(s)) (vr · τ (t)) wr, (3)

where “·” denotes the standard inner product of vectors. We then say that p is a
rank R spline surface and R is simply called the rank of p.

It should be noted that the representation (3) can be used to evaluate a spline
surface. It shows that a specific point on a rank-R spline surface can be com-
puted by evaluating 2R univariate spline functions, whereas using the standard
tensor-product representation (1) requires d(δ + 2) such evaluations, where δ is
the polynomial degree. The evaluation of each spline function requires O(δ2) op-
erations if performed by knot insertion. This, however, may not be the optimal
approach since one may re-use values of B-splines.

2.2. Affine mappings

The tensor rank of the coefficient tensor C is generally not preserved by affine
transformations of Rd, i.e., the coefficients of the spline functions p and α ◦ p,
where α is an affine mapping, may have different tensor ranks. Indeed, consider
the spline functions p = 0 and p′ = 1 for d = 1, which are related by an affine
mapping since x′ = x+ 1. Their coefficients have rank 0 and 1.

We analyze the effect that affine mappings can have on the rank.

Lemma 1. Affine mappings increase the rank of a spline surface by at most one.

Proof. We consider a spline surface (3) with coefficients possessing tensor rank R,
and an affine mapping

α : x 7→ α(x) = a + Ax

defined by a vector a ∈ Rd and a matrix A ∈ Rd×d. We distinguish whether the
function identically equal to one can be spanned by β(s) and τ (t) or not, i.e.,
whether

1 ∈ span{ (ur · β(s))(vr · τ (t)) | r = 1, . . . , R }. (4)

4



First, we assume that (4) is satisfied. Thus, there exist coefficients ζr satisfying

1 =
R∑

r=1

(ur · β(s))(vr · τ (t))ζr.

The transformed spline surface

(α ◦ p)(s, t) =
R∑

r=1

(ur · β(s)) (vr · τ (t)) (ζra + Awr),

has coefficients
R∑

r=1

ur ⊗ vr ⊗ (ζra + Awr).

The tensor rank of the transformed coefficients thus does not exceed R.
Second, we consider the situation where (4) is not satisfied. We use the parti-

tion of unity property of B-splines. The transformed spline surface

(α ◦ p)(s, t) =

( R∑

r=1

(ur · β(s)) (vr · τ (t))Awr

)
+ (1m · β(s)) (1n · τ (t))a

then has coefficients

( R∑

r=1

ur ⊗ vr ⊗ (Awr)

)
+ 1m ⊗ 1n ⊗ a,

where 1k ∈ Rk is a vector with all elements equal to 1. The tensor rank then does
not exceed R + 1.

The group structure of regular affine mappings implies that the ranks of any
two affinely equivalent spline surfaces differ at most by one.

2.3. Bounds on the tensor rank

Computing the tensor rank is a difficult problem (Kolda and Bader, 2009); in
fact, the problem is known to be NP-hard (H̊astad, 1990). A notable exception
is the case d = 2, where the tensor rank can be obtained by analyzing the Kro-
necker form of a linear matrix pencil (Ja’Ja’, 1979; Landsberg, 2012). Even in this
situation, however, the computation of the tensor rank is quite involved. We will
therefore work with well-known upper and lower bounds instead.

Recall that a matricization mat(C) of a tensor C is obtained by splitting
the indices into two subsets and applying lexicographic ordering (possibly after
permuting the indices) to each subset individually, cf. Kolda and Bader (2009).

5



As a first observation, we note that the tensor rank of C is greater than or equal
to the matrix rank of any matricization mat(C). For a proof, we consider the
matricization obtained by keeping the first index and combining the last two indices
lexicographically and obtain

mat
R∑

r=1

ur ⊗ vr ⊗wr =
R∑

r=1

ur ⊗ vec(vr ⊗wr) = [ur]r=1,...,R · [vec(vr ⊗wr)]r=1,...,R.

The rank of the matricization thus does not exceed rank[ur]r=1,...,R ≤ R. The same
argument applies to any other matricization.

Second, if we consider the matrix slices of C obtained by considering fixed
values for one of the three indices, then the tensor rank does not exceed the sum
of the ranks of these matrix slices. To see this, note that using the canonical unit
vectors ek = [δk` ]`=1,...,d, we obtain

C =
d∑

k=1

Rk∑

r=1

urk ⊗ vrk ⊗ ek, where [cijk]ij =

Rk∑

r=1

urk ⊗ vrk

are rank Rk decompositions of the tensor slices obtained by fixing the index k.
For simplicity, assume d = 2 now. The rank of a spline parametrization gives

upper bounds on ranks of several derived quantities, provided that these can again
be represented as spline functions (possibly with different degrees and knot vec-
tors). These quantities include the determinant of the Jacobian matrix (which
arises frequently in isogeometric analysis and differential geometry) and the ele-
ments gij of the first fundamental form.

Lemma 2. The ranks of the spline functions det∇p, gii for i = 1, 2, and g12,
are bounded by R(R − 1),

(
R+1

2

)
and R2, respectively, if p : R2 → R2 is a rank R

planar parametrization.

Proof. Using wr = [wrk]k=1,2 in (3) gives

det(∇p) =
R∑

r=1

R∑

p=1

(ur · β(s)′)(up · β(s))︸ ︷︷ ︸
(a)

(vr · τ (t))(vp · τ (t)′)︸ ︷︷ ︸
(b)

(wr1w
p
2 − wr2wp1).

The right-hand side can again be transformed into a form analogous to (3) by
introducing representations of the terms (a) and (b) with respect to suitable spline
bases. This proves the first bound as the sum has (R2 − R) non-zero elements.
Similar techniques can be used to prove the remaining two bounds if we exploit
the symmetry of the sum in the case of gii.

6



3. Coordinate-wise rank-2 interpolation

We consider the following problem: Given four spline curves in Rd that form
a simple closed loop, we want to find a bivariate spline surface p(s, t) in Rd that
interpolates these four curves along the patch boundaries.

More precisely, denote these curves by

p(s, 0) = [[ci1k ]i=1,...,m · β(s)]k=1,...,d, (5)

p(0, t) = [[c1jk ]j=1,...,n · τ (t) ]k=1,...,d, (6)

p(1, t) = [[cmjk]j=1,...,n · τ (t) ]k=1,...,d, (7)

p(s, 1) = [[cink ]i=1,...,m · β(s)]k=1,...,d. (8)

The control points of the boundary curves, i.e., [cijk]k=1,...,d ∈ Rd with i ∈ {1,m}
or j ∈ {1, n}, are given. Our task consists in finding the remaining elements of
the coefficient tensor C. Among the many possible solutions we identify one that
gives a low rank spline surface.

The four boundary curves are called matching if they form a simple loop and
if the knot vectors of p(s, 0) and p(0, t) are equal to the knot vectors of p(s, 1)
and p(1, t), respectively. Furthermore, the four corner points are called feasible if
the condition ∣∣∣∣

c11k c1nk

cm1k cmnk

∣∣∣∣ 6= 0

is satisfied for each coordinate, i.e., for k = 1, . . . , d.

3.1. Rank 2d interpolation algorithm

Before proposing our first algorithm we present a technical lemma.

Lemma 3. Consider a real matrix

B =



b11 · · · b1n
...

. . .
...

bm1 · · · bmn


 with

∣∣∣∣
b11 b1n

bm1 bmn

∣∣∣∣ 6= 0.

Then B possesses rank 2 if and only if

bij =

bi1

∣∣∣∣
b1j b1n

bmj bmn

∣∣∣∣+ bin

∣∣∣∣
b11 b1j

bm1 bmj

∣∣∣∣
∣∣∣∣
b11 b1n

bm1 bmn

∣∣∣∣
(9)

for all 1 < i < m and 1 < j < n.

7



Proof. Firstly, the rank of B does not exceed 2, because the j-th column of B is
a linear combination of the first column and the last column:

[bij]i=1,...,m =

∣∣∣∣
b1j b1n

bmj bmn

∣∣∣∣
∣∣∣∣
b11 b1n

bm1 bmn

∣∣∣∣
[bi1]i=1,...,m +

∣∣∣∣
b11 b1j

bm1 bmj

∣∣∣∣
∣∣∣∣
b11 b1n

bm1 bmn

∣∣∣∣
[bin]i=1,...,m.

This is a consequence of (9) for 1 < j < n and it its trivially satisfied for j = 1
and j = n.

Secondly, the rank of B is then equal to 2, as the elements at the four corners
form a regular 2× 2 submatrix.

We now formulate a simple method for Coordinate-wise Rank-2 Interpolation
in Algorithm CR2I. It takes the control points of the four matching boundary
curves with feasible corner points as input and returns the control points of an
interpolating spline surface. The d slices of the coefficient tensor are considered
individually. The k-th coordinate of the interior control points is computed from
the k-th coordinate of the boundary control points by applying Lemma 3 to the
k-th slice.

Algorithm CR2I: Coordinate-wise rank-2 interpolation

input : Control points of the boundary curves, i.e., cijk with (i, j, k) from
({1,m}×{1, . . . , n}×{1, . . . , d})∪({1, . . . ,m}×{1, n}×{1, . . . , d})

output: All control points, i.e., cijk with
(i, j, k) ∈ {1, . . . ,m} × {1, . . . , n} × {1, . . . , d}

for k = 1, . . . , d do

∆ =

∣∣∣∣
c11k c1nk

cm1k cmnk

∣∣∣∣;
for j = 2, . . . , n− 1 do

λ = 1
∆

∣∣∣∣
c1jk c1nk

cmjk cmnk

∣∣∣∣; ρ = 1
∆

∣∣∣∣
c11k c1jk

cm1k cmjk

∣∣∣∣;
for i = 2, . . . ,m− 1 do

cijk = λci1k + ρcink;
end

end

end

Corollary 4. Algorithm CR2I returns a spline surface p : R2 → Rd with the
property that the rank of each coordinate function is equal to 2 if the given boundary

8



curves in Rd are matching and the corner points are feasible. Consequently, the
rank of p does not exceed 2d.

Proof. These facts are implied by Lemma 3 and by the upper bound on the tensor
rank which was presented in Section 2.3.

Interestingly, (9) has the following continuous analogue.

Proposition 5. Consider a scalar-valued spline surface p(s, t) with

∣∣∣∣
p(0, 0) p(0, 1)
p(1, 0) p(1, 1)

∣∣∣∣ 6= 0. (10)

Then p(s, t) is of rank 2 if and only if

∀s, t ∈ [0, 1] :

∣∣∣∣∣∣

p(0, 0) p(0, t) p(0, 1)
p(s, 0) p(s, t) p(s, 1)
p(1, 0) p(1, t) p(1, 1)

∣∣∣∣∣∣
= 0. (11)

Proof. Since d = 1, Eq. (1) simplifies to

p(s, t) =
m∑

i=1

n∑

j=1

cijβi(s)τj(t).

We use the endpoint interpolation property to rewrite (11) as

∣∣∣∣∣∣

c11

∑
j c1jτj(t) c1n∑

i ci1βi(s)
∑

i

∑
j cijβi(s)τj(t)

∑
i cinβi(s)

cm1

∑
j cmjτj(t) cmn

∣∣∣∣∣∣
= 0,

which can be rearranged into

m∑

i=1

n∑

j=1

(
ci1

∣∣∣∣
c1j c1n

cmj cmn

∣∣∣∣− cij
∣∣∣∣
c11 c1n

cm1 cmn

∣∣∣∣+ cin

∣∣∣∣
c11 c1j

cm1 cmj

∣∣∣∣
)
βi(s)τj(t) = 0.

All coefficients of this spline surface are equal to zero and this is exactly the
condition of Lemma 3, hence rank([cij]ij) = 2.

Corollary 6. There exists exactly one rank-2 scalar-valued spline function p(s, t)
that interpolates a given loop of matching boundary curves with feasible corners.

Proof. Algorithm CR2I guarantees the existence and Lemma 3 the uniqueness.

9



3.2. Permanence principle

Other interpolation methods often possess the permanence principle: if one
performs the interpolation and restricts the surface to [s1, s2] × [t1, t2] ⊂ [0, 1]2,
the result is the same as applying the interpolation to the boundary curves of this
restricted surface. The permanence principle is satisfied for Coons interpolation
(Farin and Hansford, 1999) and we now show that it applies to our method as
well. We start the derivation with several technical observations for scalar-valued
spline functions, i.e., with d = 1.

Lemma 7. Neither knot insertion nor degree elevation increases the rank of a
scalar-valued spline function p(s, t).

Proof. Since d = 1 and p is of rank R, Eq. (3) can be simplified into

p(s, t) =
R∑

r=1

(ur · β(s)) (vr · τ (t)). (12)

Knot insertion and degree elevation (without loss of generality in s-direction) do
not change the value of any of the summands,

(ur · β(s)) (vr · τ (t)) = (ûr · β̂(s)) (vr · τ (t)), r = 1, . . . , R, (13)

where β̂(s) is the basis β(s) after applying knot insertion or degree elevation and
ûr is the corresponding updated coefficient vector. This carries over to (12),

p(s, t) =
R∑

r=1

(ûr · β̂(s)) (vr · τ (t)),

and we arrive at another rank-R representation of p.

Corollary 8. Let p(s, t) be a scalar-valued spline function of rank R. Then the
rank of its restriction

(s, t) 7→ p(s1 + s(s2 − s1), t1 + t(t2 − t1)), (s, t) ∈ [0, 1]2,

to [s1, s2]× [t1, t2] ⊆ [0, 1]2 does not exceed R.

Proof. The coefficients of the restriction are obtained by inserting the knots s1, s2

and t1, t2 repeatedly and taking a submatrix of the resulting coefficient matrix.

Theorem 9 (Permanence principle). Let p(s, t) be a spline surface constructed by
Algorithm CR2I and let 0 ≤ s1 < s2 ≤ 1 and 0 ≤ t1 < t2 ≤ 1 be chosen so that the

10



corner points p(s1, t1), p(s2, t1), p(s1, t2) and p(s2, t2) are feasible. Furthermore,
let p̂(s, t) be the surface generated by applying Algorithm CR2I to the curves

p(s1+·(s2−s1), t1), p(s1, t1+·(t2−t1)), p(s1+·(s2−s1), t2) and p(s2, t1+·(t2−t1)).

Then the restriction of the first surface to [s1, s2] × [t1, t2] is equal to the second
one,

p(s1 + s(s2 − s1), t1 + t(t2 − t1)) = p̂(s, t) ∀s, t ∈ [0, 1].

Proof. It suffices to prove the theorem for scalar-valued spline functions p and p̂
since Algorithm CR2I deals with each coordinate individually. We use Corollary
4 with d = 1 and the feasibility of the corner points to conclude that p and p̂ have
rank 2. The restriction of the first surface to [s1, s2] × [t1, t2] has the same rank
due to Corollary 8. Finally we use Corollary 6 to complete the proof.

3.3. Numerical results

We conclude this section with three examples.

Example 10. We consider a given loop of quartic Bézier curves. Algorithm CR2I
cannot be applied directly as the corner points are infeasible. We restored feasi-
bility by applying rotations (with different angles) to the coordinate system. The
origin remains in the center of gravity of the four corner points.

Figure 1 shows the results produced by Algorithm CR2I after applying rotations
with angles i π

14
with i = 1, . . . , 6. We consider only these values of i since a rotation

by π
2

is just a swap and a sign change of the coordinate axes.

Example 11. Algorithm CR2I can be used for d = 3 as well. We consider an
input loop which is similar to that from Fig. 2 of Monterde and Ugail (2004). It
has been translated so that the origin is in the centroid of the four corner points
and then rotated around the x, y and z axes by π

3
, −π

7
and − π

18
, respectively, in

order to obtain feasible input. Figure 2(a) depicts the result transformed back to
the original position.

Example 12. Figure 2(b) shows the results of Algorithm CR2I on the input from
Fig. 5 of Monterde and Ugail (2004); since it is again an invalid input, it has been
rotated around the x, y and z axes by π/3, π/4 and −π/6, respectively. However,
different choices of these angles lead to very similar results. It is also interesting to
compare with the examples in Fig. 1, 2 and 3 of Farin and Hansford (1999), where
a similar input is used, except that it has more control points (Adding further
points would not change the result, see Proposition 17); our result is close to what
they term “optimal” control net, in the sense it coincides with “designer’s intent”.

11



(a) rotated by π
14 (b) rotated by 2π

14 (c) rotated by 3π
14

(d) rotated by 4π
14 (e) rotated by 5π

14 (f) rotated by 6π
14

Figure 1: Results of Algorithm CR2I for quartic boundary curves (Example 10) and rotated
coordinate systems.

We have seen that Algorithm CR2I is not affinely invariant, i.e., that it does
not commute with affine transformations. Although this can be considered a dis-
advantage, the choice of an appropriate affine coordinate system gives additional
degrees of freedom (for example, five of them if d = 2) that can be used as de-
sign parameters. One might try several coordinate systems and choose the one
where some fairness measure of the result – such as the maximal aspect ratio of
the elements – is optimal.

3.4. Invariance in special situations

The application of Algorithm CR2I commutes with any non-uniform scaling
of the input data, where each coordinate is multiplied by a non-zero factor. In-
deed, such a scaling does not change the rank of the coefficient matrices for each
coordinate, and the algorithm treats every coordinate separately.

We identify conditions on the input data which guarantee that Algorithm CR2I
commutes with two other, more general, classes of affine mappings.

Two curves f ,g : [0, 1]→ Rd are said to be TS-equivalent if there is a compo-
sition of a translation and a non-uniform scaling that transforms the first curve

12



(a) Example 11 (b) Example 12

Figure 2: Surfaces to compare with Fig. 2 of Monterde and Ugail (2004) and Fig. 2 of Farin and
Hansford (1999).

into the second one, i.e., if there exist a vector a ∈ Rd and non-zero scalars
q1, . . . , qd ∈ R such that

g(s) = a + diag(q1, . . . , qd)f(s) for all s ∈ [0, 1].

Proposition 13. Consider admissible data and translations that transform it into
data which are again admissible. Algorithm CR2I commutes with these translations
if one of the two pairs of opposite boundaries are TS-equivalent.

Proof. It suffices to consider the one-dimensional case (d = 1), since both the
translations and Algorithm CR2I deal with each coordinate separately. We assume
that the northern and the southern boundary curve are TS-equivalent, i.e., cmj =
a+ qc1j for j = 1, . . . , n and some a, q ∈ R. The data are admissible only if a 6= 0.

Using the TS equivalence of the two boundaries we obtain the identity

∣∣∣∣∣∣

c11+v c1j+v c1n+v
ci1+v cij+v cin+v
cm1+v cmj+v cmn+v

∣∣∣∣∣∣
= (a+v−qv)[(c11−c1n)cij+(c1j−c11)cin+(c1n−c1j)ci1],

where v ∈ R describes the translation. First we consider the case of the initial
data, i.e., we choose v = 0. Clearly, the determinant vanishes if the central element
takes the value cij which is generated by Algorithm CR2I. Consequently, the term
in the square brackets vanishes, as the admissibility of the initial data implies
a 6= 0. Therefore, the determinant also vanishes for the translated data (i.e., for a
non-zero value of v), provided that the same translation is applied to the central
element. Consequently, Algorithm CR2I assigns the value cij + v to the central
element due to the uniqueness of rank-2 interpolation for admissible data. The
proof for TS-equivalent eastern and western boundaries is analogous.

13



Two curves f ,g : [0, 1]→ Rd are said to be L-equivalent if there exists a linear
mapping (i.e., an affine transformation with fixed point 0) that transforms the
first boundary into the second one, i.e., if there exists a matrix A such that

g(s) = Af(s) for all s ∈ [0, 1].

Proposition 14. Consider admissible data in the planar case (d = 2) and linear
transformations that transform it into data which are again admissible. Algo-
rithm CR2I commutes with linear mappings if one of the two pairs of opposite
boundaries are L-equivalent.

Proof. We assume that the northern and the southern boundary curve are L-
equivalent, i.e., [

cmj1
cmj2

]
=

(
a11 a12

a21 a22

)[
c1j1

c1j2

]

for j = 1, . . . , n. The data are admissible only if a12 6= 0 and a21 6= 0.
Take a linear mapping described by the matrix

Â =

(
â11 â12

â21 â22

)
.

Using the L-equivalence of the two boundaries we obtain the identity
∣∣∣∣∣∣

âk1c111 + âk2c112 âk1c1j1 + âk2c1j2 âk1c1n1 + âk2c1n2

âk1ci11 + âk2ci12 âk1cij1 + âk2cij2 âk1cin1 + âk2cin2

âk1cm11 + âk2cm12 âk1cmj1 + âk2cmj2 âk1cmn1 + âk2cmn2

∣∣∣∣∣∣

=

(
âk1

∣∣∣∣
a11 a12

âk1 âk2

∣∣∣∣+ âk2

∣∣∣∣
a21 a22

âk1 âk2

∣∣∣∣
)(

âk1

∣∣∣∣∣∣

c111 c1j1 c1n1

c112 c1j2 c1n2

ci11 cij1 cin1

∣∣∣∣∣∣
︸ ︷︷ ︸

(i)

+âk2

∣∣∣∣∣∣

c111 c1j1 c1n1

c112 c1j2 c1n2

ci12 cij2 cin2

∣∣∣∣∣∣
︸ ︷︷ ︸

(ii)

)

for k = 1, 2. First we consider the case of the initial data, where âij = δij with
δij denoting the Kronecker delta. For k = 1 the determinant on the left-hand side
vanishes if the central element takes the value cij1 which is generated by Algorithm
CR2I. The right-hand side simplifies to the first 3× 3 determinant (i), multiplied
by a12. Consequently, this determinant is equal to zero, as the admissibility of
the initial data implies a12 6= 0. Analogously, for k = 2 when considering cij2
generated by Algorithm CR2I and taking the admissibility condition a21 6= 0 into
account, we conclude that the second 3×3 determinant (ii) on the right-hand side
vanishes also.

Thus, the entire right-hand side is equal to zero for any choice of Â. Conse-
quently, Algorithm CR2I assigns the value âk1cij1 + âk2cij2 to the central element,
due to the uniqueness of rank-2 interpolation for admissible data.

The proof for L-equivalent eastern and western boundaries is analogous.

14



In particular, the algorithm commutes with rotations around the origin 0 if
the assumptions of this proposition are satisfied. One should also note that Algo-
rithm CR2I commutes with arbitrary affine transformations if one of the two pairs
of opposite boundaries are linearly parametrized line segments and d = 2. This
can be seen by combining the two sufficient conditions.

4. Ensuring affine invariance

We complement Algorithm CR2I by suitable pre- and postprocessing steps to
achieve affine invariance. The results are limited to planar spline parametrizations
(d = 2).

4.1. Description of the algorithm

We propose Algorithm AR5I, which is illustrated by Figure 3. It consists of
three steps, namely transformation to a standard position (step 1), coordinate-wise
rank-2 interpolation (step 2), and back transformation of the interpolating surface
(step 3).

Algorithm AR5I: Affinely invariant rank-5 interpolation.

input : Control points of the boundary curves, i.e., cijk with (i, j, k) from
({1,m} × {1, . . . , n} × {1, 2}) ∪ ({1, . . . ,m} × {1, n} × {1, 2})

output: All control points, i.e., cijk with
(i, j, k) ∈ {1, . . . ,m} × {1, . . . , n} × {1, 2}

/* Step 1: Transform the input into standard position: */

A=transformationMatrix( [c11k]k=1,2, [c1nk]k=1,2, [cm1k]k=1,2, [cmnk]k=1,2);
for boundary control points do

[xij, yij, 1]T = A[cij1, cij2, 1]T ;
end
/* Step 2: Apply Algorithm CR2I: */

[c̃ijk]i=1,...,m,j=1,...,n,k=1,2 = Algorithm CR2I([xij, yij]ij);
/* Step 3: Back transformation of the result: */

for all control points do
[cij1, cij2, 1]T = A−1[c̃ij1, c̃ij2, 1]T ;

end

The algorithm uses the procedure transformationMatrix to generate the ma-
trix A that described the transformation to a standard position. More precisely,
we transform the diagonals [c1nk − cm1k]k=1,2 and [c11k − cmnk]k=1,2 into vectors of
unit length on x and y axes, respectively, and we map their intersection to the

15



0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0

1.2

(a) Input.

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

(b) Step 1: Input mapped to standard
position.

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

(c) Step 2: Result of Algorithm CR2I.

0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0

1.2

(d) Step 3: Result after back transfor-
mation.

Figure 3: The three steps of Algorithm AR5I. The dots represent the control points.

origin [0, 0], see Figure 3(b). Using homogeneous coordinates,

A =



M11 M12 −M11c111 −M12c112

M21 M22 −M21c1n1 −M22c1n2

0 0 1


 , (14)

where

M =

(
c1n1 − cm11 c111 − cmn1

c1n2 − cm12 c112 − cmn2

)−1

. (15)

We summarize the properties of Algorithm AR5I.

Theorem 15. Algorithm AR5I produces an interpolating planar spline parametriza-
tion p with a rank not exceeding 5 if no three of the corner points are collinear and
the diagonals are non-parallel. The result is invariant under affine mappings.

Proof. If the diagonals are non-parallel, then the matrix M in (15) and thus also
A in (14) can be constructed and is invertible, thus enabling the transformation
to the standard position and back.

16



After transforming into standard position we need to make sure that the as-
sumptions of Lemma 3 are satisfied, since we cannot apply Algorithm CR2I oth-
erwise. The elements of the denominator determinant in (9) for k = 1 are

b11 = 0, b1n =

∣∣∣∣∣∣

1 cmn1 cmn2

1 c111 c112

1 cm11 cm12

∣∣∣∣∣∣
|M | , bm1 =

∣∣∣∣∣∣

1 c111 c112

1 c1n1 c1n2

1 cmn1 cmn2

∣∣∣∣∣∣
|M | , bmn = 0.

This determinant is non-zero as all triplets of corner points are non-collinear. The
same argument applies to k = 2.

Since we use Algorithm CR2I for d = 2, we are certain that the rank of the
coefficient tensor in the standard position does not exceed four, see Corollary 4.
According to Lemma 1, the back transformation increases it by one at most. Fi-
nally we note that affinely equivalent inputs are transformed to the same standard
position, thus guaranteeing the affine invariance.

Note that parallel diagonals would lead to intersecting boundary curves, see
Figure 4. It is therefore natural to exclude these situations.

[c111, c112]

[c1n1, c1n2] [cm11, cm12]

[cmn1, cmn2]

Figure 4: Parallel diagonals of the control polygon lead to intersecting boundary curves.

Example 16. Algorithm AR5I does not satisfy the permanence principle. The
result obtained by applying Algorithm AR5I to the data from Example 10 has been
restricted to [0.1, 0.9]× [0.3, 0.7] (Fig. 5, left). We applied Algorithm AR5I to the
boundary curves and compared it with the restricted surface. The two meshes in
Fig. 5 (right) visualize the results, which are clearly different.

Finding a suitable standard position for higher values of the dimension d is
beyond the scope of the present paper.

17



Figure 5: A counterexample to the permanence principle for Algorithm AR5I, see Example 16.

4.2. Bilinear precision

We show that both algorithms possess bilinear precision, i.e., if the input data
are the boundary curves of a bilinear patch, then we obtain the bilinear patch as
a result. We start by proving two technical lemmas.

Lemma 17. The results of Algorithms AR5I and CR2I do not change if one
applies knot insertion or degree elevation to the input curves.

Proof. According to Corollaries 4 and 6, the spline surfaces with admissible cor-
ner points and rank 2 in each component are exactly those generated by Algo-
rithm CR2I. Condition (11) depends on the values of the boundary curves and
thus does not change with knot insertion or degree elevation. Neither does Al-
gorithm AR5I, as the boundary curves transform to the same standard position
regardless of knot insertion and degree elevation.

Lemma 18. All coordinate functions of a bilinear surface p(s, t) = [pk(s, t)]k=1,...,d

have rank 2 if and only if the corners are admissible.

Proof. Denote

p(s, t) = ((1− s), s) ·
(

p(0, 0) p(0, 1)
p(1, 0) p(1, 1)

)(
(1− t)
t

)
.

The coefficient tensor of pk(s, t) is equal to
(
pk(0, 0) pk(0, 1)
pk(1, 0) pk(1, 1)

)
.

Clearly, requiring each pk to be of rank 2 is equivalent to assuming the corner
points to be admissible.

18



Theorem 19. Algorithms CR2I and AR5I reproduce bilinear patches if the as-
sumptions of Corollary 4 and Theorem 15 are satisfied, respectively.

Proof. Lemma 18 implies that a given bilinear patch with admissible corner points
is a spline surface of rank 2 in each coordinate. If we insert knots or raise the degree
so that m,n ≥ 3, the claim for Algorithm CR2I follows from Corollary 6.

Since affine transformations preserve lines, any bilinear patch satisfying the
assumptions of Theorem 15 is mapped into a bilinear patch with admissible corners
in reference position of Algorithm AR5I, thus reducing to the previous case.

Algorithms CR2I and AR5I can be combined with other bases than B-splines.
In fact, they only require that the surface can be written in the form (1) and that
the values on the boundary of the surface are determined by the control points
on the boundary as we specified in (5)–(8). Consequently, our algorithms can be
used in combination with, e.g., the tensor-product Lagrange basis.

5. Comparison with existing approaches

We discuss other approaches from the literature and analyze the resulting ranks.

5.1. Biharmonic method

Monterde and Ugail (2004) proposed a method based on their earlier work on
biharmonic Bézier surfaces. They formulate conditions on the control points of a
surface which ensure that its bilaplacian is equal to zero (cf. Theorem 2 therein).
For given boundary curves, the linear system formed by these conditions possesses
– under certain assumptions identified by Jüttler et al. (2006) – a unique solution.

However, the method is restricted to Bézier surfaces and the rank of the re-
sulting surface is possibly large.

In our experience (see Section 6), the biharmonic method seems to be suffering
from two practical drawbacks. Firstly, the linear system to solve is often quite ill-
conditioned, rendering solution in floating point arithmetic less reliable, especially
for larger values of m and n. Secondly, the method tends to generate patches that
“spill out” of the area between the curves, leading to a useless result.

5.2. Coons interpolation

A Coons patch is constructed as a Boolean sum, i.e., as a sum of two linear
interpolants of the boundary curves (one in s-direction and the other in t-direction)
from which a bilinear interpolant of the corner points is subtracted. The method
can be traced back to Coons (1964). It is effective for a wide class of curves and
can be applied to arbitrary dimension d.

Proposition 20. The rank of a Coons patch does not exceed 4d.

19



Proof. As noticed by Farin and Hansford (1999), a Coons patch can be written as

(1− s)(p(0, t)− tp(0, 1))

+(1− t)(p(s, 0)− (1− s)p(0, 0))

+s(p(1, t)− (1− t)p(1, 0))

+t(p(s, 1)− sp(1, 1)).

Using this decomposition for each coordinate, the rank of the corresponding slice
– and hence of the associated slice of the coefficient tensor – is bounded by 4. The
bound on the tensor follows from the upper bound in Section 2.3.

In particular, for d = 2 we obtain that the tensor rank of a Coons patch cannot
exceed 8. There is no general lower bound on the tensor rank of a Coons patch,
but for specific instances we obtained a lower bound of 6, see next section. The
question whether the upper bound is tight remains open.

As noted by Farin (1992) and Farin and Hansford (1999) the Coons patch is
the same as the discrete Coons patch in the case of Bézier surfaces. Consequently,
it can be implemented using the Coons mask

[cijk]k =
−1/4 1/2 −1/4
1/2 • 1/2
−1/4 1/2 −1/4

on the control points, which is a discrete version of an Euler-Lagrange equation.
Farin and Hansford (1999) discuss a wider class of surfaces generated by certain
masks, which they call permanence patches. They also provide an interpretation
in terms of a variational principle.

5.3. Laplacian smoothing
Laplacian smoothing is another example of a method where the control points

are computed using a mask. The Laplace mask reads

[cijk]k =
0 1/4 0

1/4 • 1/4
0 1/4 0

.

In fact, the masks generating the aforementioned permanence patches are blends
between the Coons and Laplace masks, cf. Farin and Hansford (1999) and refer-
ences therein for a more thorough discussion.

The applicability of the method in the present form is restricted to matching
boundary curves. Laplacian smoothing works for arbitrary value of d.

The advantage of the mask-based methods is the simplicity of their implemen-
tation. Furthermore, the generated parametrizations have a certain appeal, as
Laplacian smoothing often alleviates from acute elements. However, the rank of
the resulting surfaces can be quite high.

20



6. Examples

6.1. Bézier boundary curves

Now, we compare the results obtained for several numerical examples. More
precisely, we compare

• the biharmonic method,

• Coons interpolation,

• Laplacian smoothing,

• Algorithm AR5I, and

• Algorithm CR2I.

For the latter algorithm we rotate the data around the origin (which is chosen
as the centroid of the corner points) by ϕ = iπ/10 with i = 0, . . . , 4. All the
examples have been computed symbolically in Mathematica. Table 1 presents
several estimates on the tensor rank as well as the maximal rank of gij and the
rank of det(∇p) for all methods and the following six examples.

Example A. We use the same input curves as in Example 10. The differences
between the results are most pronounced in the upper part of the domain, see
Figure 6. Note that the biharmonic method produces a small overlap (hence a
non-regular surface) in the top part of the domain.

Example B. This example shows the sensitivity of the methods with respect
to changes of a single control point on the boundary, see Figure 7. Laplacian
smoothing leads to smallest changes in the interior of the domain. Algorithms
AR5I and CR2I and Coons interpolation produce sensible results, and the ranks
are lower than the one obtained by Laplacian smoothing. The biharmonic method
is quite sensitive to the input. The results of Algorithm CR2I remain the same for
further rotations and are thus not shown.

Example C. The star-like domain in Figure 8 reveals significant differences be-
tween the methods. Both the biharmonic method and Coons interpolation perform
badly, producing an overlapping parametrization in the center of the domain (see
bottom row). Laplacian smoothing produces the most regular elements near the
center of the domain. The results of Algorithms AR5I and CR2I are very similar
and do not change with further rotations.

21



(a) Biharmonic method (b) Coons interpolation (c) Laplacian smoothing

(d) AR5I

Invalid input!

(e) CR2I, ϕ = 0 (f) CR2I, ϕ = π/10

(g) CR2I, ϕ = 2π/10 (h) CR2I, ϕ = 3π/10 (i) CR2I, ϕ = 4π/10

Figure 6: Parametrizations obtained in Example A.

Example D. This example shows that both Laplacian smoothing and the bi-
harmonic method can lead to quite high ranks of the resulting parametrizations,
whereas the Coons interpolation and our algorithms give parametrizations with
bounded ranks. See Figure 9 for the results. The corners form almost a perfect
square. This led to the useless output for Algorithm CR2I with φ = 0, since the
input is almost invalid: Figure 9 (e) is in a different scale and the input curves are
covered by the dot in the bottom right corner. However, rotating the input leads
to sensible results (f)-(i).

Example E. This example has been generated by randomly perturbing the points
on a square, see Figure 10. Coons interpolation and Algorithm AR5I show a regular
pattern of the control points, which seems to account for the low rank. In contrast,

22



(a) Biharmonic method (b) Coons interpolation (c) Laplacian smoothing

(d) AR5I

Invalid input!

(e) CR2I, ϕ = 0 (f) CR2I, ϕ = π/10

Figure 7: Parametrizations obtained in Example B.

Laplacian smoothing produces a very regular control net at the cost of a rather
high rank. The parametrization generated by the biharmonic method is shown in
a different scale, since it has “spilled out”: The input curves are covered by the
red dot in the center of the picture.

Example F. We consider a difficult domain in Figure 11. Laplacian smoothing
seems to give the best results around the cavities at the sides, whereas both Coons
interpolation and our algorithms do not manage to capture the non-convex part.
However, all these three methods lead to singularities (overlaps) near the top and
bottom of the domain. The biharmonic method fails. The results of Algorithm
CR2I remained the same for further rotations and thus are not shown.

Example G. Figure 12 shows a domain that has been taken from the database
of the G+Smo library (Jüttler et al., 2014). Notice that Algorithm AR5I and
Algorithm CR2I with ϕ = π

10
and with ϕ = 2π

10
are the only methods that manage

to capture the nonconvex region in the upper part.

In addition, we compare the ranks of the parametrizations produced in these
examples in Table 1. For each example, we consider all the parametrizations
obtained in the examples. In the case of CR2I, we report in the rows labeled by

23



(a) Biharmonic method (b) Coons interpolation (c) Laplacian smoothing

(d) AR5I

Invalid input!

(e) CR2I, ϕ = 0 (f) CR2I, ϕ = π/10

(g) Zoom to (a) (h) Zoom to (b) (i) Zoom to (d)

Figure 8: Parametrizations obtained in Example C. Note that the darker blue is used in areas
where the mapping is not one-to-one.

(0) and (ϕ) the ranks obtained for the reference position and for the remaining
four positions, respectively. The latter four positions gave the same ranks in all
cases.

As it is quite costly to obtain the exact tensor ranks, we consider ranks of
derived quantities (which can be evaluated by computing the ranks of matrices)
and numerical estimates. More precisely, we compare

• the rank of the x- (and y-) coordinate function, which is a lower bound on
the rank of the parametrization,

• the rank of the matricization obtained by concatenating the x- and y-slice of
the coefficient tensor, which is an upper bound on the rank of the parametriza-

24



(a) Biharmonic method (b) Coons interpolation (c) Laplacian smoothing

(d) AR5I (e) CR2I, ϕ = 0 (f) CR2I, ϕ = π/10

(g) CR2I, ϕ = 2π/10 (h) CR2I, ϕ = 3π/10 (i) CR2I, ϕ = 4π/10

Figure 9: Parametrizations obtained in Example D.

tion,

• a numerically computed estimate for the rank of the parametrization, ob-
tained by calling rankest from the Matlab library Tensorlab 3.0 (Vervliet
et al., 2016) with MaxRelErr = 10−11 and MinRelErr = 10−12,

• the maximum ranks of the spline functions gij, and

• the rank of the spline function det∇p.

For each example and each considered rank, the lowest rank is highlighted in green,
the second lowest one in yellow, and the remaining ones in red. Results in brackets
indicate badly shaped parametrizations, and hyphens indicate invalid inputs. The
numerical rank computation with rankest failed in three instances (marked with

25



(a) Biharmonic method (b) Coons interpolation (c) Laplacian smoothing

(d) AR5I (e) CR2I, ϕ = 0 (f) CR2I, ϕ = π/10

(g) CR2I, ϕ = 2π/10 (h) CR2I, ϕ = 3π/10 (i) CR2I, ϕ = 4π/10

Figure 10: Parametrizations obtained in Example E.

err). One may conclude that algorithms CR2I and AR5I give slightly lower ranks
than Coons interpolation in almost all cases, while the other two methods give
significantly higher ranks.

Upper bounds on the ranks of the derived quantities can be obtained from
Lemma 2, by combining it with the results concerning the ranks of the parametriza-
tions (Corollary 4, Theorem 15 and Proposition 20). It turns out that these upper
bounds are not very tight.

6.2. Spline boundary curves

We conclude with two additional examples, where the boundary curves are
spline curves. Therefore the biharmonic method cannot be applied. Also, we do
not show control points, as we obtain Coons interpolation not through a mask but

26



(a) Biharmonic method (b) Coons interpolation (c) Laplacian smoothing

(d) AR5I

Invalid input!

(e) CR2I, ϕ = 0 (f) CR2I, ϕ = π/10

Figure 11: Parametrizations obtained in Example F.

by a direct application of the formula from the proof of Proposition 20.

Example 21. The boundary curves are approximations of the border of the US
state Indiana taken from Giannelli et al. (2016). They are cubic spline curves
with 259 control points each. One can see from Figure 13 that none of the simple
methods (i.e., methods that work without solving a large linear system) discussed
in this paper creates a valid parametrization for the use in isogeometric analy-
sis. Only Laplacian smoothing is able to create a valid parametrization in this
case. In this and similar situations, one would need to create a global bijective
parametrization and apply our Algorithms to the boundaries of patches obtained
by subdivision.

Example 22. The boundary curves are quadratic spline curves with uniform
knots and 4 and 33 control points, respectively. The entire geometry is a cross-
section of a Japanese tea cup, which is a geometry available in the G+Smo library
(Jüttler et al., 2014) except for a slight modification of the short edges at the top
of the domain in order to satisfy the assumptions of Algorithm AR5I. Figure 14
shows the results of Coons interpolation, Laplacian smoothing, Algorithm AR5I,
direct application of Algorithm CR2I and Algorithm CR2I with ϕ = π

6
.

27



(a) Biharmonic method (b) Coons interpolation (c) Laplacian smoothing

(d) AR5I (e) CR2I, ϕ = 0 (f) CR2I, ϕ = π/10

(g) CR2I, ϕ = 2π/10 (h) CR2I, ϕ = 3π/10 (i) CR2I, ϕ = 4π/10

Figure 12: Parametrizations obtained in Example G.

7. Conclusions

We introduced two new algorithms that create tensor-product spline surfaces
from given boundary curves in Rd. The first one, which fulfills the permanence
principle, guarantees that the rank of each coordinate function is equal to 2, but
the result is not invariant under affine transformations. The second one, which
restores affine invariance by using a reference position and is currently available for
dimension d = 2 only, guarantees the tensor rank not to exceed 5. We proved that
both algorithms possess bilinear precision. We also performed a series of numerical
experiments to compare the new algorithms with other interpolation schemes.

Future work will consider generalizations to volumes and possibly also to the
case of C1 (or even higher order) boundary data. In addition, we plan to investigate
the approximation order of the new surface interpolation schemes.

28



Table 1: Ranks of parametrizations and derived quantities for examples A-F.

Example
Quantity Method A B C D E F G

x-slice

biharmonic 5 1 4 21 (30) (7) 6
Coons 4 1 2 4 4 2 4
Laplacian 5 1 4 21 30 7 6
AR5I 4 1 1 5 5 1 5
CR2I(0) - - - (2) 2 - 2
CR2I(ϕ) 2 2 2 2 2 2 2

y-slice

biharmonic 5 4 4 21 (30) (7) 6
Coons 4 2 2 3 4 2 4
Laplacian 5 7 4 21 30 7 6
AR5I 4 2 1 5 5 1 5
CR2I(0) - - - (2) 2 - 2
CR2I(ϕ) 2 2 2 2 2 2 2

matricization

biharmonic 5 4 8 21 (30) (14) 6
Coons 5 2 4 5 6 4 6
Laplacian 5 8 8 21 30 14 6
AR5I 4 2 2 5 5 2 5
CR2I(0) - - - (4) 4 - 4
CR2I(ϕ) 4 2 2 4 4 2 4

rankest

biharmonic 6 5 8 41 (6) (13) 6
Coons err 3 4 6 err 4 err

Laplacian 5 8 8 18 58 14 6
AR5I 4 3 2 4 5 2 5
CR2I(0) - - - (4) 4 - 4
CR2I(ϕ) 4 3 2 4 4 2 4

maximum rank of gij

biharmonic 8 6 7 13 (9) (10) 10
Coons 7 2 4 5 14 4 8
Laplacian 8 13 7 24 51 14 10
AR5I 8 2 2 5 16 2 10
CR2I(0) - - - (3) 8 - 8
CR2I(ϕ) 8 2 2 5 8 2 8

det(∇p)

biharmonic 7 3 7 12 (9) (8) 10
Coons 7 1 5 4 14 5 8
Laplacian 8 7 7 17 45 14 10
AR5I 8 1 2 4 8 2 8
CR2I(0) - - - (6) 8 - 8
CR2I(ϕ) 8 1 2 4 8 2 8

Acknowledgments

The authors have been supported by the Austrian Science Fund (FWF, NFN
S117 “Geometry + Simulation”).

29



(a) Coons interpolation (b) Laplacian smoothing (c) AR5I

(d) CR2I, ϕ = 0 (e) CR2I, ϕ = π
6 (f) CR2I, ϕ = π

3

Figure 13: Indiana geometry.

References

Centella, P., Monterde, J., Moreno, E. and Oset, R. (2009). Two C1-methods to generate Bézier
surfaces from the boundary, Comput. Aided Geom. Design 26(2): 152–173.

Coons, S. A. (1964). Surfaces for computer aided design, Technical Report, MIT .

Falini, A., Špeh, J. and Jüttler, B. (2015). Planar domain parameterization with THB-splines,
Comput. Aided Geom. Design 35: 95–108.

30



(a) Coons interpolation (b) Laplacian smoothing (c) AR5I

(d) CR2I, ϕ = 0 (e) CR2I, ϕ = π
6

Figure 14: Japanese tea cup geometry.

Farin, G. (1992). Commutativity of Coons and tensor product operators, Rocky Mtn. J. Math.
22(2): 541–547.

Farin, G. E. (2001). Curves and Surfaces for CAGD: A Practical Guide, Elsevier. 5th ed.

Farin, G. and Hansford, D. (1999). Discrete Coons patches, Comput. Aided Geom. Design
16(7): 691–700.

Giannelli, C., Jüttler, B., Kleiss, S. K., Mantzaflaris, A., Simeon, B. and Špeh, J. (2016). THB-
splines: An effective mathematical technology for adaptive refinement in geometric design and
isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 299: 337–365.

Gravesen, J., Evgrafov, A., Nguyen, D.-M. and Nørtoft, P. (2014). Planar parametrization in
isogeometric analysis, in M. Floater, T. Lyche, M.-L. Mazure, K. Mørken and L. L. Schumaker
(eds), Mathematical Methods for Curves and Surfaces, Lecture Notes in Computer Science,
pp. 189–212.

H̊astad, J. (1990). Tensor rank is NP-complete, J. of Algorithms 11(4): 644–654.

31



Ja’Ja’, J. (1979). Optimal evaluation of pairs of bilinear forms, SIAM Journal on Computing
8(3): 443–462.

Jüttler, B., Langer, U., Mantzaflaris, A., Moore, S. E. and Zulehner, W. (2014). Geometry +
simulation modules: Implementing isogeometric analysis, Proc. Appl. Math. Mech. 14(1): 961–
962.

Jüttler, B., Oberneder, M. and Sinwel, A. (2006). On the existence of biharmonic tensor-product
Bézier surface patches, Comput. Aided Geom. Design 23(7): 612–615.

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications, SIAM Review
51(3): 455–500.

Landsberg, J. M. (2012). Tensors: geometry and applications, Vol. 128 of Graduate Studies in
Mathematics, American Mathematical Society Providence, RI, USA.

Mantzaflaris, A., Jüttler, B., Khoromskij, B. and Langer, U. (2014). Matrix generation in isoge-
ometric analysis by low rank tensor approximation, in J.-D. Boissonnat, A. Cohen, O. Gibaru,
C. Gout, T. Lyche, M.-L. Mazure and L. L. Schumaker (eds), Curves and Surfaces, Lecture
Notes in Computer Science, pp. 321–340.

Monterde, J. and Ugail, H. (2004). On harmonic and biharmonic Bézier surfaces, Comput. Aided
Geom. Design 21(7): 697–715.

Monterde, J. and Ugail, H. (2006). A general 4th-order PDE method to generate Bézier surfaces
from the boundary, Comput. Aided Geom. Design 23(2): 208–225.

Pan, M., Tong, W. and Chen, F. (2016). Compact implicit surface reconstruction via low-rank
tensor approximation, Compput. Aided Des. 78: 158–167.

Vervliet, N., Debals, O., Sorber, L., Van Barel, M. and De Lathauwer, L. (2016). Tensorlab 3.0.
Available online.
URL: http://www.tensorlab.net

32


