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Abstract

In this paper, we develop a discontinuous Galerkin Isogeometric Analysis method for solving elliptic
problems on decompositions of the computational domain into volumetric patches with non-matching
parametrized interfaces. We specially focus on high order numerical solutions for complex gap regions
and extend ideas from our previous work on simple gap regions. For the communication of the numer-
ical solution between the subdomains, which are separated by the gap region, discontinuous Galerkin
numerical fluxes are constructed taking into account the diametrically opposite points on the boundary
of the gap. Due to lack of information on the behavior of the solution in the gap region, the fluxes
coming from the interior of the gap are approximated by Taylor expansions with respect to the adjacent
subdomain solutions. We follow the same ideas of our previous work and show a priori error estimates
in the dG-norm, with respect to the mesh size and the gap distance. Numerical examples, performed
for two-, three- and even four-dimensional computational domains, demonstrate the robustness of the
proposed numerical method and validate the estimates predicted by the theory.

Keywords: Elliptic diffusion problems, Heterogeneous diffusion coefficients, Isogeometric Analysis,
Incorrect segmentation, non-matching parametrized interfaces, Multi-patch discontinuous Galerkin
method.

1. Introduction

Isogeometric analysis (IgA) is a relatively new approach to the numerical solution of partial differential
equations in which the finite dimensional spaces (B-splines, NURBS, T-spline etc.) used to approximate
the solution are the same as those used to parameterize the computational domain [4]. In many practical
applications, it is necessary to describe the computational domain with multiple subdomains, called
also patches. For example, if different mathematical models are used in different parts of the domain,
the numerical procedure is simplified by describing these parts as different subdomains (patches). Each
subdomain is separately parametrized using the superior B-splines, NURBS or T-spline finite dimensional
spaces, [4]. We can apply several segmentation techniques and procedures, for splitting complex domains
into simpler subdomains, see, e.g., [10], [15], [7] , [17], for a discussion in isogeometric segmentation.
The subdomain parametrizations are then constructed by defining the corresponding subdomain control
net, see [4], and [9] for a more comprehensive analysis in surface representations. Usually, we obtain
compatible parametrizations of the subdomains, meaning that using a relative coarse control mesh, the
parameterizations of the adjoining subdomain interfaces are identical. However, some serious difficulties
can arise, especially, when the subdomains differ topologically a lot from a cube. At the end of the
segmentation procedure, we can have subdomain control nets, whose control points related to an interface
may not appropriately match, resulting in a non-matching parametrized interface. In this case, gap regions
can be created between the subdomains, where the boundary of the gap region is formed by parts of the
boundary of the subdomains, see Fig. 1(a). An IgA approach for solving partial differential equations
on non-matching parametrized interfaces has not previously been considered. Indeed, it is an important
issue of the IgA framework to devise a stable numerical procedure that can successfully be applied to
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this type of decompositions. The purpose of our previous paper [8] and of this paper is to formulate
and to analyse a natural extension of discontinuous Galerkin (dG) IgA methods, see e.g., [13], to IgA
decompositions with non-matching parametrized interfaces.

In [8], we initiated the development of a dG IgA method to solve a linear diffusion problems on de-
compositions with non-matching interface parametrizations. The main goal was to construct appropriate
numerical fluxes on the non-matching interfaces, using values of the adjacent subdomain numerical solu-
tion. More precisely, at the beginning the gap is considered as a subdomain of the decomposition. Then,
dG numerical fluxes are constructed on the common boundary parts of the subdomains and the gap,
using the (unknown) normal fluxes coming from the interior of the gap region. Since these fluxes are not
available, they are replaced by Taylor expansions with respect values of the adjacent subdomain solution.
In particular, for every point on the gap boundary we define its corresponding diametrically opposite
boundary point, see Fig. 1(b). The key idea is to use Taylor expansions to approximate the unknown
normal fluxes on every point of the gap boundary, by means of the known subdomain solution values
on the opposite point. We can say that the Taylor expansions are playing the role of a bridge for the
communication between the solutions of the adjacent subdomains. In [8], we present the discretization
error analysis and performed numerical tests, utilizing uni-axial Taylor expansions. In the present paper,
we generalize this work to the case of general gap regions in any dimension by applying multi-directional
Taylor expansions between the diametrically opposite points on the gap boundary. Then, as in [8], these
expansions are used to construct appropriate dG numerical fluxes on the gap boundary in order to ensure
the communication of the numerical solution of the subdomains which are separated by the gap.

For simplicity, we focus on the case where we have an initial decomposition of Ω consisting of two
subdomains, where only one gap region, say Ωg, appears between the two adjacent subdomain. This
means that the domain decomposition is given by TH(Ω \ Ωg) := {Ωl,Ωr}, and Ω = Ωl ∪ Ωr ∪ Ωg.
The model problem that we study is a linear diffusion problem with discontinuous diffusion coefficient.
Following the same ideas as in [8] for the uni-axial Taylor expansions, we show the same a priori error
estimates in the classical dG-norm ‖.‖dG for the current case of multi-directional Taylor expansions. As
in [8], the estimates again are expressed in terms of the mesh size h and the distance dg of the gap, which
is a parameter which quantifies the maximum distance between two diametrically opposite points on ∂Ωg.
The discretization error analysis is based on the results presented in [13] and [12], where dG IgA methods
were analysed for the same diffusion problem with matching interface parametrizations. In particular,
we show that, if the IgA space defined on subdomains Ωi, i = l, r has the approximation power hk and
the gap distance is O(hk+ 1

2 ), i.e. the flux approximation is of O(hk), then we obtain optimal convergence
rate for the error in the dG norm ‖.‖dG. In the special case where the gap distance is O(h), we obtain a

reduced discretization error of order O(h
1
2 ). The same estimates have been shown in [8] for the case of

utilizing uni-axial Taylor expansions. Our proposed method has been successfully applied to the solution
of the model problem on a wide range of different test cases confirming the theoretical estimates. All
these test cases are discussed in the last Section of the manuscript.

We lastly mention that several techniques have been investigated recently for coupling non-matching
(or non-conforming) subdomain parametrizations in some weak sense. In [18] and [16], Nitsche’s method
have been applied to enforce weak coupling conditions along trimmed B-spline patches. In [2], the most
common techniques for imposing weakly the continuity of the solution on the interfaces have been applied
and tested on nonlinear elasticity problems. The numerical tests have been performed on non-matching
grid parametrizations. Furthermore, mortar methods have been developed in the IgA content utilizing
different B-spline degrees for the Lagrange multiplier in [3]. The method has been applied for performing
numerical tests on decompositions with non-matching interface parametrizations.

The paper is organized as follows. In Section 2, some notations, the weak form of the problem and the
definition of the B-spline spaces are given. We further describe the gap region. In Section 3, we derive the
problem in Ω \ Ωg, the approximation of the normal fluxes on the ∂Ωg, and the dG IgA scheme. In the
last part of this section, we estimate the remainder terms in the Taylor expansion. Section 4 is devoted
to the derivation of the a priori error estimates. Finally, in Section 5, we present numerical tests for
validating the theoretical results on two-, three- and four- dimensional test problems. The paper closes
with some conclusions in Section 6.

2. The model problem

2.1. Preliminaries

We start with some preliminary definitions and notations. Let Ω be a bounded Lipschitz domain in
Rd, d = 2, 3, and let α = (α1, ..., αd) be a multi-index of non-negative integers α1,...,, αd with degree
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|α| =
∑d
j=1 αj . For any α, we define the differential operator Dα = Dα1

1 · · · Dαd
d , with Dj = ∂/∂xj ,

j = 1, . . . , d, and D(0,...,0)u = u. For a non-negative integer m, let Cm(Ω) denote the space of all functions
φ : Ω→ R, whose partial derivatives Dαφ of all orders |α| ≤ m are continuous in Ω. We denote the subset
of all functions from C∞(Ω) with compact support in Ω by C∞0 (Ω) (orD(Ω)). Let 1 ≤ p <∞ be fixed and
l be a non-negative integer. As usual, Lp(Ω) denotes the Lebesgue spaces for which

∫
Ω
|u(x)|p dx < ∞,

endowed with the norm ‖u‖Lp(Ω) =
( ∫

Ω
|u(x)|p dx

) 1
p , and W l,p(Ω) is the Sobolev space, which consists

of the functions φ : Ω → R such that their weak derivatives Dαφ with |α| ≤ l belong to Lp(Ω). If
φ ∈W l,p(Ω), then its norm is defined by

‖φ‖W l,p(Ω) =
( ∑

0≤|α|≤l
‖Dαφ‖pLp(Ω)

) 1
p and ‖φ‖W l,∞(Ω) = max

0≤|α|≤l
‖Dαφ‖L∞(Ω).

We refer to [1] for more details about Sobolev spaces.

2.2. The elliptic problem

Let Ω be a bounded Lipschitz domain in Rd, d = 2, 3 which is assumed to consist (only for simplicity)
of two Lipschitz subdomains Ω1 and Ω2 with common interface F , such that

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Ω1 ∩ Ω2 = F. (2.1)

For this decomposition, we use the notation TH(Ω) = {Ωi}2i=1, and define the space

W l,2(TH(Ω)) = {u ∈ L2(Ω) : u|Ωi ∈W l,2(Ωi), for i = 1, 2}, (2.2)

where l ≥ 0 is an integer. We consider the following elliptic problem:

−div(ρ∇u) = f in Ω and u = uD on ∂Ω, (2.3)

where f and uD are given smooth data and the diffusion coefficient ρ is assumed to be positive constant
on each subdomain, namely ρ = ρi in Ωi, for i = 1, 2. In what follows, ui denotes the solution on each
subdomain Ωi, i = 1, 2.

The weak formulation of the boundary value problem (2.3) reads as follows: for given source function
f and Dirichlet data uD, find a function u ∈W 1,2(Ω) such that u = uD on ∂Ω and satisfies the variational
identity

a(u, φ) = lf (φ), ∀φ ∈W 1,2
0 (Ω) = {φ ∈W 1,2(Ω) : φ = 0 on ∂Ω}, (2.4)

where the bilinear form a(·, ·) and the linear form lf (·) are defined by

a(u, φ) =

∫

Ω

ρ∇u∇φdx and lf (φ) =

∫

Ω

fφ dx, (2.5)

respectively. For simplicity, we only consider non-homogeneous Dirichlet boundary conditions on ∂Ω.
However, the analysis presented in our paper can easily be generalized to other constellations of boundary
conditions which ensure existence and uniqueness such as Robin or mixed boundary conditions.

Assumption 1. We assume that the solution u of (2.4) belongs to V = W 1,2(Ω) ∩W l,2(TH(Ω)) with
some l ≥ 2.

Assumption 1 implies the following interface conditions, see [14],

JuK = 0 on F, and Jρ∇uK · nF = 0, on F, (2.6)

where J.K|F denotes the jumps on F , i.e., JaK|F := a1 − a2, and nF is the unit normal vector on F .
In what follows, positive constants c and C appearing in inequalities are generic constants which do

not depend on the mesh-size h. In many cases, we will indicate on what may the constants depend for
an easier understanding of the proofs. Frequently, we will write a ∼ b meaning that c a ≤ b ≤ C a.
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2.3. B-spline spaces

In this section, we briefly present the B-spline spaces and the form of the B-spline parametrizations
for the physical subdomains. For a more detailed presentation we refer to [4], [5], [19].

Let us consider the unit cube Ω̂ = (0, 1)d ⊂ Rd, which we will refer to as the parametric domain and

let Ω =
⋃N
i=1 Ωi, with Ωi ∩Ωj = ∅, for i 6= j be a decomposition of Ω. Let the integers k, i = 1, ..., N and

nι, ι = 1, ..., d denote the given B-spline degree, the corresponding physical i − th subdomain, and the
number of basis functions of the B-spline space that will be constructed in xι-direction. We introduce the
d−dimensional vector of knots Ξd

i = (Ξ1
i , ...,Ξ

ι
i, ...,Ξ

d
i ), ι = 1, . . . , d, with the particular components given

by Ξιi = {0 = ξι1 ≤ ξι2 ≤ ... ≤ ξιnι+k+1 = 1}. The components Ξιi of Ξd
i form a mesh T

(i)

hi,Ω̂
= {Êm}Mi

m=1

in Ω̂, where Êm are the micro elements and hi is the mesh size, which is defined as follows. Given a

micro element Êm ∈ T (i)

hi,Ω̂
, we set hÊm = diameter(Êm) = max

x1,x2∈Êm
‖x1 − x2‖d, where ‖.‖d is the

Euclidean norm in Rd and the subdomain mesh size hi is defined to be hi = max{hÊm}. We define
h = maxi=1,...,N{hi}.

Assumption 2. The meshes T
(i)

hi,Ω̂
are quasi-uniform, i.e., there exist a constant θ ≥ 1 such that θ−1 ≤

hÊm/hÊm+1
≤ θ. Also, we assume that hi ∼ hj for i 6= j.

Given the knot vector Ξιi in every direction ι = 1, ..., d, we construct the associated univariate B-spline

functions, B̂Ξιi,k
= {B̂(i)

1,ι(x̂ι), ..., B̂
(i)
nι,ι(x̂ι)} using the Cox-de Boor recursion formula, see details in [4], [5].

On the mesh T
(i)

hi,Ω̂
, we define the multivariate B-spline space, B̂Ξdi ,k

, to be the tensor-product of the

corresponding univariate BΞιi,k
spaces. Accordingly, the B-spline functions of B̂Ξdi ,k

are defined by the
tensor-product of the univariate B-spline basis functions, that is

B̂Ξdi ,k
= ⊗dι=1B̂Ξιi,k

= span{B̂(i)
j (x̂)}n=n1×...×nι×...×nd

j=1 , (2.7)

where each B̂
(i)
j (x̂) has the form

B̂
(i)
j (x̂) =B̂

(i)
j1

(x̂1)× ...× B̂(i)
jι

(x̂ι)× ...× B̂(i)
jd

(x̂d), with B̂
(i)
jι

(x̂ι) ∈ B̂Ξιi,k
. (2.8)

Finally, having the B-spline spaces and the B-spline control points C
(i)
j , we can represent each sub-

domain Ωi, i = 1, ..., N by the parametric mapping

Φi : Ω̂→ Ωi, x = Φi(x̂) =

n∑

j=1

C
(i)
j B̂

(i)
j (x̂) ∈ Ωi, (2.9)

where x̂ = Ψi(x) := Φ−1
i (x), cf. [4].

We construct a mesh T
(i)
hi,Ωi

= {Em}Mi
m=1 for every Ωi, whose vertices are the images of the vertices

of the corresponding parametric mesh T
(i)

hi,Ω̂
through Φi. For each E ∈ T

(i)
hi,Ωi

, we denote its support

extension by D
(i)
E , where the support extension is defined to be the interior of the set formed by the

union of the supports of all B-spline functions whose supports intersects E.
For i = 1, ..., N , we construct the B-spline space BΞdi ,k

on Ωi by

BΞdi ,k
:= {B(i)

j |Ωi : B
(i)
j (x) = B̂

(i)
j ◦Ψi(x), for B̂

(i)
j ∈ B̂Ξdi ,k

}. (2.10)

The global B-spline space Vh with components on every BΞdi ,k
is defined by

Vh := Vh1 × ...× VhN := BΞd1 ,k
× ...× BΞdN ,k

. (2.11)

We refer the reader to [4] for more information about the meaning of the knot vectors in CAD and IgA.

Remark 2.1. The B-spline spaces presented above are referred to the general case of N subdomains. In
this paper, for the sake of simplicity, we assume that we have N = 2. The mappings in (2.9) produce
(and are referred to) matching interface parametrizations. Throughout the paper it is understood that we
study the case where the mappings in (2.9) produce non-matching interface parametrizations and a gap
region appears between the adjacent subdomains, see Section 2.4.

Assumption 3. We assume that k ≥ l, cf. Assumption 1.
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Figure 1: (a) Illustration of the gap region (shown in red) between two adjacent sub domains in d = 3 case, (b) 2d-view
representation of the diametrically opposite points xl and xr located on ∂Ωg .

2.4. Non-matching interface parametrizations

In many realistic situations, it is necessary to perform a decomposition of the computational domain
Ω into multiple subdomains (patches). Typical examples can be when different mathematical models are
used in different parts of Ω or the case of complicated interface problems. It is convenient to consider the
different parts as separate subdomains. In IgA framework, the subdomains are parametrized by using B-
splines (NURBS, T-spline etc.) finite dimensional spaces, see [4]. In order to prepare the subdomain IgA
parametrizations, we need firstly to define the corresponding control nets, see, e.g., [4], [9], [10], [15], [17].
We usually obtain compatible parametrizations for the common interfaces of the adjusting subdomains.
The control points on a face are appropriately matched on the control points of the adjoining face, so as
to obtain identical interface for the adjusting subdomains. For example, for the decomposition given in
(2.1), the B-spline parametrizations of Ω1 and Ω2 must provide at the end an identical parametrization
for the interface F . Despite the advantages, that B- splines (NURBS etc.) offer for the parametrization
of the subdomains, some serious difficulties can arise, especially, when the subdomains topologically
differ a lot from a cube. The segmentation procedure can lead us to incompatible parametrizations of
the geometry, meaning that the parametrized interfaces of adjusting subdomains are not identical after
the volume segmentation. We call this as a non-matching interface parametrization. The result of this
phenomenon is the creation of overlapping subdomains or gap regions between adjacent subdomains. As
in our previous work [8], so in this work, we study the later case. Here, we point out that the problem is
considered in the case where the gap region will be maintained even after a local control net refinement
procedure and the gap size can be expressed as a polynomial function of h.

2.5. The gap region

For simplicity, we consider the case where the decomposition includes only two subdomains and only
one gap region appears between them. More precisely, we suppose that after a segmentation procedure,
we obtain two B-spline control nets, which give incompatible parametrizations of the geometry of the
subdomains Ω1 and Ω2 of (2.1). Thus, we have the parametrizations Φl : Ω̂ → Ωl and Φr : Ω̂ → Ωr
correspondingly, which give non-matching interface parametrizations of F , and a gap region, say Ωg,
exists between Ωl and Ωr. As an immediate result we have that Ω = Ωl ∪ Ωg ∪ Ωr, see an illustration
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in Fig. 1(a). In what follows, we will call Ωl and Ωr parametrized subdomains or simply subdomains, if
there is no chance of confusion with Ωi, i = 1, 2. We denote by TH(Ω \ Ωg) = {Ωl,Ωr}.

Without loss of generality, we suppose that ∂Ωg = Fl ∪ Fr, see Fig. 1(b), and assume that there is a
h0 such that for all h ≤ h0 the following relations hold

Fl ⊂ ∂Ωl and Fr ⊂ ∂Ωr, (2.12a)

Ωl ⊆ Ω1, Ωr ⊂ Ω2, Ωg ⊂ Ω1 ∪ Ω2, and Ω = Ωl ∪ Ωg ∪ Ωr. (2.12b)

The boundary face Fl is considered to be a simple region, and it can be described as the set of points
(x, y, z) satisfying

0 ≤ x ≤ xM , ψ1(x) ≤ y ≤ ψ2(x), φ1(x, y) ≤ z ≤ φ2(x, y), (2.13)

where xM is a fixed real number, ψi and φi with i = 1, 2 are given continuous functions. An illustration is
shown in Fig. 1(b). Our next goal is to assign the points xl ∈ Fl to the points of the other face xr ∈ Fr,
in order to build up later the numerical flux function. We follow the some ideas as in [8]. The assignment
between the opposite points is achieved by constructing a one-to-one mapping Φl,r : Fl → Fr. Let nFl be
the unit normal vector on Fl and let nFr be the unit normal vector on Fr. Since only small gap regions
are considered, we suppose that nFl ≈ −nFr . Hence, we can define the mapping Φl,r : Fl → Fr as

Φl,r : xl ∈ Fl → Φl,r(xl) := xr ∈ Fr, with Φl,r(xl) = xl + ζ0(xl)nFl , (2.14)

where ζ0 is a B-spline with ‖ζ0‖L∞ = 1. We define the corresponding mapping Φr,l : Fr → Fl to be

Φr,l(xr) = (xl,1, xl,2, xl,3), where Φl,r(xl,1, xl,2, xl,3) = xr. (2.15)

We will see later that the parametrization mappings (2.15) and (2.14) simplify the analysis and are
convenient for performing the numerical tests, see an extensively discussion for this in [8]. We mention
that, in [8] the gap boundary face Fl is taken to belong in xy-plane and thus for the construction of the
mapping Φl,r, see (2.14), the vector nFl = (0, 0, 1) is utilized. The parametric mapping Φl,r as defined
in (2.14) generalize this case.

We finally characterize the points which belong in the interval [xl, xr]. To this end, for every xl ∈ Fl
we construct a C1 one-to-one map γxl : [0, 1]→ Ωg,

γxl(s) = xl + s(xr − xl), with Φl,r(xl) = xr. (2.16)

The function γxl help us to quantify the size of the gap by introducing the gap distance defined by

dg = max
xl
{|γxl(0)− γxl(1)|}. (2.17)

We focus on gap regions whose distance decreases polynomially in h, that is

dg ≤hλ, with λ ≥ 1. (2.18)

2.6. Jumps and dG norm ‖.‖dG
For the face Fi, i = l, r, let nFi be its unit normal vector towards Ωg. For a smooth function φ defined

on Ω, we define its interface averages and the jumps as

JφK|Fi =
(
φi − φg

)
, {φ}|Fi =

1

2

(
φi + φg

)
, (2.19)

Jρ∇φK|Fi · nFi =
(
ρi∇φi − ρg∇φg

)
· nFi , {ρ∇φ}|Fi · nFi =

1

2

(
ρi∇φi + ρg∇φg

)
· nFi .

To proceed to our analysis, we need to define the broken dG-norm, ‖.‖dG. For v ∈ V + Vh, we define

‖v‖2dG =
∑

i=l,r

(
ρi‖∇vi‖2L2(Ωi)

+
ρi
h
‖vi‖2L2(∂Ωi∩∂Ω) +

{ρ}
h
‖vi‖2L2(Fi)

)
. (2.20)
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3. The problem on Ω \ Ωg

Having B-spline spaces defined only on Ωl and Ωr, we need to derive a discrete problem in Ωl and
Ωr and then to give as estimate for the error between u and the corresponding discrete solution uh. The
derivation of the problem on Ω \ Ωg has been explained in [8]. For the completeness of the section, we
repeat the main points and the final result.

Recall that Ω = Ωl ∪ Ωg ∪ Ωr, see (2.12a). Now, multiplying (2.3) by a φ ∈ C∞0 (Ω), integrating
on every Ωi separately, then performing integration by parts, summing over all subdomains, using the
equality Jρ∇uφK = {ρ∇u}JφK + Jρ∇uK{φ} and the interface conditions (2.6), we can show that the exact
solution u of (2.4) satisfies

∫

Ωl

ρl∇u · ∇φdx−
∫

∂Ωl∩∂Ω

ρl∇u · n∂Ωlφdσ −
∫

Fl

{ρ∇u} · nFlφdσ

+

∫

Ωr

ρr∇u · ∇φdx−
∫

∂Ωr∩∂Ω

ρr∇u · n∂Ωrφdσ −
∫

Fr

{ρ∇u} · nFrφdσ

=

∫

Ω\Ωg
fφ dx, for all φ ∈ C∞0 (Ω). (3.1)

For the consistency of (3.1) with the original problem (2.5), we refer to [8]. Looking at (3.1), we observe
that the normal flux terms ∇ug · n∂Ωg , e.g.,

∫
Fl
{ρ∇u} · nFlφdσ =

∫
Fl

1
2 (ρl∇ul + ρg∇ug) · nFlφdσ, are

still unknown, in the sense that their values are not predefined for an explicit use in the computations.
In order to get to the discrete analogue of (3.1), the normal flux terms ∇ug · n∂Ωg are approximated by
Taylor expansions.

3.1. Approximations of normal fluxes ∇ug · n∂Ωg .

We recall the following Taylor’s formula with integral remainder, for f ∈ Cm([0, 1])

f(1) = f(0) +
m−1∑

j=1

1

j!
f (j)(0) +

1

(m− 1)!

∫ 1

0

sm−1f (m)(1− s) ds. (3.2)

Let us suppose for the moment that u ∈ Cm(Ω) with m ≥ 2. Let xl = (xl,1, xl,2, xl,3) be a fixed
point on Fl and let xr = Φl,r(xl) be its corresponding diametrically opposite point on Fr. We apply
Taylor expansions along the line γxl (or γxr ), see (2.16), emanating from xl (or xr) and heading in the
diametrically opposite point xr (or xl correspondingly). In that way, we produce approximations of
ρg∇ug ·n∂Ωg |∂Ωg using ul and ur. Similar Taylor expansions have been used in [8] for approximating the
fluxes ρg∇ug · n∂Ωg |∂Ωg for simple gap shapes.

We define f(s) = u(γxl(s)) = u(xl + s(xr − xl)). By chain rule we can obtain

f (j)(s) =
∑

|α|=j

j!

α!
Dαu(xl + s(xr − xl))(xr − xl)α, (3.3)

where α! = α1!...αd! and (xr − xl)α = (xr,1 − xl,1)α1 ...(xr,d − xl,d)αd . Combining (3.2) and (3.3), we
obtain

u(xr) =u(xl) +∇u(xl) · (xr − xl) +R2u(xr + s(xl − xr), (3.4a)

where R2u(xr + s(xl − xr) is the 2− nd order remainder term defined by

R2u(xr + s(xl − xr) =
∑

|α|=2

(xr − xl)α
2

α!

∫ 1

0

sDαu(xr + s(xl − xr)) ds. (3.4b)

Now, we use (3.4) to approximate the flux terms ∇ug · nFl in (3.1). Denoting rl = xr − xl and rr = −rl,
by (2.14) and (2.15), we conclude that nFl = rl

|rl| and nFr = rr
|rr| . Using that 0 = JuK|Fl = (ul(xl)−ug(xl))

and (3.4), we have

ur(xr) =ug(xl) +∇ug(xl) · rl +R2ug(xr + s(xl − xr) (3.5a)

ug(xl) =ur(xr)−∇ur(xr) · rl +R2ur(xl + s(xr − xl), (3.5b)
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and we can obtain that

∇ug · nFl =∇ur · nFl −
1

|rl|
(
R2ur(xl + s(xr − xl) +R2ug(xr + s(xl − xr)

)
(3.6a)

− 1

h

(
ul(xl)− ur(xr)

)
=
|rl|
h
∇ug(xl) · nFl +

1

h
R2ug(xr + s(xl − xr). (3.6b)

Following the same steps as in [8], we replace the normal fluxes on the boundary parts of ∂Ωg, by
using the expressions (3.6). For φh ∈ Vh, it follows by (3.6) that

∫

Fl

(ρl
2
∇ul +

ρg
2
∇ug

)
· nFlφh −

{ρ}
h

JuKφh dσ =

∫

Fl

ρl
2
∇ul · nFlφh +

ρg
2
∇ur · nFlφh −

( ρg
2|rl|

R2ug(xr + s(xl − xr)) +
ρg

2|rl|
R2ur(xl + s(xr − xl))

)
φh

− {ρ}
h

(
ul − ur

)
φh +

{ρ}
h

(
|rl|∇ug · nFl +R2ug(xr + s(xl − xr))

)
φh dσ =

∫

Fl

(ρl
2
∇ul +

ρg
2
∇ur

)
· nFlφh −

{ρ}
h

(
ul − ur

)
φh dσ−

∫

Fl

( ρg
2|rl|

R2ug(xr + s(xl − xr)) +
ρg

2|rl|
R2ur(xl + s(xr − xl))

)
φh dσ+

∫

Fl

{ρ}
h

(
|rl|∇ug · nFl +R2ug(xr + s(xl − xr))

)
φh dσ. (3.7)

Now, using that Jρ∇uK|Fi = 0 for i = l, r, the assumption that nFl ≈ −nFr , definition (2.15) and
following the same procedure as above, we can derive the corresponding form for the flux term on Fr

∫

Fr

(ρr
2
∇ur +

ρg
2
∇ug

)
· nFrφh −

{ρ}
h

JuKφh dσ =

∫

Fr

(ρr
2
∇ur +

ρl
2
∇ul

)
· nFrφh −

{ρ}
h

(
ur − ul

)
φh dσ−

∫

Fr

( ρg
2|rr|

R2ug(xl + s(xr − xl)) +
ρg

2|rr|
R2ul(xr + s(xl − xr))

)
φh dσ+

∫

Fr

{ρ}
h

(
|rr|∇ug · nFr +R2ug(xl + s(xr − xl))

)
φh dσ. (3.8)

3.2. The dG IgA problem on Ω \ Ωg

For convenience we adopt the notations R2ug(xl) := R2ug(xr + s(xl − xr)), R2ur(xr) := R2ur(xl +

s(xr − xl)) and R∇,i = {ρ}
( |ri|
h ∇ug · nFi + 1

hR
2ug(xi)

)
, for i = l, r. Recalling (3.1) and utilizing the flux

approximations (3.7) and (3.8), we deduce that the exact solution u satisfies

∫

Ωl

ρl∇u · ∇φh dx−
∫

∂Ωl∩∂Ω

ρl∇u · n∂Ωlφh dσ

−
∫

Fl

(ρl
2
∇ul +

ρr
2
∇ur

)
· nFlφh −

{ρ}
h

(
ul − ur

)
φh dσ

+

∫

Fl

{
R∇,l +

ρg
2|rl|

R2ur(xr) +
ρg

2|rl|
R2ug(xl)

}
φh dσ

+

∫

Ωr

ρr∇u · ∇φh dx−
∫

∂Ωr∩∂Ω

ρr∇u · n∂Ωrφh dσ

−
∫

Fr

(ρr
2
∇ur +

ρl
2
∇ul

)
· nFrφh −

{ρ}
h

(
ur − ul

)
φh dσ

+

∫

Fr

{
R∇,r +

ρg
2|rr|

R2ul(xl) +
ρg

2|rr|
R2ug(xr)

}
φh dσ =

∫

Ω\Ωg
fφh dx, for φh ∈ Vh, (3.9)

We observe that the terms appearing in (3.9) are the terms that are expected to be appear in a dG
scheme, of course, excluding the Taylor remainder terms. In view of this, we define the forms B\Ωg (·, ·) :
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(V +Vh)×Vh → R, R2
Fl

(·, ·) : (V +Vh)×Vh → R, R2
Fr

(·, ·) : (V +Vh)×Vh → R, RΩg (·, ·) : (V +Vh)×Vh → R
and the linear functional lf,\Ωg : Vh → R by

B\Ωg (u, φh) =

∫

Ωl

ρl∇u · ∇φh dx−
∫

∂Ωl∩∂Ω

ρl∇u · n∂Ωlφh dσ

−
∫

Fl

(ρl
2
∇ul +

ρr
2
∇ur

)
· nFlφh −

{ρ}
h

(
ul − ur

)
φh dσ

+

∫

Ωr

ρr∇u · ∇φh dx−
∫

∂Ωr∩∂Ω

ρr∇u · n∂Ωrφh dσ

−
∫

Fr

(ρr
2
∇ur +

ρl
2
∇ul

)
· nFrφh −

{ρ}
h

(
ur − ul

)
φh dσ, (3.10a)

R2
Fl

(u, φh) =

∫

Fl

{ ρg
2|rl|

R2ur(xr)φh +
ρg

2|rl|
R2ug(xl)φh

}
dσ (3.10b)

R2
Fr (u, φh) =

∫

Fr

{ ρg
2|rr|

R2ul(xl)φh +
ρg

2|rr|
R2ug(xr)φh

}
dσ, (3.10c)

RΩg (u, φh) =

∫

Fl

{
R∇,lφh +

ρg
2|rl|

R2ur(xr)φh +
ρg

2|rl|
R2ug(xl)φh

}
dσ

+

∫

Fr

{
R∇,rφh +

ρg
2|rr|

R2ul(xl)φh +
ρg

2|rr|
R2ug(xr)φh

}
dσ, (3.10d)

lf,\Ωg (φh) =

∫

Ω\Ωg
fφh dx. (3.10e)

We note that the forms R2
Fl

and R2
Fr

appear in (3.10) have not been introduced in [8] for the derivation
of the dG IgA scheme in case of simple gap regions. For the case under consideration, the introduction
of R2

Fl
and R2

Fr
simplifies the analysis of the method. For establishing the dG IgA discrete problem,

we prefer the absence of the terms related to Taylor residuals in the discrete form. Also, we wish the
weak enforcement of the Dirichlet boundary conditions. We define the dG IgA scheme following the same
procedure as in [8]. We introduce the bilinear form Bh(·, ·) : Vh×Vh → R and the linear form Fh : Vh → R
as follows

Bh(uh, φh) = B\Ωg (uh, φh) +
∑

i=l,r

ρi
h

∫

∂Ωi∩∂Ω

uhφh dσ, (3.11)

Fh(φh) = lf,\Ωg (φh) +
∑

i=l,r

ρi
h

∫

∂Ωi∩∂Ω

uDφh dσ. (3.12)

Finally, the discrete problem is: find uh ∈ Vh such that

Bh(uh, φh) = Fh(φh), for all φh ∈ Vh. (3.13)

An immediate result is that, for the exact solution u ∈ V , the variational identity

B(u, φh) := Bh(u, φh) +RΩg (u, φh) = Fh(φh), ∀φ ∈ Vh, (3.14)

holds. Next we show several results that are going to be used in the error analysis.

Lemma 3.1. Under the Assumption 2 and relation (2.18), there exist positive constants C1(ρ, d) and
C2(ρ, d) such that the estimate

|RΩg (u, φh)| ≤C1‖φh‖dG
(
‖∇ug‖L2(∂Ωg) + ‖κ2‖L2(Ωg)

)
hβ , (3.15a)

|R2
Fi(u, φh)| ≤C2‖φh‖dG‖κ2‖L2(Ωg)h

γ , i = 1, 2, (3.15b)

holds true for all (u, φh) ∈ V × Vh, where κ2 =
(∑

|α|=2 |Dαu|
)
, β = λ− 1

2 , and γ = λ+ 1.

Proof. Estimate (3.15a) results directly from Lemma 6 in [8].
Estimate (3.15b) follows easily from the estimate given in Lemma 5 in [8] by setting p = 2.

Lemma 3.2. Let β = λ − 1
2 and γ = λ + 1. Then there is a constant C = C(ρ) ≥ 0 independent of h

such that the estimate

Bh(u, φh) ≤C(ρ)
((
‖u‖2dG +

∑

i=l,r

h‖∇ui‖2L2(∂Ωi)

) 1
2 +K2(hγ + hβ)

)
‖φh‖dG, (3.16)

holds for all (u, φh) ∈ (V + Vh)× Vh, where K2 = ‖∇ug‖L2(∂Ωg) + ‖κ2‖L2(Ωg).
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Proof. By an application of CauchySchwarz inequality, we can show

∣∣ ∑

i=l,r

∫

Ωi

ρ
1
2
i ∇u · ρ

1
2
i ∇φh dx

∣∣ ≤ ‖u‖dG‖φh‖dG. (3.17)

Next, we give bounds for the normal flux terms on ∂Ωl. A direct application of Lemma 5.2 in [13] gives

∣∣∣
∫

∂Ωl∩∂Ω

ρl∇u · n∂Ωlφh dσ
∣∣∣ ≤ C

(
h‖∇ul‖2L2(∂Ωl∩∂Ω)

) 1
2 ‖φh‖dG. (3.18)

For the flux terms on Fl, the triangle inequality and relations (2.6) and (3.6a) yield

∣∣∣
∫

Fl

(ρl
2
∇ul +

ρr
2
∇ur

)
· nFlφh dσ

∣∣∣ ≤
∣∣∣
∫

Fl

ρl∇ul · nFlφh dσ
∣∣∣+
∣∣∣
∫

Fl

ρr∇ur · nFlφh dσ
∣∣∣

≤
∣∣∣
∫

Fl

ρl∇ul · nFlφh dσ
∣∣∣+
∣∣∣
∫

Fl

(
ρr∇ug · nFl +

ρr
|rl|
(
R2ur(xr) +R2ug(xl)

))
φh dσ

∣∣∣

≤ C(ρ)
∣∣∣
∫

Fl

∇ul · nFlφh dσ
∣∣∣+ C(ρ)

∣∣∣
∫

Fl

1

|rl|
(
R2ur(xr) +R2ug(xl)

)
φh dσ

∣∣∣

≤ C(ρ)
(
h‖∇ul‖2L2(Fl)

) 1
2 ‖φh‖dG + C(ρ)‖φh‖dG‖κ2‖L2(Ωg)h

γ , (3.19)

where the estimate (3.15b) has been used. The flux terms of Bh(·, ·), which appear on Fr can be bound
in a similar way. As a last step, we need to bound the jump terms in Bh(·, ·). Following similar procedure
as in (3.19) and using (3.6b) and estimate (3.15a), we can show

∣∣∣
∫

Fl

{ρ}
h

(
ul − ur

)
φh dσ

∣∣∣ ≤
∣∣∣C(ρ)

∫

Fl

( |rl|
h
∇ug(xl) · nFl +

1

h
R2ug(xl)

)
φh dσ

∣∣∣ (3.20)

≤ C(ρ)‖φh‖dG
(
‖∇ug‖Lp(∂Ωg) + ‖κ2‖Lp(Ωg)

)
hβ . (3.21)

Working in similar way, we can show

∣∣∣
∫

Fr

{ρ}
h

(
ur − ul

)
φh dσ

∣∣∣ ≤ C(ρ)‖φh‖dG
(
‖∇ug‖Lp(∂Ωg) + ‖κ2‖Lp(Ωg)

)
hβ . (3.22)

Finally, collecting all the above bounds we can deduce assertion (3.16).

We point out that the terms K2(hγ+hβ) in (3.16) appear due to the estimation of the multi-directional
Taylor remainder terms, which are involved in the approximation of the normal fluxes in ∂Ωg. In [8],
we follow a different idea for showing the corresponding boundedness property for Bh(., .). This idea is
convenient for the uni-axial Taylor expansions and we avoid the appearance of the terms K2(hγ + hβ) in
the boundedness property of Bh(., .).

Now, we prove that the discrete problem (3.13) has unique solution.

Lemma 3.3. The bilinear form Bh(·, ·) in (3.11) is bounded and elliptic on Vh, i.e., there are positive
constants CM and Cm such that the estimates

Bh(vh, φh) ≤ CM‖vh‖dG‖φh‖dG and Bh(vh, vh) ≥ Cm‖vh‖2dG, (3.23)

hold for all φh ∈ Vh.

Proof. The two properties of Bh(·, ·) can be shown following the same procedure as in Lemma 3.2 and
mimic the proofs of Lemma 4.5 and Lemma 4.6 in [13]. Thus, the details are omitted.

Since Bh(., .) is bounded and elliptic in Vh, we can apply the Lax-Milgram theorem to conclude that
the problem (3.13) has a unique solution. Note that the solution u satisfies (3.14) but does not satisfy
the discrete problem (3.13). The derived dG IgA discretization is not consistent. We present below the
error analysis borrowing ideas from the weak consistent FE methods, [6].
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4. Error estimates

Next, we derive error estimate for the proposed dG IgA scheme (3.13) under the Assumption 1. The
procedure that we follow is similar to the corresponding procedure followed in [8]. The main differences
are due to the different bound estimate (3.16). For the completeness of the paper, we present the error
analysis and we highlight the dependence of the analysis on the bound estimate (3.16). The linearity of
the Bh(·, ·), see (3.11) and (3.10), and the relations (3.12) and (3.14) yield

Bh(uh − zh, φh) = B(u, φh) +
∑

i=l,r

ρi
h

∫

∂Ωi∩∂Ω

(u− uD)φh dσ −Bh(zh, φh) + Fh(φh)− lf,\Ωg (φh)

= Bh(u, φh) +RΩg (u, φh)−
∑

i=l,r

ρi
h

∫

∂Ωi∩∂Ω

uDφh dσ −Bh(zh, φh) +
∑

i=l,r

ρi
h

∫

∂Ωi∩∂Ω

uDφh dσ

= Bh(u− zh, φh) +RΩg (u, φh). (4.1)

We choose in (4.1) φh = uh − zh. Let K2 = ‖∇ug‖L2(∂Ωg) + ‖κ2‖L2(Ωg) and the parameters β = λ − 1
2 ,

and γ = λ+ 1. Then, Lemma 3.3 and Lemma 3.2 imply

Cm‖uh−zh‖2dG ≤ CM
((
‖u−zh‖2dG+

∑

i=l,r

h‖∇(u−zh)‖2L2(∂Ωi)

) 1
2 +K2

(
hβ+hγ)

)
‖uh−zh‖dG+|RΩg (u, uh−zh)|

≤ CM
(
‖u− zh‖2dG +

∑

i=l,r

h‖∇(u− zh)‖2L2(∂Ωi)

) 1
2 ‖uh − zh‖dG + C1‖uh − zh‖dG(hβ + hγ)K2, (4.2)

where we previously used the estimates (3.15) and (3.16). Applying triangle inequality in (4.2), we can
easily arrive at the following estimate

‖u− uh‖dG ≤ C
((
‖u− zh‖2dG +

∑

i=l,r

h‖∇(u− zh)‖2L2(∂Ωi)

) 1
2 + (hβ + hγ)K2

)
, (4.3)

where the constant C is specified by the constants appearing in (4.2). Now, we can prove the main error
estimate.

Theorem 4.1. Let u be the solution of problem (3.14), uh be the corresponding dG IgA solution of
problem (3.13), and let dg = hλ with λ ≥ 1. Then the error estimate

‖u− uh‖dG . hr
( ∑

i=l,r

‖u‖W l,2(Ωi) +K2

)
, (4.4)

holds, where r = min(s, β) with s = min(k + 1, l)− 1 and β = λ− 1
2 , and as usual K2 = ‖∇ug‖L2(∂Ωg) +

‖κ2‖L2(Ωg) with κ2 =
(∑

|α|=2 |Dαu|
)
.

Proof. The required estimate follows easily by applying in (4.3) the quasi-interpolation estimates given
in [13] and then following the same steps as in Theorem 1 in [8].

5. Numerical tests

In this section, we perform several numerical tests with different gap shape and investigate the order
of accuracy of the dG IgA scheme proposed in (3.11). We discuss two-, three- and four-dimensional test
examples. All examples have been performed using second order (k = 2) B-spline spaces, apart from
one where third order (k = 3) B-splines have been used. We compare the error convergence rates vs
the grid size for several gap distances dg = hλ, with λ = 1, λ = 2, λ = 3 and λ = 4. Every example
has been solved applying several mesh refinement steps with hi, hi+1, ..., satisfying Assumption 2. The

numerical convergence rates r have been computed by the ratio r = ln(ei/ei+1)
ln(hi/hi+1) , i = 1, 2, ..., where the

error ei := ‖u − uh‖dG is always computed on the meshes T
(l)
hi,Ωl

∪ T (r)
hi,Ωr

. We mention that, in the test
cases we use highly smooth solutions, i.e., k+ 1 ≤ l, and therefore the parameter s in the approximation
order in (4.4) becomes s = k. The predicted values of power β, the order s and the order r in (4.4)
for several values of λ are displayed in Table 1. All tests have been performed in G+SMO1, which is a
generic object-oriented C++ library for IgA computations, see also [11, 12].

1G+SMO: https://www.gs.jku.at/trac/gismo
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B-spline degree k
Smooth solutions, u ∈W l≥k+1,p=2

dg = hλ λ = 1 λ = 2 λ = 3 λ = 4
β := 0.5 1.5 2.5 3.5
s := k k k k
r := 0.5 1.5 min(k, β) k

Table 1: The values of the predicted order r of the estimate (4.4) in Theorem 1.

For the two dimensional examples, we use the knot vectors Ξ1
i = {0, 0, 0, 0.5, 0.5, 1, 1, 1} and Ξ2

i :=
{0, 0, 0, 0.5, 1, 1, 1}, with i = 1, 2, to define the parametric mesh and to construct the corresponding second
order B-spline space, see (2.7). The B-spline parametrizations of Ω1 and Ω2, see (2.9), are constructed
using the control points which are presented in the first two rows in Table 2. In any test case, the gap
region is artificially created by moving the control points, which are related to the interface F , in the
direction of nF or of −nF .

The numerical examples presented in [8] have been performed by using matching mesh conditions
on Fl and Fr, without this to be restricted by the developing of the dG IgA method. In general, the
introduction of dG techniques on the subdomain interfaces makes easier the use of non-matching meshes,
see [13]. The proposed dG IgA method in Subsection 3.2 allows the use of non-matching meshes on the
opposite gap boundaries. Keeping a constant linear relation between the sizes of the different meshes the
approximation properties of the method are not affected, see [13]. In the Example 3 below, we exploit
this advantage of the dG methods and solve the problem considering non-matching meshes on Fl and Fr.
The convergence rates expected to be the same as those displayed in Table 1.

Control points (-6.5,-1.5), (-7,-1.5), (-7.5,-1.5), (-8,-1.5), (-8.5,-1.5), (-6.5,-0.5), (-7,0), (-7.5,0.25),
Cj1,j2 for Ω1 (-8,0.5), (-8.5,0.5), (-5.5,0), (-5.5,1.25), (-5.5,2.125), (-5.5,3), (-5.5,3.5), (0,0)

(-1.25,1.25), (-2.125,2.125), (-3,3), (-3.5,3.5)

Control points (6.5,-1.5), (-7,-1.5), (7.5,-1.5), (8,-1.5), (8.5,-1.5), (6.5,-0.5), (7,0), (7.5,0.25),
Cj1,j2 for Ω2 (8,0.5), (8.5,0.5), (5.5,0), (5.5,1.25), (5.5,2.125), (5.5,3), (5.5,3.5), (0,0),

(-1.25,1.25), (-2.125,2.125), (-3,3), (-3.5,3.5)

Control points (6.5,-1,5), (7,1.5), (7.5,-1,5), (8,-1.5), (8.5,-1.5), (6.5,-0.5),(7,0), (7.5,0.25),
Cj1,j2 for Ωr (8,0.5), (8.5,0.5), (5.5,0), (5.5,1.25), (5.5,2.125), (5.5,3), (5.5,3.5), (0,0),

(0.25,2.75), (-0.625,3.625), (-1.5,4.5), (-3.5,3.5)

Table 2: The control points for the B-spline parametrizations of the subdomains

5.1. Two-dimensional numerical examples

Example 1, uniform diffusion coefficient ρl = ρr. The first numerical example is a simple test case
demonstrating the applicability of the proposed technique for constructing dG IgA scheme on subdivisions
including gaps with general shape. The domain Ω with the subdomains Ω1, Ω2 and the control net are
shown in Fig. 2(a). The interface F , see (2.1), is given by F = {(x, y) : y = −x, − 3.5 ≤ x ≤ 0}, see Fig.
2(a). The Dirichlet boundary condition and the right hand side f are determined by the exact solution
u(x, y) = sin(π(x + 0.4)/6) sin(π(y + 0.3)/3) + x + y. In this example, we consider the homogeneous
diffusion case, i.e., ρl = ρr = 1. In Fig. 2(b), we can see the initial subdomains Ωl, Ωr, and the gap region
Ωg in case dg = hλ=1. For this example the interface F coincides with Fl, the subdomain Ωl coincides
with Ω1 and the corresponding control points of Ωr are given in the last row in Table 2.

We performed three computations, where for every computation, the size of dg was defined to be
O(hλ), with λ = 1, 2 and 3. The numerical convergence rates for several levels of mesh refinement are
plotted in Fig. 2(c). They are in good agreement with the theoretically predicted estimates given in
Theorem 4.1. In particular for the case dg = h, the rates are r = 0.5, and for the case dg = h2 the
rates are r = 1.5, as it was expected, see Table 1. For the case of dg = h3, the rates related to the
first refinements are little higher than the expected rates, but progressively tend to get the optimal value
r = 2, see Table 1.

Example 2, different diffusion coefficient ρl 6= ρr. In the second example, we study the case of having
smooth solutions on Ω1 and Ω2 but discontinuous coefficient, i.e., we set ρ1 = 1 in Ω1 and ρ2 = 3
in Ω2. The domain Ω and the subdomains Ω1 and Ω2 are presented in Fig. 2(a). The interface is
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Figure 2: Example 1: (a) The subdomains Ω1, Ω2 with the corresponding control nets. (b) The contours of the uh solution
for dg = h. (c)) The convergence rates for dg = O(hλ) with λ = 1, 2 and 3.
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Figure 3: Example 2: (a) The contours of exact u given by (5.1), (b) The contours of uh on subdomains Ωl, Ωr , (c) The
convergence rates for the three choices of λ.

F = {(x, y) : y = −x, − 3.5 ≤ x ≤ 0}, and the gap has the same shape as in Example 1, see Fig. 2(b).
The exact solution is given by the formula

u(x, y) =

{
exp(3(x+ y))− 1 if (x, y) ∈ Ω1,

sin(x+ y) if (x, y) ∈ Ω2.
(5.1)

The boundary conditions and the source function f are determined by (5.1). Note that in this test case,
we have JuK|F = 0 as well Jρ∇uK|F · nF = 0 for the normal flux on F . The contours of the exact solution
on the domain Ω are presented in Fig. 3(a). The problem has been solved on meshes refined following
a sequential process, where we set dg = hλ, with λ = 1, 2 and 3. Thus for every computation the gap
boundary is formed by the choice of h and λ. In Fig. 3(b), we plot the uh solution on Ω \ Ωg computed
on the first initial mesh with h = 0.5. The computed rates are presented in Fig. 3(c). For the cases
where λ = 1 and λ = 2, we observe that the values of the rates behave according to the predicted rates,
see (4.4) and Table 1. The error corresponding to the dg = h3 test case (dashed dot line) on the first
refinements appears to decay slower than it was expected, but finally on the last refinement levels tends
to take the optimal value, which has predicted by the theory. By this example we validate numerically
the predicted convergence rates for problems with discontinuous coefficient and smooth solutions.

Example 3, non-matching meshes. In the third test case, we apply the proposed method (3.11), in case
of having a more complex gap region. Again the domain Ω is the same as in the previous examples, see
Fig. 2(a) and the interface F is given by F = {(x, y) : y = −x, − 3.5 ≤ x ≤ 0}. Here, we artificially
created the gap region such that Ω1 ∩ Ωg 6= ∅ and thus Fl 6= F . The shape of the gap region can be
seen in Fig. 4(a). Note that the normal vector nFl is not fixed as in the previous examples. The exact
solution of the problem is

u(x, y) =

{
exp(sin(x+ y))− 1 if (x, y) ∈ Ω1,

sin(2(x+ y)) if (x, y) ∈ Ω2.
(5.2)

The source function f and uD are manufactured by the exact solution. The diffusion coefficient has been
defined to be ρ1 = 2 and ρ2 = 1 and it holds JuK|F · nF = 0 as well Jρ∇uK|F = 0 for the normal flux
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Figure 4: Example 3, non-matching meshes: (a) The contours of u on Ωl and Ωr with dg = 0.1875. (b) The contours of uh
on Ωl and Ωr computed for dg = 0.1875 (c) Convergence rates r for the three values of λ.

on F . The purpose of this example is the following: we want to investigate the convergence rates of the
method by solving the problem in case of complex gap regions using non-matching meshes on Fl and Fr.
In particular the relation between the mesh size hl of Ωl and the mesh size hr of Ωr is hl = 2hr.

Hence, for validation, we have computed the convergence rates of varying size dg = hλr for λ = 1, λ = 2
and λ = 3. In Fig. 4(a), we plot the contours of u on the domains Ωl and Ωr on different meshes in
case of dg = 0.1875. In Fig. 4(b), we can see the contours of uh, which has been computed using the
different meshes. In Fig. 4(c), we plot the convergence rates for λ = 1, 2 and 3. We observe that the
values of the rates for all three different λ cases confirm the theoretically predicted rates, see Table 1.
The computational rates get the optimal value r = 2 for λ = 3, which is in agreement with the previous
examples and is the expected value for this problem with smooth solution.

By this example, we demonstrated the ability of the proposed method to approximate oscillatory
solutions of the diffusion problem (2.5) with the expected accuracy, in case of complex gab regions using
different subdomain meshes.

Example 4, third order B-spline solutions. For this example, we again consider the problem (2.4) on the
same domain Ω presented in Fig. 2(a), which is decomposed into the same subdomains Ω1, Ω2 and the
common interface F as in the previous examples. The exact solution is now defined by

u(x, y) =

{
exp(sin(x+ y))− 1 if (x, y) ∈ Ω1,

sin(π(x+ y)) if (x, y) ∈ Ω2.
(5.3)

The source function f and uD are manufactured by the exact solution. The diffusion coefficient has been
defined to be ρ1 = π and ρ2 = 1 and note that it holds JuK|F = 0 as well Jρ∇uK|F ·nF = 0 for the normal
flux on F . In this example, we investigate the convergence rates in case of utilizing B-spline spaces of
degree k = 3 and the gap is a complex domain having the same shape as in Example 3. We solve the
problem for λ = 1, 2, 3 and λ = 4. In any test case, we artificially create the gap region by moving
appropriately the control points which are related to the interface F . In Fig. 5(a), we plot the contours
of u on the domains Ωl and Ωr in case of dg = 0.1875. In Fig. 5(b), we plot the contours of uh on the same
domains Ωl and Ωr. The convergence rates are plotted in Fig. 5(c). As in previous tests, the convergence
behavior for all λ tests confirm the theoretical rates presented in Table 1. For the cases of λ = 1, λ = 2
and λ = 3, we observe that the rates are not optimal because the large gap distance, dg = hλ, affects the
optimal approximation -related to the B-spline degree- of the normal fluxes on ∂Ωg. On the other hand,
we get optimal rates r = 3 for λ = 4, because in this case we have optimal approximation O(h3) of the
normal fluxes on ∂Ω, see Lemma 3.1 and Theorem 4.1.
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Figure 5: Example 4: third order, k = 3, B-spline space. (a) The contours of u on Ω1 and Ω2. (b) The contours of uh on
Ωl and Ωr computed for dg = 0.1875 (c) Convergence rates r for the four values of λ.

(a) (b)

h

||
u

u
h
||

d
G

10
1

10
0

10
110

1

10
0

10
1

10
2

d
g
=h

1

d
g
=h

2

d
g
=h

3

r=0.5
r=0.47

r=0.45

r=1.6

r=1.4

r=1.6

r=1.5

r=2.0

r=2.1

(c)

Figure 6: Example 5, Ω ⊂ R3: (a) The contours of uh computed on Ω , (b) The contours of uh computed on Ω \ Ωg with
dg = 0.1 , (c) Convergence rates r for the three values of λ.

5.2. Three-dimensional numerical examples

In the three-dimensional tests, the domain Ω has been constructed by a straight prolongation to the z-
direction of the previous two-dimensional domain, see Fig. 2(a). The knot vector in z-direction is the same
as in the y-direction, this means Ξ3

i = {0, 0, 0, 0.5, 1, 1, 1} with i = l, r. The B-spline parametrizations of
the two subdomains have been build by adding a third component to the control points that are listed
in the first two rows in Table 2. The third component takes the following values {0, 3, 6}. Again, the
gap region is artificially constructed by moving only the interior control points located at the interface
F = {(x, y, z) : y + x = 0, 0 ≤ z ≤ 6} into the normal nF -direction.

Example 5, 3d test with ρl 6= ρr. Although the first 3d example is a simple extension of the previous two
dimensional Example 3, it is still interesting to check the numerical rates. The exact solution is given by
(5.2) and the set up of the problem is illustrated in Fig. 6. The test has been performed using matching
meshes on Fl and Fr. The interface F is the y + x = 0 plane. In Fig. 6(a), we can see the contours
of the solution u on both subdomains Ω1 and Ω2 without having a gap region. Note that the contours
resemble the two-dimensional contours along any slice z = constant. In Fig. 6(b), we plot the contours
of the solution uh resulting from the solution of the problem in case of having a gap region with dg = 0.1.
We can clearly observe the similarities of the contours in Fig. 4(b) and in Fig. 6(b). Also, in Fig. 6(b),
we show the shape of the gap as it appears on an oblique cut of the domain Ω. We have computed the
convergence rates for three different values λ = 1, λ = 2 and λ = 3. The results of the computed rates
are plotted in Fig. 6(c). We observe that all the rates are in agreement with the rates predicted by the
theory and are similar to the rates of the two-dimensional test Example 3, see Fig. 4(c).

Example 6, non-convex gap. For the second numerical test in three-dimensions, the domain Ω is the
same as in previous Example 5 with the same interface F of Ω1 and Ω2, see Fig. 6(a). We consider a
manufactured problem, where the solution is u(x, y, z) = sin(πx/2) sin(πy/8), and the diffusion coefficient
is defined to be ρ = 1 everywhere. Here, we artificially created the gap region such that Ωg ⊂ Ω2, and
Ω1 ⊂ Ωl, see Fig. 7(a). Note that for this example the gap is not a convex region as in the previous test
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Figure 7: Example 6: (a) The contours of u on Ω\Ωg with dg = 0.15 at z = 3 , (b) The contours of uh computed on Ω\Ωg
with dg = 0.15, (c) Convergence rates r for the different dg sizes.

cases and this case is not covered by the description in Subsection 2.5. In particular, in all computations
for this example, the two gap boundary parts Fl and Fr are not symmetrically located with respect to the
original interface F . The problem has been solved performing three computations setting the parameter
λ in the gap distance dg = hλ, equal to λ = 1, λ = 2 and λ = 3 correspondingly.

In Fig. 7(a), we can see the gap region, with dg = 0.15 and the contours of the solution u on a
z = constant plane. The contours of the solution uh computed on a non-matching decomposition with
dg = 0.15 are presented in Fig. 7(b). The contours are presented on a interior slice given by z = 3. We
have computed the convergence rates r for the three different sizes dg, obtained by the different values
of λ. We plot our results in Fig. 7(c). We observe that the rates are approaching the expected values
that have been mentioned in Table 1. Furthermore, we note that, for the case dg = h3, the rate tends
to become optimal r = 2 and is in agreement with the rate predicted by the theory, see Table 1 and
Theorem 4.1. Eventually, by this example with a non-convex gap, we show that the convergence rates
are in agreement with the rates predicted by the theory.

Example 7, 4d test case. In this test case, we consider the model problem (2.3) in a domain Ω ⊂ R4 with
homogeneous diffusion coefficient ρ = 1 in the whole domain. The domain consists of two subdomains
(hypercubes) Qi, i = 1, 2 given by Q1 = [−1, 0] × [0, 1]3 and Q2 = [0, 1] × [0, 1]3 respectively. The
common interface is the cube QF = {(x, y, z, w) : {x = 0} × [0, 1]3}. In Fig. 8(a), an illustration of
the computational domain is presented and QF is depicted by red color. The exact solution is given by
u(x, y) = sin(πy/2) sin(πx/8) sin(πz/2), the source term f and the boundary data uD are manufactured
by the exact solution. The domain is represented by second order B-Splines with knot vectors Ξιi =
{0, 0, 0, 0.5, 0.5, 1, 1, 1} for i ∈ {1, 2} and ι ∈ {1, 2, 3, 4} and the corresponding 81 control points for each
patch, i.e., 3 control points along each dimension. In particular, we mark the only interior control point
PF of the common interface with the coordinates PF = (x = 0, y = 0.5, z = 0.5, w = 0.5). We create the
gap by moving the control point PF to the point (x = dg, y = 0.5, z = 0.5, w = 0.5). In Fig. 8(b), we
illustrate the gap region in the interface cube. Note that in this test case the gap is a convex domain.
The problem has been solved performing three computations setting the parameter λ in the gap distance
dg = hλ, equal to λ = 1, λ = 2 and λ = 3 respectively. We have computed the convergence rates r for the
three different sizes dg, obtained by the different values of λ. In Fig. 8(c) we show the convergence rates
of the error with respect the grid size. We observe that the rates are in agreement with the corresponding
rates that have been found in the previous tests. Again, we observe that for the case dg = h3, the rate
tends to get the optimal value r = 2 and is in agreement with the rate predicted by the theory, see Table
1 and Theorem 4.1. Finally, by this example with a convex gap Ωg ⊂ R4, we show that the convergence
rates are in agreement with the rates predicted by the theory and this demonstrates the capability of our
method to treat problems on decompositions with gaps even even in four-dimensional case.

6. Conclusions

In this article, we have developed and analyzed dG IgA methods for discretizing linear, second-
order elliptic boundary value problems on volumetric patch decompositions with non-matching interface
parametrizations, which include gap regions between the adjacent subdomains (patches). Starting from
the original weak formulation, we derived a consistent variational problem on a decomposition without
including the gap region. The unknown normal fluxes on the gap boundary were approximated via
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Figure 8: Example 7: (a) An illustration of the original domain, (b) An illustration of the computational domain with the
gap region, (c) Convergence rates r for the different dg sizes.

multi-directional Taylor expansions. The Taylor expansions were developed and were successfully used
on simple and complex gap shapes. The approximations were adapted to the proposed dG IgA scheme,
and the communication of the discrete solution of the adjacent subdomains was ensured. A priori error
estimates in the dG-norm ‖.‖dG were shown in terms of the mesh-size h and the gap distance dg. The
estimates were confirmed by solving several two-, three- and four-dimensional test problems with known
exact solutions.
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[18] M. Ruess, D. Schillinger, A. I. Özcan, and E. Rank. Weak coupling for isogeometric analysis of
non-matching and trimmed multi-patch geometries. Computer Methods in Applied Mechanics and
Engineering, 269(0):46 – 71, 2014.

[19] L. L. Schumaker. Spline Functions: Basic Theory. Cambridge, University Press, third Edition
edition, 2007.


