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Abstract

We consider the fluid mechanical problem of identifying the critical
yield number Yc of a dense solid inclusion (particle) settling under grav-
ity within a bounded domain of Bingham fluid, i.e. the critical ratio of
yield stress to buoyancy stress that is sufficient to prevent motion. We
restrict ourselves to a two-dimensional planar configuration with a single
anti-plane component of velocity. Thus, both particle and fluid domains
are infinite cylinders of fixed cross-section. We show that such yield num-
bers arise from an eigenvalue problem for a constrained total variation.
We construct particular solutions to this problem by consecutively solv-
ing two Cheeger-type set optimization problems. We present a number
of example geometries in which these geometric solutions can be found
explicitly and discuss general features of the solutions. Finally, we con-
sider a computational method for the eigenvalue problem, which is seen
in numerical experiments to produce these geometric solutions.

1 Introduction

100 years ago Eugene Bingham [9] presented results of flow experiments through
a capillary tube, measuring the flow rate and pressure drop for various materials
of interest. Unlike with simple viscous fluids, he recorded a “friction constant”
(a stress) that must be exceeded by the pressure drop in order for flow to occur,
and thereafter postulated a linear relationship between applied pressure drop
and flow rate. This empirical flow law evolved into the Bingham fluid: the
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archetypical yield stress fluid. However, it was not until the 1920’s that ideas of
visco-plasticity became more established [10] and other flow laws were proposed
e.g. [29]. These early works were empirical and focused largely at viscometric
flows. Proper tensorial descriptions, general constitutive laws and variational
principles waited until Oldroyd [44] and Prager [46]. These constitutive models
are now widely used in a range of applications, in both industry and nature; see
[5] for an up to date review.

An essential feature of Bingham fluids flows is the occurrence of plugs: that
is regions within the flow containing fluid that moves as a rigid body. This
occurs when the deviatoric stress falls locally below the yield stress, which is a
physical property of the fluid. Plug regions may occur either within the interior
of a flow or may be attached to the wall. Generally speaking, as the applied
forcing decreases, the plug regions increase in size and the velocity decreases in
magnitude. It is natural that at some critical ratio of the driving stresses to the
resistive yield stress of the fluid, the flow stops altogether. This critical yield
ratio or yield number, say Yc, is the topic of this paper.

Critical yield numbers are found for even the simplest 1D flows, such as
Poiseuille flows in pipes and plane channels or uniform film flows, e.g. paint on
a vertical wall. These limits have been estimated and calculated exactly for
flows around isolated particles, such the sphere [8] (axisymmetric flow) and the
circular disc [48, 51] (2D flow). Such flows and have practical application in
industrial non-Newtonian suspensions, e.g. mined tailings transport, cuttings
removal in drilling of wells, etc.

The first systematic study of critical yield numbers was carried out by
Mosolov & Miasnikov [42, 43] who considered anti-plane shear flows, i.e. flows
with velocity u = (0, 0, w(x1, x2)) in the x3-direction along ducts (infinite cylin-
ders) of arbitrary cross-section Ω. These flows driven by a constant pressure
gradient only admit the static solution (w(x1, x2) = 0) if the yield stress is suffi-
ciently large. Amongst the many interesting results in [42, 43] the key contribu-
tions relate to exposing the strongly geometric nature of calculating the critical
yield number Yc. Firstly, they show that Yc can be related to the maximal ratio
of area to perimeter of subsets of Ω. Secondly, they develop an algorithmic
methodology for calculating Yc for specific symmetric Ω, e.g. rectangular ducts.
This methodology is extended further by [31].

Critical yield numbers have been studied for many other flows, using ana-
lytical estimates, computational approximations and experimentation. Critical
yield numbers to prevent bubble motion are considered in [20, 53]. Settling
of shaped particles is considered in [33, 47]. Natural convection is studied in
[34, 35]. The onset of landslides are studied in [30, 32, 28] (where the termi-
nologies “load limit analysis” and “blocking solutions” have also been used). In
[24, 25] we have studied two-fluid anti-plane shear flows, that arise in oilfield
cementing.

In this paper we study critical yield numbers for two-phase anti-plane shear
flows, in which a particulate solid region Ωs settles under gravity in a surround-
ing Bingham fluid of smaller density. As the particle settles downwards the
surrounding fluid moves upwards, with zero net flow: a so called exchange flow.
Our objective is to derive new results that set out an analytical framework and
algorithmic methodology for calculating Yc for this class of flows.
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Our analysis naturally leads to the so-called Cheeger sets, that is, minimizers
of the ratio of perimeter to volume inside a given domain. In recent years, start-
ing with [36], many of their properties have been studied, particularly regularity
and uniqueness in the case of convex domains [37, 12]. These sets constitute
examples of explicit solutions to the total variation flow, which has motivated
their investigation [3, 6, 7].

A related line of research is the use of total variation regularization in image
processing. In particular, set problems like those treated here appear in image
segmentation [17] and as the problem solved by the level sets of minimizers
[14, 1, 13] of the Rudin Osher Fatemi functional [50]. The analogy between
anti-plane shear flows of yield stress fluids and imaging processing techniques
has been exploited previously by the authors in the context of nonlinear diffusion
filtering using total variation flows or bounded variation type regularization. In
our previous work [23, 26] we exploited physical insights from the fluid flow
problem in order to derive optimal stopping times for diffusion filtering. In this
paper image processing insights are applied to the fluid flow problems.

1.1 Summary

Let us describe the key points of what follows. In all of this paper we consider
geometries consisting of infinite cylinders and anti-plane velocities. First, we
write the simplified Navier-Stokes equations for the inclusion of a Newtonian
fluid in a Bingham fluid, and the corresponding variational formulation. Then,
through the notion of Γ-convergence, we make the viscosity of the inclusion tend
to infinity, that is, we study the flow of a solid inclusion into a Bingham fluid.
We recall the usual notion of critical yield number, seen as the supremum of an
eigenvalue quotient (3.8) in the standard Sobolev space H1, which writes after
simplification as a minimization of total variation with constraints.
Since it is well known that such a problem does not necessarily have a solution
in H1, we relax this problem enlarging the admissible space to functions with
bounded variation, which ensures the existence of a minimizer.
We then study the relaxed and show that we can construct minimizers that
attain only three values and whose level-sets are solutions of simple geometrical
problems closely related to the Cheeger problem (see Def. 3.10). Furthermore,
we show how the geometrical properties of Cheeger sets are reflected in the
structure of our three level-set minimizer, and we give several explicit exam-
ples exhibiting the influence of the geometry of the domain and the particles in
that of the solution. In particular, we emphasize the role of non-uniqueness of
Cheeger sets in the non uniqueness of our minimizers.
Finally, we provide a discrete formulation that can be optimized with standard
algorithms used in image processing (in our case [16]), we prove its convergence
to the continuous problem, and illustrate its behavior in a non-uniqueness frame-
work.
It has to be noticed that the restriction to anti-plane flows and equal particle
velocities is fundamental in all this work. The in-plane flow remains an exciting
challenge.
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1.2 Outline

An outline of our paper is as follows. Section 2 outlines the physical flow models
considered, deriving the yield number Y . In Section 3 we develop the back-
ground theory for the exchange flow problem, defining the critical yield number
Yc and the associated minimization problem. In Section 4 we prove the existence
of minimizers attaining three different values, and prove geometric properties
of the level sets. The two last sections are devoted to analytic examples and
numerical computations.

2 Modelling

As discussed in Section 1 we study anti-plane shear flows of particles within a
Bingham fluid. Anti-plane shear flows have velocity in a single direction and the
velocity depends on the 2 other coordinate directions. We assume the solid is
denser than the fluid (ρ̂f < ρ̂s) and align the flow direction x̂3 with gravity. In
the anti-plane shear flow context particles (solid regions) are infinite cylinders,
represented as Ωs×R ⊆ R3, moving uniformly in the x̂3-direction. The flows are
thus described in a two-dimensional region (x̂1, x̂2) ∈ Ω. The fluid is contained
in (Ωf := Ω\Ωs) × R, and is considered to be a Bingham fluid. The flow
variables are the deviatoric stress τ̂ , pressure p̂ and velocity ŵ, all of which are
independent of x̂3. Only steady flows are considered.

The fluid is characterized physically by its density, yield stress and plastic
viscosity: ρ̂f , µ̂f and τ̂Y , respectively. We adopt a fictitious domain approach
to modelling the solid phase, treating it initially as a fluid and then formally
taking the solid viscosity to infinity. The solid phase density and viscosity are
ρ̂s and µ̂s. All the above parameters are assumed constant.

The incompressible Navier-Stokes equations simplify to only the x̂3-momentum
balance. This and the constitutive laws are:

d̂iv τ̂ =

{
p̂x3 − ρ̂f ĝ in Ω̂f ,

p̂x3 − ρ̂sĝ in Ω̂s ,
τ̂ =





(
µ̂f + τ̂Y

|∇̂ŵ|

)
∇̂ŵ in Ω̂f ,

µ̂s∇̂ŵ in Ω̂s ,
(2.1)

where ĝ is the gravitational acceleration. Strictly speaking the fluid constitutive
law applies only to where |τ̂ | > τ̂Y .

The above model and variables are dimensional, for which we have adopted
the convention of using the “hat” accent, e.g. ĝ. We now make the model
dimensionless by scaling. In (2.1) the driving force for the motion is the density
difference, which results in a buoyancy force that scales proportional to the size
of the particle. Thus, we scale lengths with L̂:

L̂ =
√

area(Ωs) , x = (x1, x2) :=
1

L̂
(x̂1, x̂2) , ∇ = L̂∇̂ , div = L̂ d̂iv.

An appropriate measure of the buoyancy stress is (ρ̂s − ρ̂f )ĝL̂, which we use

to scale τ̂ = (ρ̂s − ρ̂f )ĝL̂τ . For the pressure gradient in (2.1) we subtract
the hydrostatic pressure gradient from the fluid phase and scale the modified
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pressure gradient with (ρ̂s − ρ̂f )ĝ, defining:

f =
p̂z − ρ̂f ĝ

(ρ̂s − ρ̂f )ĝ
.

The scaled momentum equations are:

div τ =

{
f in Ω̂x3

,

f − 1 in Ω̂s ,
(2.2)

For the constitutive laws, we define a velocity scale ŵ0 by balancing the
buoyancy stress with a representative viscous stress in the fluid:

(ρ̂s − ρ̂f )ĝL̂ =
µ̂f ŵ0

L̂
.

Scaled constitutive laws are:

τ =
1

ε
∇w, in Ω̂s;




τ =

(
1 +

Y

|∇w|

)
∇w |τ | > Y,

|∇w| = 0 |τ | ≤ Y.
in Ω̂f (2.3)

We note that there are two dimensionless parameters: ε and Y , defined as:

ε :=
µ̂f
µ̂s

, Y :=
τ̂Y

(ρ̂s − ρ̂f )ĝL̂
.

Evidently, ε is a viscosity ratio. Soon we shall consider the solid limit ε → 0,
and thereafter ε plays no role in our study.

The parameter Y is called the yield number and is central to our study. We
see that physically Y balances the yield stress and the buoyancy stress. As
buoyancy is the only driving force for motion, it is intuitive that there will be
no flow if Y is large enough. The smallest Y for which the motion is stopped
is called the critical yield number, Yc, although this will be defined rigorously
later.1

In terms of w the momentum equation is:

div
((

1 + Y
|∇w|

)
∇w
)

= f in Ωf ,

div
(

1
ε∇w

)
= f − 1 in Ωs .

(2.4)

It is assumed that Ω has finite extent and at the stationary boundary we assume
the no-slip condition:

w ≡ 0 on ∂Ω . (2.5)

At the interface between the two phases the shear stresses are assumed contin-
uous, leading to the transmission condition:

1

ε
∇w · ns +

(
1 +

Y

|∇w|

)
∇w · nf = 0 on ∂Ωs. (2.6)

1The yield number is sometimes referred to as the yield gravity number or yield buoyancy
number. As the viscous stresses are also driven by buoyancy, an alternate interpretation would
be as a ratio of yield stress to viscous stress, which is referred to as the Bingham number.
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Here ns, nf denote the outer unit-normals on ∂Ωs, ∂Ωf , and the equality has
to hold in a weak sense.

We note that for given f and ε > 0 fixed, the solution ŵf of (2.4), (2.6),
(2.5) is equivalently characterized as the minimizer of the functional

Fε,f (w) := Gε(w) + f

ˆ

Ω

w with

Gε(w) :=
1

2

ˆ

Ωf

|∇w|2 +
1

2ε

ˆ

Ωs

|∇w|2 + Y

ˆ

Ωf

|∇w| −
ˆ

Ωs

w
(2.7)

over the space H1
0 (Ω).

3 Exchange Flow Problem

Physically, as a solid particle settles in a large expanse of incompressible fluid, its
downwards motion causes an equal upwards motion such that the net volumetric
flux is zero. Here we wish to mimic this same scenario in the anti-plane shear
flow context. Therefore, we are interested in the exchange flow problem, which
is defined as follows.

Definition 3.1. Find the pair (w, f) ∈ H1
0 (Ω)× L2(Ω) that satisfies:

• Equation (2.4),

• the transmission condition (2.6),

• the homogeneous boundary conditions (2.5),

• and the exchange flow condition
ˆ

Ω

w(x) dx = 0 . (3.1)

That is, for the exchange flow problem the pressure multiplier f is adjusted such
that (3.1) is satisfied. We consider two formulations of this problem, which will
be shown to be equivalent:

1. Finding a saddle point of the functional

Fε(w, f) := Fε,f (w) (3.2)

on H1
0 (Ω) × R, with Fε,f from (2.7). In other words, f is a Lagrange

multiplier in the saddle point problem for satisfying the constraint (3.1).

2. Incorporating the constraint (3.1) as part of the domain of definition.
Thus we consider minimization of the functional

G�ε (w) :=

{
Gε(w) if w ∈ H1

� (Ω) :=
{
w ∈ H1

0 (Ω) :
´

Ω
w = 0

}
,

+∞ for w ∈ H1
0 (Ω)\H1

� (Ω) .
(3.3)

We show in Lemma 3.3 that a minimizer of G�ε exists. If w̃ minimizes G�ε ,
then the corresponding f̃ is determined by evaluating the left hand side
of (2.4) for w̃.
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In the following we present some basic properties of Fε and Fε,f , which are
then used to investigate the Γ-limit for ε → 0+, that describes the movement
of solid particles in a fluid.

Lemma 3.2. The functional Fε(·, ·) defined in (3.2) is concave-convex in the
sense of Rockafellar [49], which means that it is convex with respect to the first
component w, and concave with respect to the second component.

Lemma 3.3. The functionals Fε,f (·) and G�ε (·) attain their minimum. If the
minimizer w∗ of Fε,f (·) satisfies

´

Ω
w∗ = 0, then it is also a minimizer of G�ε (·).

Proof. In order to prove the existence of a minimizer of w → Fε,f (w) for f fixed,
we show that the functional is coercive and lower semi-continuous:

i) The functional Fε,f (w) is coercive with respect to w. Note that for all δ > 0
and g ∈ R, and denoting by |Ω| the Lebesgue measure of Ω, it follows from
Poincare’s inequality that

g

ˆ

Ω

w > − 1

2δ2
g2 − δ2

2

(
ˆ

Ω

|w|
)2

> − 1

2δ2
g2 − δ2

2
|Ω|

ˆ

Ω

w2

> − 1

2δ2
g2 − C δ

2

2
|Ω|

ˆ

Ω

|∇w|2 ,

(3.4)

and thus by putting g = −1 it follows

−
ˆ

Ωs

w > − 1

2δ2
− C δ

2

2
|Ω|

ˆ

Ω

|∇w|2 . (3.5)

With g = f it follows from (3.4) and (3.5) that

f

ˆ

Ω

w −
ˆ

Ωs

w > − 1

2δ2
(f2 + 1)− Cδ2|Ω|

ˆ

Ω

|∇w|2 .

Now, choosing δ > 0 such that

0 < Cδ2|Ω| < 1

2
min

{
1,

1

ε

}
,

the coercivity with respect to w follows.

ii) For ε < 1, we now have 2C|Ω| < 1/δ2 and thus we see that Fε,f is bounded
from below by −C (f2 + 1)|Ω|.

iii) The functional Fε,f is weakly lower semi-continuous: The functional Fε,f
can be rewritten as

Fε,f (w) =

ˆ

Ω

g(x,w(x),∇w(x))dx ,

where p→ g(s, z, p) is convex. This, together with the boundedness of Fε,f
below, ensures (see for instance [21, Theorem 1, p 468]) that Fε,f (w) is
weakly lower semi-continuous.
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With this (coercivity, boundedness and weak lower semi-continuity) existence of
a minimizer of w → Fε,f (w) follows immediately (see [21, Theorem 2, p.470]).

The proof of existence of minimizer of F�ε requires in addition to show that
H1
� (Ω) is weakly closed. Therefore note first that the set H1

� (Ω) is convex
(linearity of the constrained) and closed with respect to the norm topology on
H1
� (Ω). From this we can conclude that H1

� (Ω) is weakly closed, so that (see [4,
Theorem 3.3.2]) the functional attains a minimium on this subset.

Corollary 3.4. Fε(·, ·) attains a saddle-point.

Proof. We use the results of [49], stating that for a concave-convex functional
K the saddle point is the only critical point of K. For our case K = Fε this
means that

(0, 0) ∈ ∂w∇fFε(w∗, f∗) ,
or in other words

ˆ

Ω

w∗ = 0 and w∗ = argminFε,f (w, f∗) .

This, in particular, means that w∗ = argminG�ε (w).

3.1 Solid limit

Now we want to study the behavior of the problem when µ̂s → ∞ (so that Ωs
becomes rigid), that is ε → 0. We will see that it leads to minimization of the
functional

G� : H1
0 (Ω)→ R ∪ {+∞} .

w →
{

1
2

´

Ωf
|∇w|2 + Y

´

Ωf
|∇w| −

´

Ωs
w if w ∈ H1

�,c(Ω)

+∞ else

(3.6)

where we define

H1
�,c(Ω) :=

{
w ∈ H1

0 (Ω) :

ˆ

Ω

w = 0, ∇w = 0 in Ωs

}
.

Lemma 3.5. The functionals G�ε defined in (3.3) Γ−converge to G� in H1
0 (Ω),

that is for all w ∈ H1
0 (Ω), and all sequences {εj}j∈N converging to 0 we have:

i) (lim inf inequality) for every sequence {wj}j∈N converging to w in the norm
topology

G�(w) 6 lim inf
j→∞

G�εj (wj)

ii) (lim sup inequality) there exists a sequence {wj}j∈N converging to w in the
norm topology and

G�(w) > lim sup
j→∞

G�εj (wj) . (3.7)

Proof. Let w ∈ H1
0 (Ω) and let εj → 0+ be a decreasing sequence with limit 0.
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i) For every sequence wj converging to w in H1
0 (Ω), we have

lim
j→∞

ˆ

Ω

|wj | =
ˆ

Ω

|w| ,

lim
j→∞

ˆ

Ω

|∇wj |2 =

ˆ

Ω

|∇w|2 ,

lim
j→∞

ˆ

Ω

wj =

ˆ

Ω

w,

lim
j→∞

ˆ

Ωs

wj =

ˆ

Ωs

w,

such that for all w ∈ H1
�,c(Ω)

G�(w) =
1

2

ˆ

Ωf

|∇w|2 + Y

ˆ

Ωf

|∇w| −
ˆ

Ωs

w

6 lim inf
j→∞

(
1

εj

ˆ

Ωs

|∇wj |2 +
1

2

ˆ

Ωf

|∇wj |2 + Y

ˆ

Ωf

|∇wj | −
ˆ

Ωs

wj

)

6 lim inf
j→∞

G�εj (wj) .

In the case where w is not constant in Ωs, F�(w) = +∞ and also lim infj→∞ Fεj ,f (wj)→
∞ since limj

´

Ωs
|∇wj |2 6= 0 such that 1

εj

´

Ωs
|∇wj |2 →∞.

ii) In the case where w 6∈ H1
�,c(Ω), we have

lim supG�εj (w) =∞ = G�(w).

For w ∈ H1
�,c(Ω) we have that

´

Ωs
|∇w|2 = 0. This shows that the constant

sequence wj ≡ w satisfies (3.7).

Since the G�ε (·) are clearly equicoercive we conclude (see [11, Theorem 1.21])
that

Corollary 3.6. The sequence of minimizers of G�ε (·) converges strongly in H1

to the minimizer of G�(·) as ε→ 0.

3.2 Critical yield numbers and total variation minimiza-
tion

We now want to identify the limiting yield number Y such that the solution of
the exchange flow problem satisfies w ≡ 0 in Ω, i.e. both solid and fluid motions
are stagnating. The existence and uniqueness of the exchange flow problem can
be seen from the considerations in Section 3.

Definition 3.7. The critical yield number is defined as follows:

Yc := sup
H1
�,c(Ω)

´

Ωs
v

´

Ω
|∇v| . (3.8)

9



Assume that wc minimizes G�, defined in (3.6). Then, by using the Euler-
Lagrange equation of the functional (3.6) in weak form and inserting as test-
function the minimizer wc, we get the estimate:

ˆ

Ω

|∇wc|2 =

ˆ

Ωf

|∇wc|2

=

ˆ

Ωs

wc − Y
ˆ

Ωf

|∇wc|

6
ˆ

Ωf

|∇wc|
[

sup
H1
�,c(Ω)

´

Ωs
v

´

Ωf
|∇v| − Y

]

= (Yc − Y )

ˆ

Ωf

|∇wc| .

Thus wc ≡ 0 if Y > Yc.

Assumption 3.8. We are interested in computing Yc. Even if functions in
H1
�,c(Ω) could take different values in different connected components of Ωs, in

what follows we restrict ourselves to functions which are constant in Ωs. This
assumption covers the cases in which Ωs is connected (Examples 5.3, 5.4, 5.6,
Figure 10), when there are two connected components arranged symetrically
(Example 5.7, Figure 11), or when a physical assumption can be made that the
particles are linked and have the same possible velocities (Example 5.8).

Under assumption 3.8 we set v = 1 in Ωs, and therefore we need to minimize
the total variation over the set

H1
�,1(Ω) :=

{
v ∈ H1

0 (Ω) :

ˆ

Ω

v = 0 , v ≡ 1 in Ωs

}
. (3.9)

It is easy to see that this functional does not necessarily attain a minimum.
Hence we use standard relaxation techniques.

Relaxation. A function u ∈ L1(R2) is said to be of bounded variation, when
its distributional gradient Du is a (vector valued) Radon measure with finite
mass, that is

TV (u) := |Du| (R2)

= sup

{
ˆ

Ω

u div z dx : z ∈ C∞0 (R2;R2), |z|L∞(R2;R2) 6 1

}

< +∞.

The class of such functions is denoted by BV (R2). It is a Banach space when
endowed with the norm

ˆ

R2

|u(x)| dx+ |Du| (R2) .

We recall that BV (R2) ⊆ L2(R2).
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The relaxation of minimizing TV in H1
�,1(Ω) with respect to strong conver-

gence in L1 turns out to be [4, Proposition 11.3.2] minimizing total variation
over the set

BV�,1 :=

{
v ∈ BV (R2) :

ˆ

Ω

v = 0 , v ≡ 1 in Ωs, v ≡ 0 in R2 \ Ω

}
. (3.10)

Since BV�,1 ⊆ BV(Ω̃) and BV(Ω̃) ⊆ L1(Ω̃) with compact embedding ([2, Corol-

lary 3.49]) for every bounded Ω̃ ⊇ Ω with dist(∂Ω, ∂Ω̃) > 0, the condition
´

Ω
v = 0 and compactness in the weak-* topology of BV(Ω̃) ([2, Theorem 3.23])

imply that there exists at least one minimizer of TV in BV�,1.

Remark 3.9. Note that the total variation appearing in the relaxed problem is
in R2, meaning that jumps at the boundary of Ω are counted. Likewise, in the
rest of the paper, every time we speak of total variation with Dirichlet boundary
conditions on the boundary of a set A, we mean the total variation in R2 of
functions with their values fixed on R2 \A.

In the sequel we will repeatedly use the relation between total variation and
perimeter of sets, that we now define.

A measurable set E ⊆ R2 is said to be of finite perimeter in R2 if 1E ∈
BV (R2). The perimeter of E is defined as PerE := TV (1E), where 1E is the
indicatrix (or characteristic function) of the set E.

We recall that when E is a set of finite perimeter with regular boundary (for
instance, Lipschitz), its perimeter PerE coincides with H1(∂E), where H1 is the
1-dimensional Hausdorff measure. Moreover, we denote the Lebesgue measure
of E by |E|, so that |E| :=

´

R2 1E .

We recall the so-called coarea formula for u ∈ BV (R2) compactly supported

TV (u) =

ˆ ∞

−∞
Per(u > t) dt =

ˆ ∞

−∞
Per(u < t) dt, (3.11)

as well as the layer cake formula, valid for u ∈ L1(R2)
ˆ

R2

u =

ˆ ∞

−∞
|{u > t}| dt. (3.12)

For more properties and references on functions of bounded variation and sets
of finite perimeter we refer to [2].

Particularly important for our analysis are Cheeger sets:

Definition 3.10. (see [45]) Let Ω0 be a set of finite perimeter. A set E0

minimizing the ratio

E 7→ PerE

|E|
over subsets of Ω0, is called a Cheeger set of Ω0. The quantity

λ =
PerE0

|E0|
is called the Cheeger constant of Ω0. We recall that if Ω̂ is open and bounded,
at least one Cheeger set exists [38, Proposition 2.5, iii)]. In addition, since being
a Cheeger set is stable by union, there exists a unique maximal (with respect
to ⊂) Cheeger set.
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4 Piecewise constant minimizers

We search now for simple minimizers of TV over BV�,1. We prove that one can
find a minimizer that attains only three values, one of them being zero.
After investigation of the particularly simple case where Ωs is convex, we tackle
the general case in four steps.

• Starting from a generic minimizer, in Proposition 4.2, we construct a (pos-
sible different) minimizer whose negative part is constant.

• Based on the minimizer with a negative constant part, we then construct a
(possible different) minimizer with constant positive part (Theorem 4.3).
Thus there exists a minimizer with three different values, a negative one,
a positive one (which is constrained to be 1), and 0.

• We formulate the total variation minimization for three-level functions as
a geometrical problem for optimizing the characteristic sets of the positive
and negative value and study the curvature of the corresponding interfaces.

• Finally, we show that we can obtain these optimized characteristic sets by
solving two consecutive Cheeger-type problems (Theorem 4.10).

4.1 Ωs is convex

Proposition 4.1. If Ωs is convex, then the function

u0 := 1Ωs − α1Ω− ,

where Ω− is a Cheeger set of Ω \ Ωs and α = |Ωs|
|Ω−| , is a minimizer of TV in

BV�,1.

Proof. Let u be a minimizer. We write

u = u+ − u−, with u+, u− > 0.

Then, we have (by the coarea formula for example)

TV (u) = TV (u+) + TV (u−). (4.1)

Firstly, note that u 6 1: To see this note that if |{u > 1}| > 0, then the
function

û := u · 1{0<u<1} + 1{u>1} −
´

u · 1{0<u<1} + 1{u>1}
´

u+
u−.

satisfies
´

û = 0 because
´

u− =
´

u+, and moreover

TV (û) = TV (u · 1{0<u<1} + 1{u>1}) +

´

u · 1{0<u<1} + 1{u>1}
´

u+
TV (u−)

< TV (u+) + TV (u−),

which contradicts that u is a minimizer.

12



Then, let us prove that we can choose u+ = 1Ωs . Thanks to the coarea
formula, we can write

TV (u+) =

ˆ 1

t=0

Per(u > t) dt.

Since u = 1 on Ωs, for every 0 < t < 1, we have {u > t} ⊃ Ωs which implies
that Per(u > t) > Per Ωs by the convexity of Ωs (since the projection onto a
convex set is a contraction). As a result, we reduce the total variation of u+

by replacing it with 1Ωs . Replacing then u− by ηu− where η = |Ωs|
´

u+ < 1, we

produce a competitor ũ = 1Ωs − ηu−, which has, since u is a minimizer, the
same total variation as u.

Now, notice that ũ− minimizes total variation with constraints

u = 0 on (R2 \ Ω) ∪ Ωs,

ˆ

ũ− = |Ωs|.

We can link this to the Cheeger problem in Ω \ Ωs. We denote

λ = min
E⊂(Ω\Ωs)

PerE

|E|

and E0 a minimizer of this ratio.

Then, one can write, observing that for t 6 0, {ũ < t} ⊂ (Ω \ Ωs)

TV (ũ−) =

ˆ 0

−∞
Per(ũ < t) dt > λ

ˆ 0

−∞
|ũ < t|dt = λ

ˆ

ũ−

= λ|Ωs| =
PerE0

|E0|
|Ωs| = TV

( |Ωs|
|E0|

1E0

)
.

Finally, (4.1) implies that the function

u0 := 1Ωs −
|Ωs|
|E0|

1E0

is a minimizer of TV which has the expected form.

4.2 The general case

We no longer assume that Ωs is convex.

Now, for any minimizer u on TV in BV�,1, there exists a (possibly different)
minimizer in which u− is replaced by a constant function on the characteristic set
of the negative part of u−. To prove this result, we use the following proposition:

Proposition 4.2. Let Θ+ := Suppu+. Then,

u0 := u+ −
´

u+

|Ω−|
1Ω− , (4.2)

where Ω− is a Cheeger set of Ω \ Θ+, is a minimizer of TV on BV�,1. In
addition, for every t 6 0, the level-sets {u < t} are also Cheeger sets of Ω \Θ+.

13



Proof. First, we notice that u− minimizes TV with constraints
´

u− =
´

u+

and u− = 0 on Θ+ ∪ (R2 \ Ω). Let us show that u− minimizes

TV (v)
´

v

among all functions supported in Ω \Θ+. Indeed, if we have, for such a v,

TV (u−)
´

u−
>
TV (v)
´

v
,

then v− :=
´

u+

´

v
v satisfies TV (v−) =

´

u+

´

v
TV (v) < TV (u−), which is a contra-

diction. Then, it is well known (see, once again, [45]) that the minimizer v can
be chosen as an indicatrix of a Cheeger set Ω− of Ω \Θ+. That shows that u0

is a minimizer.

Now, just introduce λ = Per Ω−
|Ω−| and use the previous computations to write

λ

ˆ

u+ = TV (u−) =

ˆ 0

−∞
Per(u < t) dt =

ˆ 0

−∞

Per(u < t)

|u < t| |u < t|dt

>
ˆ 0

−∞
λ|u < t|dt = λ

ˆ

u−.

Since
´

u+ =
´

u−, all these inequalities are equalities and for a.e. t, we have
Per(u<t)
|u<t| = λ and {u < t} is therefore a Cheeger set of Ω \Θ+.

In the following, starting from u0, we show that there exists another mini-
mizer of TV if we replace u+

0 by the indicatrix of a set Ω1.

Theorem 4.3. There exists a minimizer of TV in BV�,1 which has the form

uc := 1Ω1
− |Ω1|
|Ω−|

1Ω− , (4.3)

where Ω1 is a minimizer of the functional

T (E) := Per(E) +
Per(Ω−)

|Ω−|
|E| (4.4)

over Borel sets E with Ωs ⊂ E ⊂ Ω \ Ω−. In fact, for every 0 6 t < 1, the
level-sets Et := {u > t} of every minimizer u minimize T .

Proof. Let u0 be the minimizer of TV in BV�,1 from (4.2). Then

TV (u0) = TV (u+
0 ) + TV (u−0 ) = TV (u+

0 ) +
Per(Ω−)

|Ω−|

ˆ

u+
0

Then from (3.11), (3.12), and (4.4) it follows:

TV (u0) =

ˆ 1

0

Per(u0 > t) +
Per(Ω−)

|Ω−|
|u0 > t|dt

=

ˆ 1

0

T (u0 > t) dt

≥ T (Ω1).
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That means, that if we replace u+ by 1Ω1
, TV is decreased and thus

TV (uc) 6 TV (u0) 6 TV (u).

Because uc satisfies
´

uc = 0 we see from the last inequality that uc is a min-
imizer of TV in BV�,1. As before, since u is a minimizer, the inequalities are
equalities and we infer the last statement.

4.3 Geometrical properties of three-valued minimizers

We introduce the set

M :=

{
(E1, E−) ⊂ Ω |

◦
E1 ∩

◦
E− = ∅, Ωs ⊂ E1

}
.

and the functional

S(E1, E−) = Per(E1) +
|E1|
|E−|

Per(E−).

In addition, for (E1, E−) ∈M we define the function

uc(E1, E−) = 1E1 −
|E1|
|E−|

1E− .

Proposition 4.4. S has a minimizer in M .

Proof. Let (En1 , E
n
−) be a minimizing sequence for S in M . The conditions

Ωs ⊂ E1 and E− ⊂ Ω ensure that Per(En1 ) + Per(En−) 6 C, so that standard
compactness and lower semicontinuity results for sets of finite perimeter [2]
imply existence of a minimizer.

Using Theorem 4.3, we see that the connection between minimizing TV in
BV�,1 and minimizing S is as follows:

Proposition 4.5. If the function uc := uc(Ω1,Ω−) minimizes TV in BV�,1,
then (Ω1,Ω−) minimizes S in M . Conversely, if (Ω1,Ω−) minimizes S in M ,
then uc(Ω1,Ω−) minimizes TV in BV�,1.

Remark 4.6. The proposition explains why, in the following, we consider the
shape optimization problem of minimizing S in M .
We remark that this produces minimizers of TV in BV�,1 of a certain (geometric)
form, which are not necessarily all of them.

In what follows, we consider small perturbations of a minimizer (Ω1,Ω−) of
S in which only one of the sets is changed. This will be enough to determine
the curvature of their boundaries, which we split as follows

A1− = {x ∈ Ω : x ∈ ∂Ω1, x ∈ ∂Ω−} , A10 = {x ∈ Ω : x ∈ ∂Ω1, x /∈ ∂Ω−} ,
A0− = {x ∈ Ω : x /∈ ∂Ω1, x ∈ ∂Ω−} , As− = {x ∈ Ω : x ∈ ∂Ωs, x ∈ ∂Ω−} ,

As0 = {x ∈ Ω : x ∈ ∂Ωs, x /∈ ∂Ω−} .
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Fig. 1: Interfaces present in minimizers of S.

We will denote by κ1, κ− the curvature functions of Ω1,Ω−, defined in ∂Ω1, ∂Ω−
respectively and computed using their outer normal vector n1, n− (i.e. a circle
has positive curvature).

For a generic set of finite perimeter in R2 only a distributional curvature is
available [40, Remark 17.7]. However, since Ω1 and Ω− minimize the function-
als S(·,Ω−) and S(Ω1, ·) respectively, regularity theorems for Λ-minimizers of
the perimeter [40, Theorem 26.3] are applicable to them. In consequence, A1−,
A0− and A10 \ As0, are locally graphs of C1,γ functions. Combined with stan-
dard regularity theory for uniformly elliptic equations [27], one obtains higher
regularity, so that, in particular, the curvatures κ1, κ− are defined classically on
those interfaces (on ∂Ωs ∩ ∂Ω1, no information is provided).

Proposition 4.7. Let (Ω+,Ω−) be a minimizer of S. Then, the curvatures κ−,
κ1 of the interfaces A0− and A10 \ As0 are given by

κ− =
Per Ω−
|Ω−|

on A0− and κ1 = −Per Ω−
|Ω−|

on A10 \ As0.

In consequence, A0− and A10 \ As0 are composed of pieces of circles of radius
|Ω−|

Per Ω−
.

Proof. For every x ∈ A10 \As0 we consider a perturbed domain Ωw1 (see Figure
1), such that Ωw1 = (I + −→w )(Ω1), where −→w is supported in a neighborhood of
x. Calling w := −→w · n1 and thanks to the first variation formula [40, Th. 17.5
and Rk. 17.6] we can develop the first variation of S(·,Ω−) at a minimizer Ω1

in direction w and obtain
ˆ

A10\As0
κ1w + w

Per(Ω−)

|Ω−|
dH1 = 0.

Since w was arbitrary, we get the optimality condition for Ω1:

κ1 +
Per(Ω−)

|Ω−|
= 0 in A10 \ As0.

Proceeding similarly for Ω− we obtain

1

|Ω1|

(
κ−
|Ω−|

− Per(Ω−)

|Ω−|2
)

= 0 in A0−.
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This shows that the curvatures of A1− \ As− and A1− \ As− are constant with

values κ1 = −κ− = Per(Ω−)
|Ω−| . This in particular shows that the interfaces are

composed of circles of radii |Ω−|
Per(Ω−) .

Proposition 4.8. Let (Ω+,Ω−) be a minimizer of S. Then

κ− =
Per Ω−
|Ω−|

= −κ1 on A1− \ As−.

In particular, A1− \ As− consists of pieces of circle with the same radius as in
Proposition 4.7.

Proof. First, we note that since A1− \ As− ⊂ ∂Ω1 ∩ ∂Ω−, we must have

κ1 = −κ− on A1− \ As−.

Now, we perturb Ω1 while keeping Ω− fixed. In this context, Ω1 is a min-
imizer of E 7→ S(E,Ω−) with constraints E ⊂ Ω and Ω1 ∩ E = ∅. Since Ω−
is fixed the second constraint allows only inward perturbations. We therefore
perturb Ω1 in its exterior normal direction with a function w 6 0 supported in
A1− \ As−. The variation formula for Ω1 in direction w provides

ˆ

A1−\As−
κ1w +

ˆ

w
Per(Ω−)

|Ω−|
dH1 > 0,

which yields

κ1 6 −Per(Ω−)

|Ω−|
on A1− \ As−.

Now, we fix Ω1 and perturb Ω− similarly with w 6 0, again supported
in A1− \ As− (so the perturbation goes inside Ω−). Since Ω− now minimizes
S(Ω1, ·), we get

ˆ

A1−\As−
wκ−

|Ω1|
|Ω−|

− w |Ω1|
|Ω−|2

Per(Ω−) dH1 > 0,

which gives

κ− 6 Per(Ω−)

|Ω−|
on A1− \ As−.

This provides the assertion.

Proposition 4.9. Let E be a connected component of Ω \ (Ω− ∪Ω1) such that
∂E ∩ ∂Ω = ∅. Then, (Ω1 ∪ E,Ω−) and (Ω1,Ω− ∪ E) both belong to M and
minimize S.

Proof. We abbreviate λ = Per Ω−
|Ω−| . Then because E∩Ω− = E∩Ω1 = ∅, the pairs

(Ω1 ∪ E,Ω−) and (Ω1,Ω− ∪ E) both belong to M we have

Per(Ω1 ∪ E) + λ|Ω1 ∪ E| > Per(Ω1) + λ|Ω1|,

which implies because E ∩ Ω1 = ∅

λ|E| > Per(Ω1)− Per(Ω1 ∪ E). (4.5)
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Because Ω− is a Cheeger set of Ω \ Ω1, we have

Per(Ω− ∪ E)

|Ω− ∪ E|
> Per(Ω−)

|Ω−|

which, because E ∩ Ω− = ∅, implies

Per(Ω− ∪ E)|Ω−| > Per(Ω−)(|Ω−|+ |E|) ,

which implies
Per(Ω− ∪ E)− Per(Ω−) > λ|E|. (4.6)

In summary, we have shown in (4.5) and (4.6) that

Per(Ω− ∪ E)− Per(Ω−) > λ|E| > Per(Ω1)− Per(Ω1 ∪ E).

Since ∂E ∩ ∂Ω = ∅ and E ∩ Ω− = E ∩ Ω1 = ∅, we know ∂E ⊂ ∂Ω1 ∪ ∂Ω−.
Furthermore, since Ω− and E as well as Ω1 and E are disjoint, there exists
no common oriented boundary between E and Ω−, Ω1 and one can write [40,
Theorem 16.3]

Per(Ω− ∪ E)− Per(Ω−) = Per(Ω1)− Per(Ω1 ∪ E)

which implies that all the inequalities above are equalities, and the set E can
be joined to Ω− or Ω1 without changing the value of S.

In the following we show that one may obtain minimizers of S (and therefore
minimizers of TV in BV�,1 with three values) in two simpler steps:

1. Solve the Cheeger problem for Ω\Ωs. Let Ωc be the maximal Cheeger set
and λc := Per Ωc

|Ωc| its Cheeger constant.

2. Obtain the minimal (with respect to ⊂) minimizer Ω1c of

Per(E) + λc|E| over {E : E ∩ Ωc = ∅ and Ωs ⊂ E} .

Note that minimizers of the second problem exist by an argument similar to
Proposition 4.4.
Then, as we show in the following theorem, (Ω1c,Ωc) minimizes S.

Theorem 4.10. The pair (Ω1c,Ωc) minimizes S.

Proof. Let λ := Per Ω−
|Ω−| (by definition of the Cheeger set Ωc, we have λ > λc).

Let also E be the smallest (with respect to ⊂) minimizer of

Ê 7→ Per(Ê) + λ|Ê| subject to Ωs ⊂ Ê. (4.7)

We want to show that E∩Ω− = ∅, that is E is also a minimizer of Per(·)+λ|·|
with respect to the constraints E ∩ Ω− = ∅ and Ωs ⊂ E.

Because E \ Ω− is admissible in (4.7),

Per(E \ Ω−) + λ|E \ Ω−| > Per(E) + λ|E|.
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On the other hand, Ω−, as a Cheeger set of Ω \ Ω1, is a minimizer of

Ê → Per(Ê)− λ|Ê| subject to Ê ∩ Ω1 = ∅. (4.8)

Then Ω− \ E is a competitor for (4.8),

Per(Ω− \ E)− λ|Ω− \ E| > Per(Ω−)− λ|Ω−|.

Summing these two inequalities and using that (see [40, Exercise 16.5])

Per(E \ Ω−) + Per(Ω− \ E) 6 Per(E) + Per(Ω−),

we obtain
λ (|E \ Ω−| − |Ω− \ E|) > λ (|E| − |Ω−|) .

Since this last inequality is an equality, it is also true for the two previous ones,
and we can conclude that

Per(E \ Ω−) + λ|E \ Ω−| = Per(E) + λ|E|

which implies, since E is minimal with respect to the inclusion, that E∩Ω− = ∅.
Similarly, if Ec is a minimizer of

Ê 7→ Per Ê + λc|Ê| with constraint Ω̂s ⊂ E, (4.9)

one can prove that Ec ∩ Ωc = ∅.
We proved that Ω1,Ω1c minimize Per(·) +λ |·| , Per(·) +λc |·| with the same

constraint (containing Ωs).

Hence, Ω1 ∩ Ω1c is admissible in (4.7) and Ω1 ∪ Ω1c is admissible for (4.9),
which implies

Per(Ω1 ∩ Ω1c) + λ|Ω1 ∩ Ω1c| > Per Ω1 + λ|Ω1|,

Per(Ω1 ∪ Ω1c) + λc|Ω1 ∪ Ω1c| > Per Ω1c + λc|Ω1c|.
Summing these inequalities and recalling that [40, Lemma 12.22]

Per(Ω− ∩ Ωc) + Per(Ω− ∪ Ωc) 6 Per(Ω−) + Per(Ωc),

we obtain
λc|Ω1 \ Ω1c| > λ|Ω1 \ Ω1c|.

Then, if λc < λ we obtain Ω1c ⊃ Ω1 and if λ = λc, all the inequalities above are
equalities, which implies once again (using the minimality of Ω1) that Ω1c ⊃ Ω1.
Then, Ωc ∩ Ω1 = ∅ hence Ωc is also a Cheeger set of Ω \ Ω1.

Remark 4.11. By the statements in the previous section about level sets of the
generic minimizer u, we infer that the only lack of uniqueness present in the
minimization of TV in BV�,1 is that of the corresponding geometric problems.
More precisely, if the Cheeger set of Ω \ Ωs is unique, (which is shown in [12,
Theorem 1] to be a generic situation), then the minimizer of TV in BV�,1 is
unique as well. Indeed, with the same arguments as in the proof of Proposition
4.9, one sees that the minimizer of (4.4) is also unique, which implies by Propo-
sition 4.2 and Theorem 4.3 that the level-sets of u are all uniquely determined.
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4.4 Behavior of Yc as Ω grows large

Let Ω0 be a convex set and Ωs ⊂ Ω0, both centered at the origin (again we
assume that |Ωs| = 1). For α > 1, let Ω = αΩ0, i.e. we consider the domain to
be a scaled form of Ω0. We note that Ωs ⊂ αΩ0. We are interested in the limit
of Yc when α→∞.

Proposition 4.12. We have

lim
α→∞

Yc(α) =
1

min
E⊃Ωs

PerE
.

Proof. We recall that

Yc(α) =
|Ωs|

infMα S
,

where

Mα :=

{
(E1, E−) ⊂ αΩ0 |

◦
E1 ∩

◦
E− = ∅, Ωs ⊂ E1

}
.

Then, noticing that for every Ω̃ such that Ωs ⊂ Ω̃ ⊂ αΩ0 we have (Ω̃, αΩ0 \Ω̃) ∈
Mα, one can write

inf
Mα

S 6 S
(

Ω̃, αΩ0 \ Ω̃
)

= Per(Ω̃) +
Per(αΩ0) + Per(Ω̃)

|αΩ0| − |Ωs|
|Ω̃|

6 Per(Ω̃) +
αPer(Ω0) + Per(Ω̃)

α2|Ω0| − 1
|Ω̃| −−−−→

α→∞
Per(Ω̃).

On the other hand, for every (E1, E−) ∈Mα,

S(Ω̃, αΩ0 \ Ω̃) > Per(Ω̃).

Optimizing in Ω̃ establishes the result.

Remark 4.13. If Ωs is indecomposable (i.e., ‘connected’ in an adequate sense
for this framework), we have by [22, Proposition 5] that

min
E⊃Ωs

PerE = Per(Co(Ωs)),

where Co(X) is the convex envelope of X.

Remark 4.14. As may be seen in examples 5.3 & 5.4, the above limit is not
attained at a finite α. There is no ‘critical size’ at which the boundary of Ω stops
playing a role. We see that the limiting Yc is approached at least as O(1/α) as
α→∞.

5 Application examples

In the previous section, we have seen that solutions of the eigenvalue problem
may be constructed in two steps by solving two separate set optimization prob-
lems. Furthermore, the free boundaries of the optimal sets are composed of
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pieces of circles of the same radius, which suggests that one might be able to
use morphological operations to construct these minimizers. We introduce these
now.

Definition 5.1 (Opening, Closing). For a set X and r > 0, We define the
opening of X with radius r by

Openr (X) :=
⋃

x:Br(x)⊂X
Br(x) ,

where Br(x) is the ball with radius r and center x (since we work in R2, it is a
disk). Additionally we define the closing of X with radius r as

Closer (X) := R2 \
(
Openr

(
R2 \X

))
.

5.1 Morphological operations and Cheeger sets

The Cheeger problem is far from being entirely understood. Nonetheless, it is
for convex sets. As a result, if Ω is convex and Ωs = ∅, the Cheeger set Ω− of
Ω satisfies

• Ω− is unique,

• Ω− is convex and C1,1,

• Ω− = Openr (Ω) where r is the Cheeger constant of Ω.

In the general case, for a Cheeger set Ω− of Ω \ Ωs, only a few results are
available [38]

• The boundaries of Ω− are pieces of circles of radius 1
λ (λ is the Cheeger

constant of Ω \ Ωs) which are shorter than half the corresponding circle.

• If x0 is a smooth point of ∂(Ω \Ωs) and belongs to ∂Ω−, then ∂Ω− is C1,1

around x0 [12, Th. 2].

• We also have [38, Lemma 2.14], which basically tells that if the maximal
Cheeger set of Ω \Ωs contains a ball of radius 1

λ , then it also contains all
the balls of radius 1

λ obtained by rolling the first ball inside Ω \ Ωs.

These properties enables us to make the following

Remark 5.2. Let Ω and Ωs be convex and let λ be the Cheeger constant of Ω. If
d(Ωs, ∂Ω) > 2

λ , then the maximal Cheeger set of Ω\Ωs can be obtained rolling a
ball of radius 1

λ0
< 1

λ around Ωs (λ0 > λ being the Cheeger constant of Ω \Ωs).
In particular, it fills a neighborhood of ∂Ωs in Ω \ Ωs.

5.2 Single convex particles

We start with 2 simple examples in which a single convex particle is placed
centrally within a larger convex domain.
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Example 5.3. [Circular Ω]
a) Let Ωs,Ω be two circles with radii 1√

π
, R, ensuring that |Ωs| = 1. Since in

this case Openr (Ω) = Ω for all r 6 R, Ω− = Ω \ Ωs minimizes S(Ωs, ·).
Thus, Ωc = Ω \ Ωs and Ω1c = Ωs. We have

λc =
Per Ωc
|Ωc|

=
2πR+ 2

√
π

πR2 − 1
,

and

Yc =
1

Per(Ω1c) + λc|Ω1c|
=

1

2
√
π + 2πR+2

√
π

πR2−1

.

We may also construct the minimizer of TV over BV�,1, given (in cylindrical
coordinates) by v0 : [0,∞]× [0, π]→ R :

v0(r, φ) :=





|Ωs| = 1 for 0 6 r 6 1√
π
,

− |Ωs|
|Ω|−|Ωs| = − 1

R2π−1 for 1√
π
< r 6 R ,

0 for R < r <∞

(evidently axisymmetric). The total variation is:

|Dv0| (Ω) = Per Ωs + (Per Ωs + Per Ω)
|Ωs|

|Ω| − |Ωs|

= 2
√
π +

2
√
π + 2Rπ

R2π − 1
=

1

Yc
.

For R→∞ the limit is Per Ωs = 2
√
π and Yc approaches 1

2
√
π

.

b) As a slight variation on the above now let Ωs be the unit square. Again we
find Ωc = Ω \ Ωs and Ω1c = Ωs, and hence

λc =
Per Ωc
|Ωc|

=
2πR+ 4

πR2 − 1
,

and

Yc =
1

Per(Ω1c) + λc|Ω1c|
=

1

4 + 2πR+4
πR2−1

→ 0.25 as R→∞.

Example 5.4. [Square Ω]
We now consider Ω to be a square of side L. In the absence of Ωs the optimal
set Ω− is given by Openr∞ (Ω) for r∞ = L/(2 +

√
π) = 1/λc; see [42].

a) Now consider a centrally positioned unit square Ωs, within Ω of side L > 1.
The optimal set Ω− is given by Openr (Ω) \ Ωs for some r > 0. We have
|Openr (Ω)| = |Ω|+ r2 (π − 4), PerOpenr (Ω) = Per Ω + r (2π − 8), and to find
r = r(L) we use Propositions 4.7 and 4.8:

1

r
=

Per(Openr (Ω) \ Ωs)

|Openr (Ω) \ Ωs|
=

4L+ 4 + 2r (π − 4)

L2 − 1 + r2 (π − 4)
.

The resulting quadratic equation gives the optimal r(L):

r(L) =
L

2

1 + 1/L

1− π/4

(
1−

√
1− (1− π/4)

1− 1/L

(1 + 1/L)

)
.
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We find that r(L) < r∞ with r(L)→ r∞ as L→∞ and r(L)→ 0 as L→ 1+,
as expected.

Consequently, Ωc = Openr(L) (Ω) \ Ωs and the Cheeger constant λc(L) is:

λc(L) =
Per(Openr(L) (Ω) \ Ωs)∣∣Openr(L) (Ω) \ Ωs

∣∣ =
4L+ 4 + 2r(L) (π − 4)

L2 − 1 + r(L)2 (π − 4)
.

Again we have Ω1c = Ωs, and

Yc(L) =
1

Per(Ω1c) + λc(L)|Ω1c|
=

1

4 + λc(L)
.

The minimizer of TV over BV�,1 is constructed from the optimal sets:

ur(L) := 1Ωs −
|Ωs|∣∣Openr(L) (Ω)

∣∣− |Ωs|
1Openr(L)(Ω)\Ωs

with total variation:

∣∣Dur(L)

∣∣ (Ω) = Per Ωs +
(Per Ωs + Per Ω + r(L) (2π − 8)) |Ωs|

|Ω|+ r(L)2 (π − 4)− |Ωs|

= 4 +
(4 + 4L+ r(L) (2π − 8))

L2 + r(L)2 (π − 4)− 1

b) We replace Ωs by circle of radius 1/
√
π, ensuring |Ωs| = 1, and consider L >

2/
√
π. The calculations are similar. Again the optimal set Ω− is Openr (Ω)\Ωs

with r = r(L) determined from Propositions 4.7 and 4.8. We now find:

r(L) =
L

2

1 +
√

(π)/(2L)

1− π/4

(
1−

√
1− (1− π/4)

1− 1/L2

(1 +
√

(π)/(2L))2

)
.

Thus, Ωc = Openr(L) (Ω) \ Ωs, Ω1c = Ωs, and

λc(L) =
Per(Openr(L) (Ω) \ Ωs)∣∣Openr(L) (Ω) \ Ωs

∣∣ =
4L+ 2

√
π + 2r(L) (π − 4)

L2 − 1 + r(L)2 (π − 4)
.

Yc(L) =
1

Per(Ω1c) + λc(L)|Ω1c|
=

1

2
√
π + λc(L)

.

Figure 2a plots the results of example 5.4 at different L. Interestingly, al-
though λc(L) is smaller for the circular Ωs, it is only very marginally so. Figure
2b plots the yield limit Yc(L) for both Ωs. Here we see a significant differ-
ence: the circular Ωs requires a larger yield stress to prevent motion. As we
have seen that λc(L) is similar for both Ωs, this difference in Yc stems al-
most entirely from Per(Ω1c) = Per(Ωs) (in these examples). We may deduce
from the expressions derived that λc(L) ∼ O(1/L) as L → ∞ and hence that
Yc(L)→ 1/Per(Ωs) + O(1/L) as L→∞; see also Proposition 4.12. The same
behaviours are observed with the earlier example 5.3, in a circle of radius R,
i.e. little difference in λc(R), significant difference in Yc(R), stemming primarily
from Per(Ωs), and similar asymptotic trends as R→∞.
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Fig. 2: Comparison of results of example 5.4 at different L: a) λc(L); b) Yc(L). Circular Ωs

is marked with the broken line and square Ωs is marked with the solid line.

Fig. 3: Comparison of results of examples 5.3 & 5.4 at different R = L/
√
π: a) λc(L); b)

Yc(L). Circular Ωs is marked with the broken line and square Ωs is marked with the solid
line. Circular Ω marked in red and square Ω in black.

We might also seek to compare examples 5.3 & 5.4 directly. The scaling
introduced ensures |Ωs| = 1, matching the buoyancy force felt by each particle.
By setting L2 = πR2 we also match the area of fluid within Ω \ Ωs. Figure 3a
plots λc(R) and λc(L(R)). Figure 3b plots Yc(R) and Yc(L(R)). We observe
that λc(R) < λc(L(R)), for the same Ωs, but again the effect is marginal and
λc is very close for all 4 cases. Interestingly, in Figure 3b we see that by scaling
L2 = πR2 the effects of the shape of Ω are minimized: Yc(R) and Yc(L(R)) are
very close for the same Ωs, whether it be circular or square.

To summarise, these simple examples suggest that (for centrally placed con-
vex) particles, when we have the same area of solid and the same area of fluid,
the main differences in yield behaviour comes from the different perimeters of
the particle. The optimal sets in Ω\Ωs are selected such that λc varies primarily
with the area of Ω (and less significantly with its shape). For the same size of
Ω (and Ωs) the particle with smaller perimeter has larger Yc. An illustration
of the optimal sets for the square in square case is shown in Figure 6 (left) for
L = 3.33, for which we obtain r = 0.600 and |Dur| (Ω) = 5.67.

Example 5.5 (Influence of the aspect ratio and boundary). We revise example
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Fig. 4: Schematic of 2 different configurations for the rectangle with aspect ratio β: a) con-
figuration 1; b) configuration 2.

5.4, keeping Ω as a square of side L and replacing Ωs by a centrally positioned
rectangle of aspect ratio β2, i.e. the rectangle has height β and width β ≤ L.
Provided that β is sufficiently large there is a single Cheeger set in Ω\Ωs, given
by Openr (Ω) \ Ωs for some r > 0. However, for sufficiently small β:

1

L
≤ β ≤ L

2

(√
1 +

8

L2
− 1

)
,

there may be a second Cheeger set configuration, as illustrated in Figure 4.

For the first configuration we use Propositions 4.7 and 4.8 to find the radius
r1(β) = 1/λc,1(β):

r1(β) =
L

2

1 + β+1/β
2L

1− π/4

(
1−

√
1− (1− π/4)

1− 1/L2

(β+1/β
2L )2

)
.

The second configuration gives radius r2(β) = 1/λc,2(β):

r2(β) =
3L− β

8(1− π/4)

(
1−

√
1− 8(1− π/4)

L(L− β)

(3L− β)2

)
.

It is found that for a small band of β the second configuration gives λc,2(β) <
λc,1(β). In both cases we have Ω1c = Ωs and the yield limit is

Yc(β) =
1

Per(Ω1c) + min{λc,k(β)}|Ω1c|
=

1

2(β + 1/β) + min{λc,k(β)} .

The variation of λc and Yc is illustrated in Figure 5 for L = 3. Note that Yc(β)
approaches the square in square results at β = 1. The difference between the
two potential Yc in Figure 5b is relatively small because for small β, Per(Ωs)
becomes relatively large.

This example also serves to demonstrate geometric non-uniqueness. In the
case that λc,2(β) < λc,1(β) either of the shaded regions above or below Ωs in
Figure 4b is a Cheeger set, as is the union. We may construct a minimizer
of TV over BV�,1 using the characteristic functions of either set, or any linear

25



Fig. 5: Different mechanisms for the rectangle as β is varied for L = 3: a) λc(β); b) Yc(β).
The optimal values are in solid black and sub-optimal are in broken red.

Ω− = Openr (Ω) \ Ωs

r = 0.60

d Ωs

L = 3.33, l = 1, d = 1.1, Yc = 0.176

Ωs

d

L = 3.33, l = 1, d = 0.18, Yc = 0.188

Ω− = Openr (Ω \ Ωs)
r = 0.78

Fig. 6: In this case, area and perimeter of Ω,Ωs are constant. We change the distance between
∂Ω and Ωs. The critical yield number is larger if the inner set Ωs is close to ∂Ω.

combination that satisfies the condition of zero flux. As commented earlier this
non-uniqueness in BV�,1 stems from the geometric non-uniqueness.

Interestingly, if one were to return to the original Bingham fluid problem
and approach Y → Y −c , the velocity solution is unique and can be shown to be
symmetric, i.e. the effect of viscosity here is to select a symmetric minimizer for
Y < Yc.

Example 5.6 (Influence of the position of Ωs with respect to the boundary).
We revise example 5.4 with Ωs again being a square with length 1. This time
we move the inner square Ωs in direction of ∂Ω and denote d := d(Ωs, ∂Ω).
The possible minimizers have Ω− = Openr (Ω) \Ωs or Ω− = Openr (Ω \ Ωs) for
some r, depending on d. We illustrate this phenomenon in Figure 6.

26



Fig. 7: Critical yield numbers in the configurations of Figure 8, with respect to the distance d
between the centers of the squares. The corners in the graph represent the transition between
Ω− = Openr (Ω \ Ωs) and Ω− = Ω \ Ωs.

5.3 Multiple particles

We now consider multiple particles. In the first example, we retain the fixed
|Ωs| = 1 and consider the effects of increasing the number of particles. Intu-
itively, this increases the ratio of perimeter to area and hence we expect that Yc
will reduce, as is indeed found to be the case.

Example 5.7 (A case with nontrivial Ω1). We consider the two setups of Figure
8, where for simplicity we keep Ω circular. Figure 7 shows the dependency of the
yield number with respect to the distance d between the centers of the squares.
The flat regions correspond to the case where the optimal set Ω− is equal to
Ω \ Ωs.

We see that the orientation has an influence on the behavior of the minimizer
as well as on the critical yield number. As d is decreased below a critical value
Ω1c incorporates a bridge between the two particles. The occurrence of the
bridge clearly depends on orientation of the particles, and would also vary for
different shaped particles.

The phenomena of bridging between particles and of particles essentially act-
ing independently beyond a critical distance have been studied computationally
in the case of two spheres [39, 41] (axisymmetric flows) and two cylinders [52]
(planar two-dimensional flows). Aside from computed examples we know of no
general theoretical results related to these phenomena, e.g. what the maximal
distances for bridging are.

Example 5.8 (Periodic arranged circles inside a square tube). As a second
example, we consider large arrays of particles, as illustrated in Figure 9, i.e. Ω
is a square with length L, and Ωs is the union of N2 small circles with radius
δ, the outermost of which are at distance a from ∂Ω. Here the intention is to
illustrate particle size and separation effects and therefore we emphasize that in
this case |Ωs| is not constant for different δ.

There are two types of optimal sets: For δ small (left), we have Ω1 =
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Fig. 8: Two different arrangements of squares, at the corresponding transition points. Here,
the trivial and nontrivial solutions coexist and the same critical yield number appears for both
orientations of the square.

N

L

a

Fig. 9: Upper row, left: Setup for the periodic case. Upper row, right: Dependence of the
critical yield number on δ, for L = 12, N = 12 and a = 0.4. The corner in the graph
corresponds to the transition from trivial to bridged optimal sets. Lower row: Optimal sets
for δ = 0.04 and δ = 0.2, when L = 12, N = 12 and a = 0.4.
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Ωs, Ω− = Openλ−1 (Ω) \ Ωs. For bigger δ (right), Ω1 = Closeλ−1 (Ωs) , Ω− =
Openλ−1 (Ω \ Ωs) = Openλ−1 (Ω)\Ω1 for λ the corresponding Cheeger constant.
One could think of a third configuration in which isolated components of Ω−
appear between the circles of Ωs, but it is easy to see that such a configuration
has higher energy. Figure 9 (top right) shows the variation in Yc with δ for a
particular choice of parameters (L = 12, N = 12 and a = 0.4). The observable
kink is where we transition between the two configurations illustrated.

Although this example is quite theoretical, this type of phenomenon occurs
commonly in non-Newtonian suspension flows. In hydraulic fracturing, prop-
pant suspensions are pumped along narrow fractures. For critical flow rates
the individual dense proppant particles may act together in settling: so called
convection, see e.g. [18]. This represents a serious risk for the process in that
in convective settling the group of particles settles faster than when individu-
ally settling, as in the latter case secondary flows are induced on a more local
scale. It is interesting that these features (local and global) are captured by the
simple model here, where the yield stress fluid definitively couples the particles
via bridging. Convective settling is however not in general reliant on the yield
stress.

These examples also expose an interesting question concerning individual
particle behaviour. Dense suspensions in shear-thinning fluids often exhibit
interesting settling patterns, e.g. the column-like patterns in [19]. Such patterns
are excluded in our study as we have assumed that the speed of Ωs is uniform.
There is a rich vein of interesting problems here to study. For example, if we
remove the constraint of equal particle velocities, do particle arrays such as that
considered above admit other optimal solutions that select patterns amongst
the particles, e.g. stripes moving at different speeds, or are slight perturbations
from the regular lattice favourable?

6 Numerical approach and results

There is limited knowledge available about Cheeger sets of nonconvex domains
and exploring the possible configurations in explicit examples is both time con-
suming and relies on a certain amount of geometric intuition in defining poten-
tial configurations. Therefore, we have implemented a numerical method for the
minimization of total variation in BV�,1.

The algorithmic aspects are described below, but it is worth remarking that
in all numerical experiments performed the method was observed to converge to
an approximately piecewise constant solution (up to the unavoidable smearing
of the free boundaries). Three-valued solutions have been shown to exist in
the previous sections, and solutions with more levels can be easily produced in
situations of non-uniqueness of Cheeger sets, as we have discussed in the context
of Example 5.5. However, the existence of ‘non-geometric’ solutions is also not
ruled out by the theory and this is another motivation for adopting a numerical
approach.
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6.1 Discrete saddle point formulation

The approach is to exploit the dual structure of the total variation, to apply a
standard primal-dual backward-backward minimization method [16].

The problem was discretized with the upwind scheme of [15], which has the
advantage of having a high degree of isotropy, and hence is helpful in correctly
detecting Dirichlet boundary conditions and sharply resolving interfaces.

The constraint
´

Ω
u = 0 is treated through a scalar Lagrange multiplier. The

boundary conditions u ≡ 1 on Ωs and u ≡ 0 on R2 \Ω are imposed by adding an
indicator function term in the functional, so that the corresponding backward
step is a projection. The resulting saddle-point problem is:

min
u∈X

max
p∈X4

q∈R

χ{1 on Ds,0 on G\D)(u) +

m,n∑

i,j=1

(
∇uij · pij − χ{|·|∞≤1}(p

ij)− quij
)
.

Here, X = Rmn denotes the space of real-valued discrete functions on a square
grid G = {1, . . . ,m} × {1, . . . n}. D,Ds denote the parts of the domain corre-
sponding to Ω,Ωs respectively (note that to correctly account for perimeter at
the boundary we must have D ⊂ {2, . . . ,m− 1}× {2, . . . n− 1}). The indicator
function (in the convex analysis sense) of a set A is denoted by χA, so that
χA(x) = 0 if x ∈ A, and +∞ otherwise. The expressions for ∇uij and the
corresponding divergence are those of [15], which implies that each grid point
(i, j) of the discrete gradient and of its multiplier ∇uij , pij ∈ R4.

6.2 Convergence

It is well-known that finite difference discretizations of the total variation con-
verge, in the sense of Γ-convergence with respect to the L1 topology [15], where
the discrete functionals are appropriately defined for piecewise constant func-
tions. We now aim to demonstrate that the chosen discretization and penal-
ization scheme correctly accounts for the boundary conditions in the limit. In
this whole section, for simplicity, we assume that n = m and Ω b (0, 1)2. We
introduce

Rnij :=
1

n

(
i− 1

2
, i+

1

2

)
×
(
j − 1

2
, j +

1

2

)
.

First, we need to decide which constraint to use in the discrete setting. We
denote by E −B( 1

n ) := {x ∈ E, d(x, ∂E) > 1
n}. Our choice is to take

Ωns :=
⋃

Rnij⊂Ωs−B( 1
n )

Rnij

whereas

Ωn := [0, 1]2 \


 ⋃

Rnij⊂([0,1]2\Ω)−B( 1
n )

Rnij


 ,

such that the discrete constraints are less restrictive than the continuous ones
and

Ωns b Ωs, [0, 1]2 \ Ωn b [0, 12] \ Ω. (6.1)
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We define TV n as in [15] when the function is piecewise constant on the Rnij
and +∞ otherwise.

Proposition 6.1.

TV n + χCn
Γ−L1

−−−−→ TV + χC

where
Cn := {u = 1 on Ωns , 0 on [0, 1]2 \ Ωn)

and
C := {u = 1 on Ωs, 0 on [0, 1]2 \ Ω)}.

Proof. If un → u the fact that TV (u) 6 lim inf TV n(un) is standard and relies
on passing to the limit in the dual formulation (see [15]) for TV n . For χCn , let
us notice that if χC(u) = +∞, that is either u 6≡ 0 on [0, 1]2 \Ω or u 6≡ 1 on Ωs.
If the latter holds, then for ε small enough, Ωs ∩ ({u > 1 + 2ε} ∪ {u < 1− 2ε})
has positive measure and thanks to the L1 convergence of un,

Ωns ∩ ({un > 1 + ε} ∪ {un < 1− ε})

must have a positive measure for n big enough. That implies χCn(un) = +∞
and the inequality is true. If χC(u) <∞, then χC(u) = 0 and the inequality is
also true since Cn ⊂ C.

Let now u ∈ BV ((0, 1)2). We want to construct a recovery sequence un → u
such that TV (u) + χC(u) > lim supTV n(un) + χCn(un). If u /∈ C, any un → u
gives the inequality. If u ∈ C, then we first introduce

vδ = ρδ ∗ u

where ρδ is a convolution kernel with width δ. Then, TV (vδ) → TV (u) ([2,
Theorem 3.9]) and, thanks to (6.1), If δ 6 1

n , we have χCn(vδ) = 0.

We define

uni,j =

 

Rnij

vδ,

that satisfies χCn(un) = 0, and compute, assuming that ui+1,j − ui,j > 0

uni+1,j − uni,j
n

=
1

n

 

Rnij

u(x+
1

n
, y)− u(x, y) > inf

Rnij∪
(
Rnij+( 1

n ,0)
) |∂xu|.

Then since vδ ∈ C1, it is clear that the right hand side converges to |∂xvδ|. Note
that in the ’upwind’ gradient of a smooth function, only one term by direction
can be active, then it is also true for un if n is large enough and therefore
TV n(un)→ TV (vδ). By a diagonal argument, we conclude.

6.3 Examples

We present two examples of the output of numerical method. Firstly, we con-
sider the “Pacman” shaped Ωs within again a square Ω; see Figure 10 (left). This
example induces both asymmetry (left-right) and non-convexity of Ωs. The so-
lution is shown in the central panel of Figure 10 and the right-hand panel shows
a histogram of the solution.
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Fig. 10: Boundary conditions, result and histogram of the computed solution. In this example,
one sees that the problem of minimizing S may not be reduced to a one-set problem. In this
case Yc = 0.118.

The second example concerns the geometry depicted in Figure 11 (top panel),
in which Ωs denotes the two L-shaped regions in the white dumbbell-shaped
domain. As with the previous Example 5.5, it is apparent that there will be a
Cheeger set in each half of the domain. The question is which solution the com-
putations will converge to. Figure 11 lower, left and right) show that different
minimizers are selected numerically, in this case by using different numerical
resolution.

Fig. 11: Boundary conditions and results computed at two different resolutions, in a situation
when uniqueness is not expected [37]. Here Yc = 0.087.
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