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Abstract. This paper presents an implementation framework for spline
spaces over T-meshes (and their d-dimensional analogs). The aim is to
share code between the implementation of several spline spaces. This is
achieved by reducing evaluation to a generalized Bézier extraction.
The approach was tested by implementing hierarchical B-splines, trun-
cated hierarchical B-splines, decoupled hierarchical B-splines (a novel
variation presented here), truncated B-splines for partially nested refine-
ment and hierarchical LR-splines.
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1 Introduction

A common method to represent shapes in Computer-Aided Design (CAD),
Computer-Aided Engineering (CAE) and Computer-Aided Manufacturing (CAM)
is to parametrize the desired geometry (or its boundary) with Non-Uniform Ra-
tional B-Splines (NURBS). B-splines have a global tensor-product structure,
where each d-variate basis function is a product of d univariate basis functions.
This means that changes in spatial resolution cannot be confined to a small
region; they necessarily spread to a union of stripes of the domain (Fig. 1).

Fig. 1: Limit of the tensor construction. Left: the coarse grid; Middle: the desired
refinement; Right: the coarsest tensor grid refined on the gray area.
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Different constructions that allow for local refinement were proposed during
the last two decades and gained support with the introduction of IsoGeometric
Analysis (IGA) [22]. Indeed, IGA pushed the use of splines in numerical simula-
tion where local refinement is a prerequisite of adaptive methods. The following
list includes the best known constructions:

– Hierarchical B-splines (HB), introduced in [17]. This is a multiscale approach:
each scale is associated to a different tensor-product B-spline space. Func-
tions from each scale are selected depending on the locally required resolu-
tion and together they form the hierarchical B-spline basis. There are many
variations of HB, among them: the Truncated Hierarchical B-splines (THB)
[18], the Truncated Decoupled Hierarchical B-splines (TDHB) [29], the Trun-
cated B-splines for partially nested refinement (TBPN) [39] and Decoupled
Hierarchical B-splines (DHB) introduced here for the first time.

– T-splines (T), introduced in [35,34]. The central notion is the T-mesh: a
planar graph with lengths. A B-spline corresponds to each vertex of the graph
and its knot vectors depend on the length of the neighboring edges. These
B-splines generate the space. Unfortunately they can be linearly dependent.
Analysis Suitable T-splines (AST) avoid linear dependencies by restricting
the class of allowed T-meshes [13]. AST spaces can be constructed in 2D [32]
and also defined for 3D domains [31].

– Locally Refined splines (LR) were introduced in [15]. Their definition is given
in terms of minimally supported B-splines contained in a space of piecewise
polynomials. The generators are not always linearly independent. A bivariate
construction that avoids linear dependencies are the hierarchical LR-splines
(HLR) [7].

Several other spaces exist, among them [14,10,25,8]. On one hand, the mentioned
spaces contain piecewise polynomials over box-shaped subdomains and allow for
smooth functions. On the other hand, each construction was defined for a specific
application and, as a consequence, described and analyzed with its own set of
tools. Thus it is difficult to make a comparison involving more than a few spaces
and having criteria that are not application-specific. A comparison of HB, THB
and LR based on the conditioning of the mass matrix is presented in [23].

Our aim is to provide the description of a software framework that allows
to implement different spline spaces efficiently. In this way we hope to facilitate
both the comparison of different spline spaces and experimenting with alternative
definitions.

The framework is presented in Section 2 without any reference to specific
spline spaces. Section 3 discusses the space and time complexity of the proposed
approach and presents possible optimizations. Section 4 describes how the frame-
work can be applied to HB, THB, DHB, TBPN and HLR splines. These spaces
were implemented. Their implementations are used in Section 5 to show how the
different spaces behave in a few selected cases.
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2 Implementation Method

The aim is to evaluate the generators of a spline space at arbitrary points
of the domain Ω ⊆ Rd. Let Γ = {γ1, . . . , γn} be the generating set. We fo-
cus on the method eval that given a point x ∈ Ω returns the row vector
Γ (x) =

(
γ1(x), . . . , γn(x)

)
. Note that the described interface of eval allows for

the solution of interpolation problems and for the implementation of Galerkin
methods based on numerical quadrature.

The spline spaces of interest have generating sets that are piecewise poly-
nomials on a partition of Ω into axis-aligned boxes: the elements. This allows
to represent their restriction on an element in the Bernstein basis of tensor-
product polynomials. By doing so it is possible to repurpose Finite Element
Method (FEM) codebases to IGA. This approach was proposed for NURBS in
[4] under the name of Bézier extraction and extended to other spaces in [33,16].

The main idea of this paper is that if the above strategy is abstracted by
replacing elements with more general subdomains and the Bernstein basis with
an arbitrary local basis then the method is more versatile and it allows for the
implementation of more spaces with less code.

2.1 Description

Assume that there exists a partition D = {D1, . . . ,DL} of the domain Ω and a
corresponding sets of local generators B = {B1, . . . ,BL} such that the restric-
tion of each γ ∈ Γ to any Di admits a representation in spanBi. More precisely,

∀γ ∈ Γ, ∀Li=1, ∀x ∈ Di : γ(x) =
∑

β∈Bi

mβ,γβ(x) , (1)

and thus
Γ (x) = Bi(x)Mi , (2)

where Bi(x) =
(
β(x)

)
β∈Bi

is a row vector and Mi =
(
mβ,γ

)
β∈Bi, γ∈Γ is the

matrix containing the coefficients from (1). The matrices Mi can be collected as
blocks of the bigger matrix M as depicted in Fig. 2.

Provided a triplet of D, B and M, the evaluation of Γ (x) can be performed
using (2). By writing eval in terms of D, B and M, the space-specific code is
reduced to the initialization of D, B and M. Note that Γ is uniquely determined
by D, B and M, but different choices of D, B and M are possible for the same
Γ . This allows for different trade-offs as seen in Section 4.

The following simplified evaluation method suggests the interfaces and im-
plementations of D, B and M.

Procedure: evalSimple(x)
Input: point x ∈ Ω
Output: Γ (x) =

(
γ1(x), . . . , γn(x)

)

i = D.findSubdomain(x) /* finds i: x ∈ Di */
Bi(x) = Bi.eval(x)
Γ (x) = Bi(x)Mi
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M =


 ML

...

M2

M1




γ ∈ Γ

β ∈ B2

Fig. 2: Structure of the representation matrix. It has
∑L
i=0 #Bi rows and #G

columns.

Now we proceed by describing the implementations of D, B and M.
The partition D requires only the findSubdomain method. It can be effi-

ciently implemented using a binary decision tree (more precisely a binary space
partition, cf. [36,37]). For the spaces of interest it is possible to assume that the
Di are polytopes with axis-aligned faces. With this simplification, each fork in
the tree corresponds to a spatial split along an axis-aligned affine hyperspace,
i.e., to a comparison for a specific coordinate; each branch to taking the intersec-
tion with one of the corresponding half-spaces. Every leaf of the tree corresponds
to the intersection of the taken half-spaces with Ω. Thus D can be represented
by storing in each leaf the index of the subdomain containing the corresponding
box. Fig. 3 depicts a partition and the corresponding tree.

It is worth noting that binary partition trees can be used also to implement
refinement strategies. Indeed they can be seen as maps Ω → N and they allow
for efficient implementation of binary operations (see the references above for
union and the intersections). By constructing a tree that assigns to each point
its refinement level it is easy to compute the coarsest common refinement of
two meshes as it corresponds to pointwise-max operation. Similarly, the finest
common submesh can be computed using a pointwise-min operation.

The collection of local generating sets B is simply a list of polymorphic
objects implementing the eval interface. This allows for arbitrary local bases
and thus, for example, Bernstein polynomials as in Bézier extraction, or B-
splines as in all of our implementations, or enriched spaces of polynomials as in
generalized B-splines [5].

Finally, M is a sparse matrix. However, the initialization of the matrix for a
particular spline space usually requires most of the space-specific code.

The eval method extends the evalSimple method by computing simultane-
ously values and derivatives on more points contained in the same subdomain
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Fig. 3: A partition of Ω in D1 and D2 and a decision tree describing it. The
darkened area in the domains depicted next to each branch highlight the region
on which the branch is taken.

Di. Let X = {x1, . . . ,xr} ⊂ Di be the set of points. Redefine Bi(X) and Γ (X)
to be matrices whose columns correspond to a generating function (as before)
and whose rows correspond to the requested data, e.g., to the combinations of
requested derivatives and points:

Γ (X) =




γ1(x1) . . . γn(x1)
∂1γ1(x1) . . . ∂1γn(x1)

...
...

∂dγ1(x1) . . . ∂dγn(x1)
γ1(x2) . . . γn(x2)

...
...

∂dγ1(xr) . . . ∂dγn(xr)




. (3)

The following is the eval procedure.

Procedure: eval(X )
Input: the set of points X = {x1, . . . ,xr} ∈ Ω
Assumptions: ∃i : X ⊂ Di
Output: Γ (X)
i = D.findSubdomain(x1)
Bi(X) = Bi.eval(X)
Γ (X) = Bi(X)Mi

As mentioned, Bézier extraction is a special case of the proposed implemen-
tation. It is equivalent to our framework with the following choices: D is the
partition of the domain into elements; Bi is the Bernstein basis remapped to
the element Di and Mi contains the expansion of the polynomial expression
of the functions γ ∈ Γ on the element. Consequently, the implementation of
T-splines with Bézier extraction is feasible in this framework.



6 Andrea Bressan and Dominik Mokriš

2.2 Subspaces and Functions

Consider a subspace of spanΓ generated by Γ ′ = {γ′1, . . . , γ′k}. Then Γ ′ can be
implemented by D,B,M′ with

M′ = MN

where N = (nγ,γ′)γ∈Γ,γ′∈Γ ′ contains in the i-th column the expansion of γ′i in
γ1, . . . , γn, i.e., ∀x ∈ Ω, Γ ′(x) = Γ (x)N.

As a consequence, eval is not only a suitable implementation of Γ , but also
of the functions f ∈ spanΓ . Indeed they corresponds to M′ having a single
column and N being the column vector of the coefficients of f .

This method can also be used to construct a space satisfying Robin type
boundary conditions or, as described in the next subsection, to construct multi-
patch spaces with the prescribed smoothness.

2.3 Multipatch Domains

The proposed framework can be extended in order to allow for multipatch do-
mains. This can be achieved by adding an optional parameter, the patch index,
to both eval and of findSubdomain. The eval procedure is then modified as
follows.

Procedure: eval(X,p)
Input: the set of points X = {x1, . . . ,xr} ∈ Ω
Input (optional): the patch index p, default to 0
Assumptions: ∃i : X ⊂ Di
Output: Γ (X)
i = D.findSubdomain(x1, p)
Bi(X) = Bi.eval(X)
Γ (X) = Bi(X)Mi

Combined with the ability to restrict to arbitrary subspaces this opens the
way to the implementation of geometrically Ck functions on multipatch domains.
A multipatch domain is the union of a finite number images of axis-aligned boxes
by a geometry map. The adjective “geometrically” specifies that the smoothness
is meant with respect of the multipatch domain and not with respect of the
domains of the parametrizations.

This is an active research topic in IGA [26,9,12]. On one hand, higher smooth-
ness allows for an easier treatment of high order equations and provides better
approximation of the spectrum. On the other hand, enforcing smoothness can
lead to locking phenomena and impair the approximation properties.

Provided that smoothness can be enforced, the proposed framework allows for
an easy representation of the space of geometrically Ck functions starting from
that of discontinuous functions. Indeed discontinuous functions on a multipatch
domain correspond to a block diagonal representation matrix M with blocks
corresponding to functions defined on each patch. The space of geometrically Ck
functions is represented with M′ = MN for a suitable N. This is the strategy
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used in [9] where, due to a different implementation of the patch spaces, the
multiplication by N is done at a post-processing stage and thus incurs in an
additional cost.

3 Complexity

Delegating the evaluation to a local basis and computing the linear combination
incurs in an additional computational cost. Moreover, storing the coefficients of
M can require a substantial amount of memory.

3.1 Space complexity

Most of the memory required is used by M. The tested implementation uses a
row-compressed format: only the nonzero coefficients are stored in lexicographic
order of their indices. The column position of the nonzero entries is stored in
a second vector. The row position is deduced by storing a pointer to the first
nonzero of each row. This means that the total required memory is proportional
to the sum of the number of rows plus the number of nonzero entries. The number
of rows of M equals

L∑

i=1

#Bi .

Consequently there is a memory cost associated to functions of the local bases
even if they are not used in any Di to represent Γ .

The number of nonzero coefficients in M depends on the complexity of the
mesh and on the shape of the generators. The number of nonzero coefficients in
the column corresponding to γ ∈ Γ is

∑

i:γ(Di)6={0}
#{β : mβ,γ 6= 0} .

Thus it is minimized if γ is supported in a single Di and if it equals a local basis
b ∈ Bi. In contrast, the generators γ whose supports intersect many subdomains
or whose shape requires many coefficients to be represented in a domain require
more memory.

3.2 Time complexity

The time cost of the eval procedure can be described as

C(eval) = C(findSubdomain) + C(Bi.eval) + C(matrix) , (4)

where C(matrix) is the cost of computing the matrix-matrix product Bi(X)Mi.
Now we analyze each of the terms.

The cost of findSubdomain depends on the tree structure and on the com-
plexity of the mesh. For a balanced tree this would be proportional to log2 `,
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where ` is the number of leaves in D. However, a balanced tree is not necessarily
optimal, as the tree should take the usage pattern into account. For instance,
if we assume a uniform sampling of the domain then the optimal tree will have
leaves of depth inversely proportional to the measure of the corresponding region.
Our test implementation tries to reduce the size of the tree by avoiding unnec-
essary splits. With this simple optimization C(findSubdomain) was insignificant
in our profiling tests. Moreover, in Galerkin applications the elements can be
iterated according to the containing subdomains, avoiding the tree traversal.

The complexity of Bi.eval depends on the specific local basis used. If the
local basis has optimal complexity with respect of the output size, then it is
proportional to w#X#Bi, where X is the set of points and w is the amount of
data per point and function to evaluate.

The cost C(matrix) of the matrix-matrix product Bi(X)Mi is the dom-
inating cost of the evaluation. Since the dimensions of Bi(X) and Mi are
(w#X,#Bi) and (#Bi,#Γ ) respectively, the complexity is

C(matrix) ∼= w#X#Bi#Γ .

Comparing this to the output size w#X#Γ shows that the method is rather
expensive if #Bi is big. The next sections show how this cost can be reduced.

3.3 Local Basis and Compression

If the functions in Γ and Bi have small supports, then the number of nonzero
columns in Bi(X) and in Γ (X) is small compared to #Bi and #Γ , respectively.
This suggests the use of a compressed format for Bi(X) and Γ (X), where only
the nonzero values and their positions are stored. This is standard in FEM and
other numerical methods and also the default in our implementation. Let a be the
list of the indices of the nonzero columns of Bi(X). Then Bi(X) is implemented
by the pair (a, B̃i), where B̃i is the matrix containing the columns of Bi(X)
with the indices in a. For instance if Bi(X) has 5 columns and a = (3, 5) then
B̃i is a 2 column matrix containing the third and the fifth column of Bi(X).
The set A of the nonzero columns of Γ (X) and their content Γ̃ is obtained by a
sparse matrix-matrix product. A function γ ∈ Γ (or β ∈ Bi) is called active on
X if the corresponding column in Γ (X) (or Bi(X)) is nonzero.

By using the compressed format C(Bi.eval) is reduced to

C(Bi.eval) ∼= w#X#a

and C(matrix) decreases to

C(matrix) ∼= w#X#a#A . (5)

Comparing this with the output size w#X#A shows that the algorithm has
optimal complexity provided there is an upper bound on #a. For instance, if
the local bases are Bernstein polynomials or polynomial splines of degree p and
the points are contained in one element, then #a = (p + 1)d and the time cost
of eval is quasi-optimal for a given degree (h-refinement) but behaves badly as
the degree increases (p-refinement).
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3.4 Tensor factorization

The tensor-product structure allows to reduce d-variate computations to com-
putations on univariate objects. In our case it allows to replace the computation
of the linear computation of d-variate functions with d-linear combinations of
univariate functions. This is advantageous because the cost of the matrix-matrix
product is roughly proportional to the product of the three involved dimensions.
This optimization reduces one of the dimensions to its d-th root. Furthermore,
it can be combined with other optimizations based on the tensor structure such
as the sum-factorization[2,3].

The spline spaces of interest do not have a global tensor-product structure,
but this is not necessary, as it is sufficient that each γ ∈ Γ and each β ∈ Bi can
be factored into products of univariate functions:

γ(x) =
d∏

c=1

γ(c)(xc), β(x) =
d∏

c=1

β(c)(xc) . (6)

Here the notation �(c) means the factor of � corresponding to the c-th coor-
dinate. By analogy the same notation will be used for tensors � =

⊗d
c=1 �(c)

and Cartesian grids of points � =×d

c=1
�(c). This should not be confused with

the components of vectors and tensors that are denoted by subscripts as in
v = (v1, v2).

The requirement (6) is satisfied by HB and HLR splines, but not by THB,
DHB and TBPN. Thus we decided not to implement this optimization and the
following is only a theoretical analysis.

To describe the optimization it is necessary to factor each object into uni-
variate components:

B
(c)
i = {β(c) : β ∈ Bi} ; (7)

Γ (c) = {γ(c) : γ ∈ Γ} ; (8)

X(c) = {xc : x = (x1, . . . , xd) ∈ X} . (9)

Necessarily Γ (c) ⊆ spanB
(c)
i , which means that there exists a matrix M(c)

i such
that for all x ∈ Di

Γ (c)(x) = B
(c)
i (x)M(c)

i . (10)

Let S be the set of the multiindices that define Γ as a subset of
⊗d

c=1 Γ
(c):

Γ =

{
d∏

c=1

γ(c)sc : (s1, . . . , sd) ∈ S, γ(c)sc ∈ Γ (c)

}
⊂

d⊗

c=1

Γ (c). (11)

For simplicity it is assumed that Bi =
⊗d

c=1 B
(c)
i and X =×d

c=1
X(c), but a

proper subset (similarly as for Γ ) can be considered at the expense of a more
involved notation.
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The tensor structure propagates to the set of active functions. Here a contains
the multiindices of the functions of Bi corresponding to nonzero columns of Bi.
Similarly A contains the subset of the multiindices in S that correspond to
nonzero columns in Γ . Analogously to the other symbols, a(c) and A(c) denote
the collection of the entries relative to the c-th coordinate in a and A respectively.

Each derivative of γ ∈ Γ is a product of derivatives of the γ(c). In the
following cost computations w(c) denotes the number of derivatives of γ(c) that
are required in order to compute all the w requested partial derivatives of γ.

The procedure compose assembles � out of its factors �(c) and a list of
the necessary products P as in the description of S above. If P is omitted, it
is assumed that � =

⊗d
c=1 �(c) and thus that P contains all the Cartesian

multiindices.

Procedure: compose(�(1), . . . ,�(d), X, P)
Input: the tensor components �(c)

Input: the list of required products P
Input: the list of points X
Output: Γ (X)
foreach p ∈ P do

add column to �
foreach x = (x1, . . . , xd) ∈ X do

/* write row block of the derivatives of �p at x */

�p =
∏d
c=1 �

(c)
pc (xc) /* value */

... /* derivatives */
end

end

The complexity C(compose) is proportional to d#w#P#X, because for each
of the w#P#X output data there are d products required. The compose proce-
dure allows the rewriting of eval by splitting Bi.eval in two independent steps:
the evaluation of its tensor components and the composition.

Procedure: eval(X)
Input: the points X
Assumptions: ∃i : X ⊂ Di
Output: Γ (X)
i = D.findSubdomain(x1)
for c = 1, . . . , d do

B(c) = B
(c)
i .eval(X(c)) /* local evaluation */

end
Bi(X) = compose(B(1), . . . ,B(d), X) /* composition */
Γ (X) = Bi(X)Mi /* linear combination */
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Table 1: Comparison of the cost for the standard and optimized evaluation for
spaces with tensor structure.

standard optimized

linear combination w#X#A#a

d∑

c=1

w(c)#X(c)#A(c)#a(c)

composition dw#X#a dw#X#A

Furthermore, tensor composition and linear combination can be swapped, giving
the following optimized version of eval:

Procedure: eval(X)
Input: the points X
Assumptions: ∃i : X ⊂ Di
Output: Γ (X)
i = D.findSubdomain(x1)
for c = 1, . . . , d do

B(c) = B
(c)
i .eval(X(c)) /* local evaluation */

Γ (c) = B(c)M(c)
i /* linear combination */

end
A = S ∩×d

c=1
A(c) /* actives */

Γ (X) = compose(Γ (1), . . . , Γ (d), X,A) /* composition */

The cost of each step in the two different versions is reported in Table 1. The
cost of the optimized version is proportional to the output size with a factor
that is independent of the mesh (h-refinement) and of the degree (p-refinement)
provided that there exists a σ such that for c = 1, . . . , d

#a(c)#A(c) ≤ σ#A . (12)

This is a reasonable assumption for the spline spaces of interest. Indeed, for
polynomial splines of degree p with points contained in a single polynomial
element #a(c) = p + 1 and #A ≥ (p + 1)d. This means that #A(c) should
be bounded by σ(p + 1)d−1. This is the case for σ-admissible HB meshes [11],
where #A(c) ≤ σ(p + 1), and for the HLR basis described in [7], for which
#A(c) ≤ 2(p+ 1).

4 Spline Spaces

We tested the proposed strategy by implementing several spline spaces in the
G+SMO object oriented library [24]. We have implemented HB, THB, TBPN,
DHB and HLR splines.
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The interested reader can compare with other implementations that are either
available or described in the literature. (T)HB are implemented in the G+SMO
open-source library [20]. The code, as of 2014, is described in [27]. Another
implementation of (T)HB tailored for IGA research is described in [38]. The
source code of bivariate LR-splines is available as a part of the goTools library
[21], but no technical description is available.

The presented framework focuses on versatility and not on performance. Nev-
ertheless, we believe the the following two notes are worth mentioning. The choice
of the binary partition tree for D was dictated by performance considerations.
The other strategies that we tried provided abysmal performances for (T)HB
compared to the implementation in G+SMO, particularly for initialization. We
tested the correctness of our (T)HB implementation by comparing with the re-
sults provided by G+SMO in selected 2D examples. For those examples the new
implementation was both faster and used less memory compared to G+SMO.

4.1 (Truncated) Hierarchical B-Splines

The hierarchical B-spline basis [28] is defined from a sequence of tensor-product
B-spline bases Ψ1, . . . , ΨL such that

i < j ⇒ spanΨi ⊂ spanΨj (13)

and from a decreasing sequence of nested closed domains

Ω = Q1 ⊇ · · · ⊇ QL ⊇ QL+1 = ∅ .

The hierarchical basis is constructed by selecting some functions from each
basis through the Kraft procedure:

H =
L⋃

i=1

{ψ ∈ Ψi : supportψ ⊆ Qi and supportψ ∩ (Qi \ Qi+1) 6= ∅} . (14)

As usually, the support is restricted to Ω, i.e., support f = {x ∈ Ω : f(x) 6= 0}.
The truncated variant of the hierarchical spline basis H = {γ1, . . . , γn} is the

THB basis H′ = {γ′1, . . . , γ′n}, cf. [18]. Each basis function γ′i is obtained from
γi by repeated truncation. This means that each γ ∈ Ψi ∩ H is represented as a
linear combination of functions from Ψi+1. Then the coefficients of the functions
in Ψi+1 ∩ H (i.e., of the selected functions from level i + 1) are set to zero.
The resulting function is then represented as a linear combination of functions
in Ψi+2, the coefficients of the functions in Ψi+2 ∩ H are set to zero and so
on, up to i = L. The resulting linear combination of ΨL is g′. This procedure
improves the locality of the resulting basis and guarantees that the basis forms
a convex partition of unity and preserves the coefficients of the corresponding
tensor-product basis [19]. The drawback is that it breaks the tensor structure
and thus it disallows the optimization described in Section 3.4.

We describe two possible implementations that correspond to different trade-
offs between code complexity and memory requirements. Both are limited to
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bases Ψ1, . . . , ΨL of the same degree (i.e., only h-refinement is allowed) and do-
mains Qi that are unions of elements of spanΨi. This restriction compares well
with the other implementations available. For instance, the implementation in
G+SMO requires Ψi+1 to be the dyadic refinement of Ψi, which makes it impos-
sible to experiment with other refinements.

Implementation 1 The simplest implementation defines D by:

Di = Qi \ Qi+1, DL = QL

and B by
Bi = Ψi.

The representation matrix M is built iteratively while discovering the func-
tions selected by the Kraft procedure. Starting from level i = m up to level 0, the
functions of Ψi that are active on Di are collected using the implementation of
the tensor-product space. For each function the Kraft conditions (14) are tested.
If they are satisfied a new column is added to M, otherwise the function is dis-
carded. The coefficients in the added column are computed using the standard
knot insertion algorithm. Proceeding from the finest level to the coarsest allows
to perform truncation in the same pass by discarding the coefficients correspond-
ing to the selected functions of finer levels. Starting from the coarsest level does
not allow to perform truncation in the same pass because the list of the selected
functions from finer levels is not available yet.

Implementation 2 The choices above are the simplest, but they can cause a
very high memory consumption. According to Subsection 3.1 the memory usage
depends on the total number of rows in M. For dyadic refinement of the Ψi, the
number of rows grows as 2dL+d, where d is the domain dimension and L is the
number of levels. Since each row requires a memory pointer, this means that an
empty M for a 3D example with 10 levels exceeds 10 gigabytes in size.

The problem can be solved using slightly more complex code. The main idea
is to remove the rows containing only zeros from M. This is the case for the
rows corresponding to the functions ψ ∈ Ψi with ψ(Di) = {0}. Let D̃ be the tree
representing the partition {Qi \ Qi+1}i=1,...,L−1. Then D is defined as

D = {boxes corresponding to the leaves of D̃} = {Di}.

The setB is defined by setting Bi to the smallest tensor-product basis containing
the functions of Ψj active on Di for j such that Di ⊂ Qj \ Qj+1. In this way
the implementation bases Bi are subsets of the definition bases Ψj containing
the functions with non-zero coefficients. The construction of M is done as in
the previous implementation, while taking into account the index change. This
solution is not available in our code for (T)HB, but the required machinery was
implemented for DHB.
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4.2 Truncated B-Splines for Partially Nested Refinement

This is a generalization of (T)HB-splines and was proposed in [39]. It allows for
independent refinement in different parts of the domain (see Fig. 4) and can help
for multipatch geometries as shown in Example 2.

The requirement (13) is dropped and the sequence of nested domains is re-
placed by a partition of Ω in patches Q1, . . . ,QL. The construction requires
the following compatibility condition: if Di and Dj share a (d − 1)-dimensional
interface Ii,j = ∂Di ∩ ∂Dj , then

spanΨi ⊂ spanΨj or spanΨj ⊃ spanΨi .

This means that {spanΨi} is not totally ordered anymore, only partially ordered.
In particular if the boundaries are disjoint or their intersection is not (d − 1)-
dimensional, the spaces spanΨi and spanΨj do not have to be comparable by
⊂. Note that the construction requires “sufficient separation” of the patches
associated to two incomparable spaces. The details can be found in [39].

Di Dj Di Dj

Fig. 4: Left: TBPN-splines allow to refine the subdomains Ωa and Ωb indepen-
dently. Right: THB-splines requires nested knot vectors for any pair of subdo-
mains.

Basis functions are again a subset of
⋃L
i=1 Ψi and are selected using a mod-

ifications of Kraft’s procedure based on slave functions. A function ψ ∈ Ψi
is called a slave if it is active on an (n − 1)-dimensional interface Ii,j with
spanΨj ⊂ spanΨi. The set of slaves of level i is

Si = {ψ ∈ Ψi : ∃j : ψ(Ii,j) 6= {0}, spanΨj ⊂ spanΨi, dim Ii,j = n− 1} .

Slave functions are functions whose coefficients are determined by the coefficients
of the functions of coarser bases on nearby patches together with the smoothness
conditions.

The selected functions are defined by

M =
L⋃

i=1

Mi , (15)
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whereMi contains the master functions of level i, i.e., the functions of Ψi that
are active on Qi and that a are not slaves:

Mi = {ψ ∈ Ψi : ψ(Qi) 6= {0}, ψ 6∈ Si} . (16)

Truncation is defined in the same way as in the case of THB-splines. The re-
sulting basis is called truncated B-splines for partially nested refinement (TBPN).
The set M forms a non-negative partition of unity, it is a basis and, similarly
to THB, it preserves the coefficients of polynomial representation. Moreover, if
(13) holds, then TBPN reduces to THB with the same bases and appropriate
subdomains. We refer to [39] for details.

Implementation We implemented only the truncated version of the construc-
tion. The partition D can be defined as

Di = Qi

and B by
Bi = Ψi.

The matrix M is built iteratively while discovering the functions selected by the
modified Kraft procedure. Again the first step is to find the functions in Ψi that
are active on Di using the implementation of tensor product space. For each
function the modified Kraft conditions (16) are tested. If they are satisfied, we
add a new column to M, otherwise the function is discarded. Analogously to
THB it is possible to compute truncation in the same pass. Let ψ be inMi and
γ be its truncated version. The coefficients mβ,γ are computed using a recursive
algorithm. For all j such that spanΨi ⊂ spanΨj and dim(Ii,j∩supportψ) = n−1
the expansion of ψ with respect of Ψj is computed by knot insertion. Then for
each functions in Sj with a non-zero coefficient the procedure is repeated giving
the coefficients of slaves of finer levels. It is possible that the same β ∈ Bk

appears during different recursions while computing the same column. In this
case care must be taken in order to appropriately sum or discard the different
contributions.

The implementation described has the same problem of the first implemen-
tation of (T)HB: unreasonable memory consumption for the 3D case. This can
be solved using the same strategy described for (T)HB.

4.3 Decoupled Hierarchical B-Splines

Contrarily to tensor-product B-splines, (T)HB do not always span the full space
of piecewise polynomials on their mesh [30]. This observation was the starting
point of the development of TDHB [29]. There decoupling is used in conjunction
with truncation in to relax the assumptions required to span the full piecewise
polynomial space. We implemented a modification of TDHB, which we call sim-
ply decoupled hierarchical B-splines (DHB). The novelty is that truncation is
abandoned in favour of recursive decoupling.
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First we introduce decoupling in a slightly more general version compared to
[29]. Let f be a function in spanΨ , let cf,ψ be the coefficients of its expansion
with respect of Ψ

f =
∑

ψ∈Ψ
cf,ψψ

and let O ⊆ Ω be a domain. The decoupling graph Γ (f, Ψ,O) is the graph whose
vertices are

ΓV (f, Ψ,O) = {ψ ∈ Ψ : cf,ψ 6= 0} (17)

and the edges are

ΓE(f, Ψ,O) = {(ψ,ψ′) : supportψ ∩ supportψ′ ∩O 6= ∅} . (18)

The decoupling operator DΨ,O is a relation that associates to function f ∈
spanΨ one or more decoupled functions in spanΨ :

DΨ,O(f) =




∑

ψ∈K
cf,ψψ : K is a connected component of Γ (f, Ψ,O)



 .

Let Ψ1, . . . , ΨL and Q1 ⊇ · · · ⊇ QL be as in (T)HB. The decoupled basis ∆
is defined by first recursively decoupling and then applying the Kraft selection
mechanism. Let ∆L = ΨL and

∆i =
⋃

ψ∈Ψi

D∆i+1,Qi\Qi+1
(ψ) . (19)

Then according to Kraft’s method:

∆ =
L⋃

i=1

{f ∈ ∆i : support f ⊆ Qi, f(Qi \ Qi+i) 6= {0}} . (20)

If for every i = 1, . . . , L− 1 the support of each function ψ ∈ Ψi+1 intersects
Qi in a connected set, then the proposed decoupled hierarchical basis is the
same as the TDHB basis. Consequently, by [29, Theorem 13] it is algebraically
complete, i.e., it generates the full spline space on the underlying hierarchical
mesh.

Implementation We proceeded as in the second implementation of (T)HB.
For this space it is necessary to have bases Bi that are not active on the whole
domain in order to discern between different outcomes of decoupling coming
from the same function. Let D̃ the tree describing the subdomains Qi \ Qi+1.
Then

D = {boxes corresponding to the leaves of D̃} = {Di}
and B is defined by setting Bi to the smallest tensor-product basis containing
the functions of Ψj active on Di for j such that Di ⊆ Qj \ Qj+1.
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The construction of M follows the definition of the space. First each ∆i

is constructed: for each function in ∆i we store its expansion with respect of
∆i+1 and its originating function in Ψi. Then the Kraft selection mechanism is
employed and for each selected function we insert a column inM. Computing the
coefficient mβ,γ for γ ∈ ∆i and β ∈ Ψj (j > i) is performed by first composing
the precomputed change of bases from ∆i to ∆j and then storing the obtained
coefficients according to the subdomain and the originating function.

4.4 Hierarchical Locally Refined Splines

HLR-splines are a special case of LR-splines. The definition of the LR-splines
starts from a pair M = (K , µ), where K is partition of Ω into boxes (Carte-
sian products of intervals) and µ assigns to each interface between two boxes
a nonnegative integer. The spline space Sp(M) associated to M is the space
of functions whose restrictions to boxes in K are polynomials of degree p in
each variable and such that their smoothness across the interface α is at least
p− µ(α).

A B-spline β is nested in a B-spline β′ relatively to Sp(M), written β ≺ β′,
if there exists a sequence of B-splines β = β1, . . . , βn = β′ such that each βi ∈
Sp(M) and such that each βi+1 is obtained from βi by knot insertion.

The LR-spline collection is the set of minimal elements for the ordering ≺
that are comparable with at least one Bernstein polynomial on Ω.

The obtained generators do not necessarily span the whole space of piecewise
polynomials satisfying the smoothness conditions, nor they are always linearly
independent [15,7]. Many properties of the generators are linked together, in
particular local linear independence and being a partition of unity are equivalent
[6].

HLR are a class of LR-splines enjoying both local linear independence and
the partition of unity property. This is obtained by mimicking the HB approach
and constructing the mesh from the grids of a sequence of tensor-product B-
spline spaces V1 ⊂ . . . ⊂ VL with Vi = spanΨi and a corresponding sequence of
subdomains Q1 ⊇ . . . ⊇ QL. The partition K is

K =
L⋃

i=1

{η element of the partition corresponding to Vi : η ⊆ Qi \ Qi+1} (21)

and µ describes the smoothness of the space Vi on Qi \ Qi+1. With this con-
struction and assuming that

– Vi is obtained by refining a single tensor-component of Vi−1, that is by h-
refinement in a single direction;

– the borders of the Qi are sufficiently separated,

the generators form a partition of unity and they are locally linearly independent
[7].
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Implementation In our implementation D is defined by:

Di = Qi \ Qi+1, DL = QL

and B by
Bi = Ψi.

For each ψ ∈ Ψi that is active on Qi we check if it is a minimal support B-
spline. If so we add a column to M and we compute the coefficients using knot
insertion as for (T)HB. If not, we refine the function by inserting recursively the
knots that are compatible with the mesh. For each of the refined functions that
is active on Qi a column is added to M (care must be taken to avoid duplicated
columns).

5 Examples

This section contains some selected examples that can be useful to grasp the
similarities and the differences between the implemented spline spaces. The basis
functions have been plotted with Paraview [1] using the data produced with the
implementations described in the previous section.

Example 1. We consider bivariate hierarchical splines of bi-degree (4, 4) on a
mesh shown in Fig. 5. The function with the support indicated by the red tiling
is selected in the hierarchical basis (Fig. 6 left), truncated in the truncated
hierarchical basis (Fig. 6 right) and decoupled into four different functions (that
are selected) in the decoupled hierarchical basis (Fig. 7).

Fig. 5: Hierarchical mesh and a support of a function from Example 1.
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Fig. 6: Function with the support in Fig. 5 as selected into the hierarchical basis
(left) and truncated in the truncated basis (right).

Example 2. The design process often involves several patches. In order to achieve
continuity between the patches without losing accuracy, it is necessary that the
restrictions of the two spaces are compatible on the interface. That means that
one has to be a subspace of the other.

Sometimes a new patch must be introduced to bridge between two given
patches that should not be modified. Thus the restriction of the space of the
bridge patch to each boundary must be a superspace of the restrictions of the
other space. If the two given patches have different knot vectors, THB-splines
would lead to significant refinement. On the other hand, the TBPN space can
achieve interface compatibility without adding unnecessary degrees of freedom.

We have constructed cubic basis on the mesh depicted in Fig. 8 and observed
that the THB basis has 72 degrees of freedom, whereas the TBPN basis only
has 60.

Example 3. We compare cubic HB, THB, DHB and HLR on a mesh shown in
Fig. 9. For each of these spaces, we plot all the basis functions in Fig. 10. Note
that the number of basis function in the middle of the patch is higher for HLR
and DHB. In particular, HB and THB basis have 49 elements each; HLR and
DHB have 53 and are complete, as the meshes fulfill the assumptions from [7]
and [29].

6 Conclusions

The effectiveness of the proposed framework is demonstrated by the implemen-
tation of various spline spaces that share the same evaluation code. The space-
specific code is reduced to the initialization of the required data structures as
demonstrated by the implementations of HB, THB, TBPN, DHB and HLR.
Moreover, the proposed approach grants the following advantages:

1. code reduction both by sharing evaluation between different spaces and be-
tween spaces and functions;
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Fig. 7: Decoupled functions stemming from the B-spline with the support indi-
cated in Fig. 5.

2. arbitrary local bases that, in principle, open the way to experimentation
with hierarchical constructions based on generalized splines [5], or to the use
of ad-hoc functions near a priori known singularities;

3. transparent handling of multipatch domains.
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