
On the Linear Independence

of (Truncated) Hierarchical

Subdivision Splines

U. Zore, B. Jüttler, J. Kosinka

G+S Report No. 40
This technical report replaces report no. 17.

November 2015

On the Linear Independence of (Truncated) Hierarchical

Subdivision Splines

Urška Zorea, Bert Jüttlera,∗, Jǐŕı Kosinkab

aInstitute of Applied Geometry, Johannes Kepler University, Linz, Austria
bJohann Bernoulli Institute, University of Groningen, The Netherlands

Abstract

Motivated by the necessity to perform adaptive refinement in geometric design and nu-
merical simulation, (truncated) hierarchical generating systems for nested spaces of spline
functions defined on domains in Rd have been recently introduced. Their linear indepen-
dence can be guaranteed with the help of the local linear independence of the spline basis
at each level. The present paper extends this framework to spline functions that are defined
on domain manifolds, in particular focusing on the case of subdivision splines generated
by the Catmull-Clark, Loop, and modified Butterfly subdivision schemes. Since the prop-
erty of local linear independence is no longer available, we introduce the concept of safe
subdomains, which allows us to guarantee linear independence. We provide a catalog of
safe subdomains that facilitates the design of domain hierarchies with linearly independent
(truncated) hierarchical generating systems.

Keywords: Multi-level spline space, generating system, subdivision scheme,
Catmull-Clark subdivision, Loop subdivision, Butterfly subdivision

1. Introduction

The powerful framework of Isogeometric Analysis [4] facilitates the exchange of data
between various software tools used for geometric design (CAD systems) and for analysis
(numerical simulations). The use of B-splines and NURBS not only for modeling but also
for analysis offers advantages over traditional finite element functions, such as increased
smoothness, faster convergence, improved stability, and most importantly, it eliminates the
need for model (re)meshing.

However, since multivariate spline representations are based on tensor-product con-
structions, they suffer from two major limitations: local refinement is not possible and
only trivial box-like topologies are supported. Various generalizations of tensor-product
splines, such as T-splines, hierarchical splines, LR splines, and PHT splines, have been
introduced in order to facilitate local adaptivity.

T-splines [17, 27] are splines defined by local knot vectors. Hierarchical B-splines [33]
are obtained by combining selected B-splines from a sequence of nested spline spaces. LR
splines [12] are constructed by repeatedly splitting tensor-product B-splines, starting from

∗Corresponding author. Tel. +43(0)732 2468 4080
Email addresses: urska.zore@jku.at (Urška Zore), bert.juettler@jku.at (Bert Jüttler),

j.kosinka@rug.nl (Jǐŕı Kosinka)

an initial set defined on a mesh of tensor-product topology. PHT splines [16] are based
on the full space of piece-wise polynomial functions on a given T-mesh, which is equipped
with a suitable basis.

In the context of this paper, we are particularly interested in (truncated) hierarchical
B-splines (THB-splines) [9, 10]. This spline basis provides various useful properties in the
mathematical framework of hierarchical splines, such as partition of unity, strong stability,
full approximation power, and efficient implementation [13, 31]. This approach has recently
been extended to more general hierarchies of spline spaces [36].

As the domains of tensor-product spline functions are boxes in parameter space, it
becomes more challenging to create suitable representations for domains of general manifold
topology. A typical solution consists in using multi-patch representations with reduced
smoothness across their interfaces [14, 28]. This may, however, lead to artifacts in numerical
solutions at the interfaces. Moreover, global high-order smoothness is advantageous for
solving higher-order problems, such as the biharmonic equation.

The framework of T-splines [29] includes extraordinary vertices (i.e., vertices where
other than four patches meet), which are essential for dealing with general topologies, but
the mathematical properties of the isogeometric functions in the vicinity of these points
are not well understood.

Typically, the presence of extraordinary vertices leads to a reduced order of smoothness,
approximation, and convergence rate [20]. Nevertheless, the use of subdivision functions
seems to be one of the most promising approaches [1, 3, 11], mainly due to their support
for arbitrary manifold topology, in-built refinement relations, and the widespread use of
subdivision representations in applications, especially in Computer Graphics [6].

Using trimmed NURBS representations is a different approach, which is adopted by
CAD systems. When used in isogeometric analysis, these representations require special
treatment [26]. Alternatively it is possible to convert them to subdivision surfaces [30].

The present paper describes an extension of the THB construction to functions gen-
erated by subdivision algorithms. It combines adaptive refinement with the topological
flexibility of subdivision. The concept of a domain manifold [23] is employed to define
subdivision splines in a mathematically rigorous way. Based on this framework, we de-
rive conditions for linear independence of (truncated) hierarchical subdivision blending
functions.

Subdivision algorithms create sequences of nested spaces and are therefore suited for
invoking the multi-resolution framework, e.g., when performing hierarchical editing [19].
This is in fact analogous to hierarchical B-spline refinement, which was originally formu-
lated by Forsey and Bartels [8]. Their construction was later augmented by introducing
a basis [15], thereby facilitating its application in adaptive surface reconstruction and iso-
geometric analysis. It is desirable to introduce a similar basis for hierarchical subdivision
splines.

While preparing this manuscript, we became aware of the recent papers [34, 35], which
report on a parallel development of another group of authors. These papers focus on
numerical simulation with truncated hierarchical Catmull-Clark subdivision functions and
provide sufficient conditions for linear independence of the corresponding basis functions.

In contrast, the present paper formulates the hierarchical construction in a more general
framework, which encompasses, among other schemes, Catmull-Clark and Loop subdivision
surfaces, and surfaces constructed by the interpolatory (modified) Butterfly subdivision

2

scheme. We discuss the linear independence of the hierarchical generating system in a
mathematically rigorous way. More precisely, we introduce catalogs of safe subdomains to
describe sufficient conditions on the domain hierarchy that ensure linear independence.

In order to obtain these catalogs we use techniques that were pioneered by Peters and
Wu [24] when discussing linear independence for Catmull-Clark and Loop subdivision.
We cast these techniques into a general framework that allows to derive catalogs of safe
subdomains for a wide range of subdivision schemes using a unified approach.

The remainder of the paper is organized as follows. Section 2 extends the construction
of (truncated) hierarchical generating systems presented in [36] to spaces of functions de-
fined on manifolds and to generating systems containing functions that are not necessarily
non-negative. The next section introduces the concept of safe subdomains to establish
sufficient conditions for linear independence. Section 4 introduces (truncated) hierarchical
subdivision splines. Section 5 shows how to identify safe subdomains that are needed to
guarantee linear independence, summarizes the results known for Catmull-Clark and Loop
subdivision schemes, and additionally analyzes the case of Butterfly subdivision blending
functions. Finally, we conclude the paper.

2. Hierarchical generating systems on manifolds

The framework of hierarchical generating systems was developed in [36] for non-negative
functions in C(Ω), where the domain Ω was required to be an open subset of Rd. Local
linear independence was used to certify their linear independence.

In order to generalize this concept to subdivision splines, we extend this framework in
two ways: Firstly, we consider functions defined on d-dimensional manifolds, and secondly,
we allow functions that are not necessarily non-negative. Furthermore, we identify suffi-
cient conditions that ensure linear independence of hierarchical generating systems. These
conditions are weaker than local linear independence.

2.1. Functions on manifolds

Spaces of functions defined on an open set Ω ⊂ Rd that are spanned by finite generating
systems G were considered in [36]. In the following, we generalize the domain to a d-
dimensional manifold M.

A d-dimensional manifoldM is a topological space that locally resembles the d-dimen-
sional Euclidean space, i.e., each point has a neighborhood homeomorphic to the Euclidean
space of dimension d. More precisely, each inner point of the manifold has a neighborhood
homeomorphic to an open ball in Rd,

{(x1, . . . , xd) ∈ Rd |∑i x
2
i < 1},

and each point on its boundary, which can be empty, has a neighborhood homeomorphic
to a semi-open half-ball in Rd,

{(x1, . . . , xd) ∈ Rd |∑i x
2
i < 1 and x1 ≥ 0},

where all boundary points correspond to points with x1 = 0. A d-dimensional manifold
with or without boundary will be referred to as d-manifold.

The open unit square (0, 1)2 is a 2-manifold without boundary, while the closed unit
square [0, 1]2 is a 2-manifold with boundary. Curves and surfaces in R3 can be equipped

3

with a manifold structure, provided that they do not possess self-intersections or singular-
ities. However, the notion of manifolds also encompasses more abstract objects, some of
which will be described later in Section 4.

Given a d-manifold M, any mapping M → R is called a function on M. In this
context, we say that M is the domain manifold of this function. Due to the topological
structure of M it is possible to extend the notion of continuity to functions on manifolds,
and we consider only continuous functions in the remainder of this paper.

We define the support of a function f onM, denoted by supp f , as the set of all points
of M where the function is non-zero. The support of a continuous function is an open
d-submanifold of M.

2.2. Hierarchical generating systems

A generating system G on a domain manifold M is a finite system of continuous func-
tions defined on M. We express G as the column vector

G = (γi)i∈I ,

indexed by a finite set I. We will use row vectors c = (ci)
T
i∈I to collect the coefficients of

the functions in
G = spanG = RIG = {cG | c ∈ RI}.

The Cartesian product of m copies of G gives rise to the space Gm, which consists of
geometric realizations of the manifold M in the m-dimensional real space. It should be
noted that these realizations are not necessarily manifolds themselves, since they may have
self-intersections.

In contrast to [36], we do not restrict ourselves to non-negative functions. Generating
systems that partition unity, i.e.,

1G = 1

with 1 = (1, . . . , 1) ∈ RI , are said to be normalized.
We consider an infinite sequence of generating systems with a refinement property.

More precisely, we consider generating systems G` = (γ`i)i∈I` , ` = 0, 1, . . ., with index sets
I`, where the additional index ` is called the level. We assume that there exist matrices
R` such that the generating systems satisfy the refinement equation

G` = R`+1G`+1, (1)

where the columns of the matrices R`+1 sum to one. Each function of G` is expressed as a
linear combination of functions of level `+ 1. Again, in contrast to [36], the entries of the
matrices are not assumed to be non-negative.

Hierarchical generating systems can now be defined with the help of a subdomain hi-
erarchy that contains N + 1 levels, where N is a non-negative integer. The subdomain
hierarchy is a decreasing sequence (M`)`=0,...,N+1 of N + 2 d-dimensional submanifolds
satisfying

M =M0 ⊇M1 ⊇ · · · ⊇ MN ⊇MN+1 = ∅, (2)

where the submanifold MN+1 = ∅ is introduced to simplify the notation later on. More
precisely, eachM` is itself assumed to be a d-manifold with respect to the topology inher-
ited from M. Here we use ⊇ to express the submanifold relation between manifolds.

4

The differences between the domain manifold M and the subdomains M` define the
complementary hierarchy of rings

∆` =M\M`+1

satisfying
∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆N =M.

Conceptually, the ring ∆` is the entire domain manifold with a “hole” defined by M`+1.
Note that the rings are not necessarily submanifolds.

According to the domain hierarchy we now select the functions γ`i from each generating
system G` that satisfy

supp γ`i ⊆M` ∧ supp γ`i *M`+1.

The selected functions are collected in vectors Ĝ` = (γ`i)i∈Î` , where the index set Î` con-

tains their indices. More precisely, Ĝ` collects all the functions from G` whose support is
contained in the subdomain M` but is not contained in M`+1.

The hierarchical generating system is now obtained by collecting all subsets Ĝ`,

K =
(
Ĝ`
)
`=0,...,N

=
(
γ`i
)
i∈Î`,`=0,...,N

. (3)

The symbol K was chosen in reference to the inventor of this selection mechanism [15].

2.3. Nested hierarchical refinement and truncation

In order to be useful in practice, the adaptive refinement using hierarchical generating
systems should produce nested spaces. More precisely, if one starts from a given subdomain
sequence, then enlarging all subdomains should produce a hierarchical generating system
which spans a space that contains the previous one. This also includes the case of adding a
new level of refinement, since one may see this as enlarging a previously empty subdomain
at the finest level while keeping the remaining subdomains unchanged.

In addition, it is desirable to obtain a generating system that forms a partition of unity,
since this is an essential property for geometric modeling. The hierarchical generating
system K does not possess this property. We introduce an assumption on the domain
hierarchy that ensures nested refinement and allows us to invoke the truncation mechanism
for restoring normalization.

We say that a function γ`i refines to γ`+1
j if the corresponding entry R`+1

ij in the re-
finement matrix is non-zero. Note that the refinement matrix is not necessarily unique
since we do not assume linear independence of the generating systems. In the case of
non-unique refinement matrices, the relation refers to a certain fixed choice. We assume
that the domain hierarchy satisfies:

∀i ∈ I` ∀j ∈ I`+1 : supp γ`i ⊆M`+1 ∧R`+1
ij 6= 0 ⇒ supp γ`+1

j ⊆M`+1. (4)

In other words, if the subdomain M `+1 contains the support of a function of level `, then it
also contains the supports of all the functions of the next level it refines to. Consequently,
if a function of level ` is not selected for the hierarchical generating system, even though
its support is contained in M`, then it can be represented as a linear combination of
functions that are selected at higher levels. It should be noted that this assumption is

5

always satisfied for non-negative generating systems and refinement matrices with only
non-negative entries, as considered in [36].

Under the assumption of (4), the hierarchical refinement creates nested hierarchical
spaces. More precisely, enlarging the subdomains always creates a hierarchical generating
system that spans a superspace of the previous one, as described in [33, Proposition 4].

Moreover, this assumption enables us to restore partition of unity by the truncation
mechanism. More precisely, the truncation with respect to level `+ 1 is defined by

trunc`+1(c`G`) = c`R̂`+1G`+1, (5)

where the reduced refinement matrix R̂`+1 is obtained by replacing the columns that corre-
spond to selected functions from level `+ 1 by zeros. We define the truncated hierarchical
generating system

T = (truncN(· · · trunc`+1(γ`i) · · ·))i∈Î`,`=0,...,N , (6)

which forms a partition of unity if all generating systems G` are normalized. This can be
proved by generalizing the results in [36]. Note that the truncation does not affect the
values of functions of level ` restricted to the ring ∆`, i.e.,

truncN(· · · trunc`+1(γ`i) · · ·)|∆` = γ`i |∆` for i ∈ Î`, ` = 0, . . . , N.

3. Linear independence of hierarchical generating systems

It has been shown that local linear independence of the generating systems G` on Ω ⊂ Rd

is a sufficient condition for the linear independence of the hierarchical generating system
[9, 36]. This observation can be extended to functions defined on domain manifolds. Local
linear independence, however, is a relatively strong condition, which is not satisfied in cer-
tain important applications, such as functions defined by subdivision schemes. The analysis
of weaker sufficient conditions is therefore of interest. This can be done by formulating
conditions on the subdomain hierarchy.

3.1. Safe subdomains

We introduce the notion of G`-safe subdomains and show that these can be used to
guarantee linear independence, provided that the subdomain hierarchy satisfies certain
conditions.

Definition 1. A subdomain S is said to be G`-safe if the functions

{γ|S | γ ∈ G` and γ|S 6= 0}

are linearly independent.

Obviously, the generating system G` is linearly independent if the entire domain Ω is G`-
safe. Furthermore, local linear independence of the generating system G` is characterized
by the fact that every open subset S ⊂ Ω is G`-safe. Since subdivision splines do not always
possess the latter property, we consider linear independence only on certain subdomains,
and the notion of safe subdomains conveniently describes this property.

The following two observations are implied by this definition.

6

Lemma 2. The union of G`-safe subdomains is G`-safe. Moreover, if S is a subdomain
and there exists a G`-safe subdomain S ′ ⊂ S such that the functions in G` that are non-zero
on S are exactly the ones that are non-zero on S ′, i.e.,

∀γ ∈ G` : γ|S 6= 0 ⇒ γ|S′ 6= 0,

then S is also G`-safe.

In particular, the second part of the lemma implies that the closure of a G`-safe sub-
domain is again G`-safe, since we consider continuous functions only. Note that the inter-
section of G`-safe subdomains is not necessarily G`-safe.

Note that local linear independence of G` on M implies that every open subdomain
is G`-safe. If the generating systems of all levels ` possess this property, then the linear
independence of K is automatically guaranteed, without additional assumptions about
the subdomain hierarchy. In fact, all rings ∆` are then closures of safe subdomains and
therefore G`-safe, cf. Lemma 2.

All subdomains that we identify as G`-safe are collected in a catalog of certified G`-safe
subdomains, denoted by C` and formally understood as a set. Given a G`-safe subdomain
U , we denote with

[U]` =M\
⋃

γ∈G`,γ|U=0

supp γ (7)

the maximal subdomain [U]` ⊇ U that is known to be G`-safe according to the second part
of Lemma 2. Note that any set U ′ satisfying U ⊆ U ′ ⊆ [U]` is also G`-safe.

3.2. Ensuring linear independence

We formulate a sufficient condition for linear independence:

Theorem 3. If each ring ∆` is G`-safe, ` ∈ {0, . . . , N}, then the (truncated) hierarchical
generating system K (or T) is linearly independent.

Proof. We need to show that

bK = 0 implies b = 0, (8)

where b is a row vector of coefficients and 0 is a row null vector of the same dimension.
Following [15] and [9], we decompose and rearrange the left-hand side of (8) according to
the hierarchy of the generating systems,

b0Ĝ0 + . . . + bNĜN = 0. (9)

The vector b` collects the coefficients of functions in Ĝ`.
The functions in the first term in (9) are the only non-zero functions acting on the ring

∆0. By assumption, ∆0 is G0-safe and thus Ĝ0 is linearly independent on ∆0. It follows
that b0 = 0.

In the remaining sum
b1Ĝ1 + . . . + bNĜN = 0,

only the functions in the first term are non-zero on the ring ∆1. Consequently, the above
argument can be used repeatedly, eventually exhausting all the terms in (9). Moreover,
since truncation does not change the values of the functions on the corresponding rings,
this proof applies to the truncated hierarchical generating system as well.

7

Example 4. Zwart-Powell (ZP) elements were first introduced in [38], see also [5]. The
hierarchical construction of the hierarchical Zwart-Powell generating system was analyzed
in [36], in particular focusing on its linear dependencies. For each level, the generating
system consists of the translates of a box-spline on a type-II triangulation. The box splines
within each level are linearly dependent. A possibility to restore linear independence of
the hierarchical generating system consists in removing one of the ZP elements from each
level. Consider a linearly independent generating system G` of ZP elements, where one box
spline has been discarded. Any open subdomain that possesses a non-empty intersection
with the support of the discarded ZP element is G`-safe. Consequently, if the subdomain
hierarchy (M`)`=0,...,N has been chosen such that any connected component of the rings
∆` has a non-empty intersection with the support of the discarded function of level `, then
linear independence of the hierarchical generating system is guaranteed.

Theorem 3 leads to a simple refinement algorithm that maintains linear independence of
(truncated) hierarchical generating systems created by adaptive refinement, provided that
we have a catalog of safe subdomains for the generating system G` on every level at hand.
More precisely, assume we have a domain hierarchy (2) that satisfies the assumptions of
Theorem 3 and let Z be a region marked for further refinement. We have to define a new
domain hierarchy that still satisfies (2) and the assumptions of Theorem 3 so that the
level of each point in Z (i.e., the largest ` so that M` contains it) is increased. The new
hierarchy contains N + 3 subdomains satisfying

M = M̃0 ⊇ M̃1 ⊇ · · · ⊇ M̃N+1 ⊇ M̃N+2 = ∅,

which are defined recursively, starting at the finest level, by

M̃` =
〈
M` ∪ M̃`+1 ∪ (M`−1 ∩ Z)

〉
`−1
, ` = N + 1, . . . , 1.

The operation 〈·〉`, which restores the G`-safety of the rings, is defined by 〈V 〉` =M\WV ,
where

WV =
[⋃

M\V⊇T∈C`

T
]
`
∩ (M\ V)

is the maximal subdomain contained in M \ V that is known to be G`-safe, cf. Lemma
2 and (7). An example of applying the algorithm in the case of Loop and Butterfly
subdivision will be presented at the end of Section 5.

4. Hierarchical subdivision splines

We apply the theory of the previous section to spaces spanned by subdivision splines.
In the family of approximating subdivision algorithms, we focus on the Catmull-Clark
and Loop schemes. Among interpolatory subdivision algorithms, we consider the modified
Butterfly scheme (further referred to as simply the Butterfly scheme), introduced in [37]
as an improved version of the original scheme presented in [7]. Note that a more recent,
non-stationary variant of the modified Butterfly scheme appeared in [22]. While Butter-
fly subdivision is defined for triangular meshes, interpolatory algorithms for quadrilateral
meshes have been studied as well, see [21] and the references therein.

We assume that a (Catmull-Clark, Loop or Butterfly) subdivision surface is given by
its control mesh. This control mesh is used to define an extended domain manifold, which

8

Figure 1: The extended domain manifold E0 (right) given by the control mesh of a Catmull-Clark sub-
division surface (left). We distinguish between boundary (light gray), regular (white), and irregular cells
(dark gray). The domain manifold M contains only the fundamental cells that correspond to inner cells
(white and dark gray).

in turn gives the domain manifold M for the hierarchical generating system by omitting
certain cells along the boundary, see below. The extended domain manifold is introduced
in order to deal with subdivision surfaces with boundaries.

4.1. Domain manifolds

The starting point of our construction is the mother cell ♦, which is either the unit
square � = [0, 1]2 or the standard triangle

4 = {(x, y) | x, y ≥ 0 and x+ y ≤ 1} ⊂ R2.

We choose a finite index set J ⊂ Z and consider the set ♦ × J as the union of the
fundamental cells ♦ × {i}, i ∈ J . Each fundamental cell is a copy of the mother cell,
equipped with an index. Similarly to [23], which focuses on quadrilateral meshes (i.e.,
♦ = �), we define a manifold with the help of a neighbor relation ' on the set ♦ × J .
This relation identifies points on the edges of different fundamental cells,

((x, y), i) ' ((x̃, ỹ), j) = (αij(x, y), j), (x, y), (x̃, ỹ) ∈ ∂♦, (10)

where αij is an affine map from one edge of ♦ to another. For instance, if ♦ = �, the edge
(x, 0) of the fundamental cell � × {i} could be identified with the edge (1, ỹ) of the cell
�× {j} via α(x, y) = (1, 1− x).

If the cells with indices i and j are glued together, then we use the same map αij for
all points on the common edge. Not all pairs of cells, however, are glued together. The
relation ' is derived from the connectivity of the control mesh of the subdivision surface.

Example 5. The control mesh of a Catmull-Clark subdivision surface with boundary
(left) and the corresponding extended domain manifold (right) is shown in Figure 1. The
60 quadrilateral faces of the control mesh correspond to the 60 fundamental cells of the
extended domain manifold. Two edges of fundamental cells are glued together along bound-
ary edges (indicated by dashed lines) if the corresponding faces of the control mesh share
an edge. Thus, each inner edge of the control mesh corresponds to one of the neighbor
relations (10).

9

The extended neighbor relation '̂ is the transitive and reflexive closure of '. We say
that two fundamental cells are neighbors if at least one pair of points on their boundaries
is related by '̂. Note that this includes vertex-vertex contacts of fundamental cells, since
we consider the transitive closure of the neighbor relation '.

When restricted to the corners of the fundamental cells, the extended neighbor relation
induces an equivalence relation between them. The set of equivalence classes will be de-
noted by V 0. Each one of these equivalence classes will be referred to as a vertex of level 0.
The number of cells that share a vertex (i.e., the number of elements in each equivalence
class) is called the valence of the vertex.

We make the following assumptions:

(A1) The points in the interior of an edge are in the extended neighbor relation with points
in the interior of at most one other edge, and

(A2) the valences of all inner vertices are at least 3.

The assumption (A1) means that at most two edges can be glued by the neighbor relation
(in other words, the input control mesh is a manifold). To give ♦ × J a topological
structure, we define a subset S as open if and only if S ∩ (♦ × {i}) is open for all i ∈ J
in the natural topology of ♦. With this definition and under Assumptions (A1) and (A2)
described above, the set

E0 = (♦× J)/'̂ (11)

becomes a 2-manifold (possibly) with boundary.
The boundary (edges, vertices) consists of all boundary points as described in Sec-

tion 2.1. A boundary cell is a fundamental cell with at least one point on the boundary.
All other fundamental cells are called inner cells, cf. Figure 1.

If the valence of an inner vertex is different from 4 in case ♦ = � and 6 in case ♦ = 4,
the vertex is called extraordinary. All other vertices are said to be regular.

In order to keep the number of types of cells small (see below) we make the following
assumption:

(A3) All cells have at most one extraordinary vertex. In the case of Butterfly subdivision,
we additionally assume that for any given cell, there is at most one extraordinary
vertex among the vertices of all the cells that share a vertex with it.

In the case of Catmull-Clark and Loop subdivision, we call a fundamental cell irregular
if it has an extraordinary vertex, which is then unique by the above assumption. All other
fundamental cells are said to be regular, see again Figure 1.

In the case of the Butterfly subdivision scheme, the cell that has an extraordinary
vertex and their neighboring cells will all be called irregular. More specifically, the cells
that contain an extraordinary vertex will be called irregular cells of type A, the cells that
share an edge with the type A irregular cells are of type B, and the cells that share only a
vertex with an irregular cell of type A will be referred to as type C, see Figure 2, left. All
other cells are regular.

We call E0, defined in (11), the extended domain manifold of level 0. We obtain the
domain manifold M as the closure of the manifold that is obtained by omitting certain
cells from E0. In particular, in the case of Catmull-Clark and Loop subdivision, we obtain
the manifold M by omitting all boundary cells from E0 (cf. Figure 1, right), whereas in

10

A

B

C C

A+

B+

C+

E+

D+G+

F+I+

H+J+

L+ K+

L+

L+

C+

E+

G+

H+

I+

J+

Figure 2: Types of cells of level ` (left) and ` + 1 (right) around an extraordinary vertex for Butterfly
subdivision. Additionally, types of regular cells of level ` + 1 (K+ and L+) are marked (right). The
classification of cells of level `+ 1 will be used in Section 5.3.

the case of Butterfly subdivision we obtain it by omitting two layers of cells along the
boundary.

Recall that the concept of the extended domain manifold is introduced in order to
deal with subdivision splines at boundaries. In the case of subdivision surfaces without
boundaries, the extended domain manifold and the domain manifold M are the same
and do not possess boundaries. Otherwise, these manifolds are different and both have
boundaries.

We make two additional assumptions:

(A4) All boundary vertices of the extended domain manifold E0 have valence at most 3
for ♦ = � and at most 5 for ♦ = 4, and

(A5) all inner vertices of the extended domain manifold E0 that belong to a cell which is
omitted when creating M are regular.

According to Assumption (A4), there are three types of boundary vertices for the
Catmull-Clark scheme, namely convex corners (valence 1), regular boundary vertices (va-
lence 2) and non-convex corners (valence 3). The situation is similar for the Loop and
Butterfly subdivision schemes, where we distinguish between two types of convex corners
(valence 1 and 2), regular boundary vertices (valence 3) and two types of non-convex cor-
ners (valence 4 and 5). Assumptions (A4) and (A5) allow to deal with boundaries simply
by using the subdivision rules for regular vertices.

The fundamental cells induce a partition of E0 into cells of level 0. These cells share
edges and vertices but have mutually disjoint interiors.

The mother cell ♦ is subdivided into mother cells of level ` for ` > 0 by the lines

x = j 2−`, y = j 2−`, and additionally x+ y = j 2−` in the case ♦ = 4

for j = 1, . . . , 2` − 1. This can be seen as a series of splitting steps, where each cell
is subdivided into 4 smaller ones. The fundamental cells and the cells of level 0 of the
extended domain manifold inherit this subdivision into higher order cells. Consequently,
we obtain a partition of E0 into cells of level `. The notions of boundaries, boundary cells,
inner cells, and vertices extend naturally to these cells. In particular, we denote the set of
vertices of level ` by V `.

11

Figure 3: The extended domain manifold of Figure 1 after one splitting step. After discarding one layer
of cells along the boundary (dashed) of E0, the remaining ones are again categorized as boundary (light
gray), regular (white), or irregular (dark gray) cells of level 1. Their collection forms the extended domain
manifold of level 1. The neighbor relation (right; indicated by dashed lines) remains unchanged.

We now define the extended domain manifold E ` of level ` as the closure of the manifold
that is obtained by omitting certain cells of level ` in E `−1 (` = 1, 2, . . .). In particular,
in the case of Catmull-Clark and Loop subdivision schemes we omit the boundary cells of
level ` in E `−1, while in the case of Butterfly subdivision we omit again two layers of cells
of level ` along the boundary. Due to the geometric properties of the subdivision of the
elementary cell, this procedure gives the interior of the domain manifold M for all levels
`.

Example 6. Applying one splitting step to the faces of the control mesh and to the corre-
sponding fundamental cells in Example 5 gives the mesh shown in Figure 3. After removing
the boundary cells (dashed cells in Figure 3, right), the remaining faces correspond to the
cells of level 1 that form the extended domain manifold E1. Again, these cells are classified
as boundary (light gray), regular (white), and irregular (dark gray) ones. The regular and
irregular (inner) cells again cover the domain manifold M.

Note that applying a subdivision step does not change the total number of extraordinary
vertices. If the cells of level 0 of a given subdivision surface do not satisfy Assumption
(A3) we apply one or two splitting steps and re-define the extended domain manifold of
level 1 or 2 as E0.

4.2. Subdivision splines

For each level `, we define the space L` of globally continuous piecewise (bi-)linear
functions on the extended domain manifold E ` whose restrictions to the cells of level ` are
bilinear for ♦ = � or linear for ♦ = 4. Let Λ` = (λ`v)v∈V ` be the basis of hat functions for
L`, including the truncated hat functions at boundary vertices.

Any function f ` ∈ L` can be expressed as a linear combination of these hat functions.
We collect the coefficients in a row vector c` = (c`v)v∈V ` and write f ` as a product of two
vectors, f ` = c`Λ`.

Linear subdivision schemes (including Catmull-Clark, Loop and Butterfly) are de-
scribed by linear operators

S`+1 : L` → L`+1 : c`Λ` 7→ S`+1(c`Λ`) = (c`R`+1)Λ`+1, (12)

12

which induce linear maps c` 7→ c`R`+1 of the coefficient vectors. In particular, applying
these operators to the hat functions (by replacing c` in (12) with the identity matrix1)
gives

S`+1(Λ`) = R`+1Λ`+1. (13)

The refinement matrices R`+1 are highly sparse, see [32]. A matrix element R`+1
vw is non-zero

only if v and w can be connected by at most two (Catmull-Clark and Loop subdivisoin)
or three (Butterfly subdivision) edges.

The refinement matrices are derived from the subdivision rules of Catmull-Clark, Loop
and Butterfly schemes. Special rules (which are derived from the rules of B-splines with
multiple knots) can be used along the boundaries for the Catmull-Clark scheme if no
boundary vertices with valence 3 are present. Alternatively, modified rules, such as those
in [6], can be used at boundaries (allowing also for extraordinary boundary points). In the
case of Loop subdivision, the rules developed in [18] can be applied. The boundary in the
case of the Butterfly scheme can be treated as proposed in [37].

Starting with a function f ` ∈ L`, a subdivision spline σ` of level ` is defined as the limit
of a sequence of piecewise (bi-)linear functions created by the refinement operators S`,

σ` = lim
L→∞

SL · · · S`+1f `. (14)

In each refinement step, the domain of the function is modified by removing cells along the
boundary as described above. The domain of the limit function is the domain manifold
M.

The existence of the limit is guaranteed for the operators obtained from Catmull-Clark,
Loop and the Butterfly subdivision schemes. The existence of limit functions for more
general schemes has been analyzed in the rich literature on subdivision, see e.g. [25].

In particular, applying (14) to the hat functions λ`v gives subdivision blending functions

γ`v = lim
L→∞

SL · · · S`+1λ`v

of level `. Similarly to the hat functions, we collect them in column vectors

G` = (γ`v)v∈V ` = lim
L→∞

SL · · · S`+1Λ`.

Due to the linearity of the refinement operators S` we can express a subdivision spline (14)
of level ` as a linear combination σ` = c`G` since

σ` = lim
L→∞

SL · · · S`+1c`Λ` = c` lim
L→∞

SL · · · S`+1Λ` = c`G`.

In addition, using (13) and the linearity of the refinement operators implies the refinement
equation

G` = lim
L→∞

SL · · · S`+1(Λ`) = lim
L→∞

SL · · · S`+2(R`+1Λ`+1) =

= R`+1 lim
L→∞

SL · · · S`+2(Λ`+1) = R`+1G`+1,
(15)

1When replacing a vector c` by a matrix, the operator S`+1 is applied to a vector and therefore to each
component separately.

13

see also (1). The subdivision blending functions for all three considered schemes are nor-
malized, which corresponds to the property of affine invariance. In addition, the Catmull-
Clark and Loop schemes produce non-negative blending functions, thereby ensuring the
convex-hull property.

In the case of Catmull-Clark and Loop subdivision, the support of each subdivision
blending function γ`v is the interior of the 2-ring neighborhood of the vertex v ∈ V ` with
respect to the inner cells of level `, due to the sparsity properties of the refinement matrices.
This neighborhood consists of the cells that contain v and their neighboring cells. Note
that the 2-ring neighborhood consists of different numbers of cells for different types of
vertices, see Example 7.

In the case of Butterfly subdivision, the support of each subdivision blending function
is contained in the interior of the 3-ring neighborhood of cells of the vertex. Again, the
number of cells in this neighborhood depends on the types of the vertices within. We
say that the support is regular if the interior of the 2-ring (for Catmull-Clark and Loop
subdivision) or 3-ring (for Butterfly subdivision) neighborhood contains no extraordinary
vertices of level `, and non-regular otherwise.

Example 7. The supports of selected Catmull-Clark subdivision basis functions, defined
with respect to the extended domain manifold E1 in Figure 3, are shown in Figure 4.
Notice that the supports of the functions that correspond to vertices near the boundary
are truncated. The vertices that correspond to functions with regular supports are marked
by a circle ◦, whereas a bullet • identifies functions with non-regular supports.

Figure 4: Supports (dark gray) of selected Catmull-Clark subdivision blending functions of level 1 in
Example 7, cf. Figure 3. The boundary faces (light gray) correspond to cells that are not contained in the
domain manifold M. Circles and bullets mark vertices that correspond to subdivision blending functions
with regular and non-regular supports, respectively.

Example 8. Figure 5 shows an example of a subdivision blending function for Catmull-
Clark (left) and Butterfly (right) subdivision schemes. The functions correspond to ex-
traordinary vertices of valence 5 and 7, respectively. The graphs of the blending functions
are plotted above the 2- and 3-ring neighborhoods of cells inM, surrounding the extraor-
dinary vertex, that were embedded into R2 (see Figure 5). The embeddings, shown in the
figure, are translated in the z-direction away from the graphs to improve clarity.

14

Figure 5: Graphs of subdivision blending functions for Catmull-Clark (left) and Butterfly (right) subdivi-
sion schemes, corresponding to extraordinary vertices of valence 5 and 7, respectively. The 2- and 3-ring
neighborhoods of cells in M, surrounding the extraordinary vertex, are embedded into R2.

The construction of a hierarchical generating system, which was summarized in Section
2.2, can now be applied to subdivision splines simply by considering the generating sys-
tems of subdivision blending functions. This leads to hierarchical subdivision splines. An
example in the Catmull-Clark case with two levels is shown in Figure 6.

(a) (b)

Figure 6: Hierarchical Catmull-Clark subdivision blending functions of level 0 (left) and level 1 (right).
Bullets mark selected blending functions according to the domain hierarchy with two levels. The subdo-
mains M0 and M1 are outlined with thick lines.

In addition to the domain manifold M, this construction is based on a hierarchy of
subdomainsM` which specify the regions that are selected for adaptive refinement. These
subdomains have to be chosen in a suitable way (especially in the context of isogeomet-
ric analysis), in order to guarantee the linear independence of the resulting hierarchical
generating system, cf. Theorem 3. These constraints are discussed in the next section.

We restrict our discussion to subdomains which are unions of cells of a certain level.
More precisely, each subdomain M` is assumed to be the union of cells of level ` or even

15

of level `− 1 for ` > 0. These two cases were considered already in [33], where they were
referred to as the weak and the strong condition on the subdomain hierarchy, respectively.
The recent article [35], which focuses on Catmull-Clark subdivision, uses a construction
that relies on the strong condition.

In order to construct the hierarchical generating system, we need to decide whether
the support of a subdivision blending function γ`v is contained in the subdomains M` and
M`+1 or not. These decisions are relatively simple for Catmull-Clark and Loop subdivision
since the supports are simply the interiors of unions of cells. However, the situation is more
subtle for Butterfly subdivision, where the supports have a fractal nature. Nevertheless,
since we only consider restricted domain hierarchies, it suffices to analyze whether a cell
of level ` or `+ 1 contributes to the support of a given blending function γ`v or not in the
case of the strong or the weak condition, respectively, see Figure 7.

Figure 7: Cells of level ` + 1 (indicated by dashed lines) that contribute to the support of a Butterfly
blending function of level `. Note that the support of the blending function shown on the right contains
an extraordinary vertex, which is not the central vertex.

Finally we note that the construction extends to truncated hierarchical generating sys-
tems for subdivision splines, since the domain hierarchies satisfy condition (4). This is
obvious for Catmull-Clark and Loop subdivision, since the blending functions are non-
negative. For subdomain hierarchies that satisfy the weak condition (see above), a tedious
but straightforward analysis confirms this fact in the case of Butterfly subdivision also.

5. Safe subdomains for subdivision splines

Global linear independence of subdivision blending functions on manifolds without
boundaries is well understood: For the case of Catmull-Clark and Loop subdivision, it has
been shown that these schemes generate blending functions that are linearly independent
on all domain manifolds M except for pathological cases [24], which are ruled out by
Assumption (A3). The blending functions of the Butterfly scheme are linearly independent
due to their interpolatory nature.

In this section we discuss the linear independence of Catmull-Clark, Loop and Butterfly
hierarchical subdivision blending functions on subdomains. In particular, we focus on
subdomains that are cells of level ` or level `+1, as required when using domain hierarchies
satisfying the weak or the strong condition.

We describe a general procedure to obtain a catalog of safe subdomains, which is
required for ensuring linear independence of the hierarchical generating system when con-

16

structing the domain hierarchy as described in Section 3. We provide such catalogs for
Catmull-Clark, Loop and Butterfly subdivision.

Linear independence of Catmull-Clark and Loop subdivision blending functions on par-
ticular subdomains was already studied in [24], using eigenanalysis of the refinement ma-
trices. This produced results that are equivalent to the findings reported below. However,
the relation to linear independence of hierarchical generating systems was not noted.

We focus on the linear independence of hierarchical generating systems and present the
results in the form of catalogs, making them directly usable for adaptive mesh refinement.
The cases of Catmull-Clark and Loop subdivision appear as simple – though clearly impor-
tant – special cases. Indeed, the same procedure allows us to establish similar results for
any subdivision scheme that can be defined as described in Section 4.2, and we demonstrate
this for Butterfly subdivision. Also, it should be noted that we certify linear independence
without performing an eigenanalysis of the refinement matrices.

5.1. Finding safe subdomains

We first present a method to analyze whether a chosen subdomain S is G`-safe or not.
We consider the subdivision blending functions of level k ≥ ` whose supports possess a
non-empty intersection with the subdomain S. These functions form a subvector Gk

S of
Gk. Any subdivision spline σk of level k has a representation

σk|S = cSG
k
S|S

with a coefficient row vector cS. First, we consider the case ` = k. According to Definition
1, the subdomain S is Gk-safe if and only if

0 = cSG
k
S|S ⇔ cS = 0, (16)

where 0 is a row null vector of dimension dimGk
S. For subdivision splines of level ` with

` < k, we use the refinement equation to represent the function σ`|S with respect to Gk
S,

σ`|S = cSG
`
S|S = cSR

`+1
S · · ·Rk

SG
k
S,

where Rj+1
S is the sub-matrix of Rj+1 containing only the rows and columns that correspond

to the elements of the sub-vectors Gj
S and Gj+1

S , respectively. The following lemma gives
a sufficient condition for G`-safety of a chosen subdomain S. It should be noted that the
same argument has been used also in the proofs in [24]. We formulate it here as a lemma
since we will to refer to it later.

Lemma 9. A Gk-safe subdomain S is G`-safe, where ` ≤ k, if the matrix R`+1
S · · ·Rk

S has
full row rank.

Proof. Since S is Gk-safe, we use the observation (16) to conclude that

0 = cSG
`
S|S = cSR

`+1
S · · ·Rk

SG
k
S|S (17)

is equivalent to
cSR

`+1
S · · ·Rk

S = 0, (18)

where 0 is a row null vector of dimension dimGk
S. If the matrix R`+1

S · · ·Rk
S has full row

rank, then this is equivalent to cS = 0, where this right-hand side is a row null vector of
dimension dimG`

S. Thus, the functions G`
S|S are linearly independent.

17

A+

B+ C+

A+

B+

C+

B+

C+

Figure 8: An irregular cell is subdivided into regular cells B+ and C+ (three in total), and one irregular
cell of type A+, for Catmull-Clark (left) and Loop (right) subdivision schemes, respectively.

On the other hand, if the matrix R`+1
S · · ·Rk

S does not have full row rank, the subdomain
S is not G`-safe, independently of whether it is Gk-safe for some k > ` or not. This is
made precise in the following lemma.

Lemma 10. The subdomain S is not G`-safe if the matrix R`+1
S · · ·Rk

S, ` ≤ k, does not
have full row rank.

Proof. If the matrix R`+1
S · · ·Rk

S does not have full row rank, then there exists a non-zero
vector cS such that (18) holds. Based on (17), we conclude that functions G`

S are linearly
dependent on the subdomain S, thus S is not G`-safe.

5.2. Catmull-Clark subdivision

Applying one subdivision step splits a cell of level ` into four cells of level `+ 1. For an
irregular cell, we classify the cells of level `+ 1 obtained by splitting it into three different
types A+, B+ and C+ according to their location with respect to the extraordinary vertex,
see Figure 8, left. Consequently, we study the linear independence of G` with respect to
six different types of cells, namely regular and irregular cells of level `, cells of level ` + 1
obtained when splitting a regular cell, and the three types A+, B+ and C+.

The results concerning linear independence on these six types of cells are summarized in
Table 1, left. Almost all of them are already covered by results in [24]. We obtained them
as special cases of our general procedure and present them here in the form of a catalog
of safe subdomains, thereby making them directly usable for adaptive mesh refinement of
hierarchical subdivision splines, see Section 3.2. It should be noted that the construction
described in [35] uses the safe subdomains of level ` only (i.e., the second column of the
table).

We briefly discuss how the results in the table can be proved in our framework. The
row for valence 4 (shown in gray) contains the results obtained for a regular cell of level
` and for cells of level ` + 1 obtained when splitting it. The classification of the cells
into types A+, B+ and C+ does not apply in this case. There are 16 blending functions
whose supports intersect these cells, which are then equal to the polynomial segments of
the 16 uniform bicubic tensor-product B-splines on a regular tensor-product grid. These
functions are linearly independent on any open subset of that cell due to the local linear
independence of tensor-product B-splines (see e.g. [24, Lemma 5.1]). Consequently, all
these cells are G`-safe.

18

` `+ 1
ν A+ B+ C+

3 X × X X
4 X X
5 X X × ×
6 X X × ×
7 X X × ×
8 X X × ×
9 X X × ×
10 X X × ×
11 X X × ×
12 X X × ×

` `+ 1
ν A+ B+ C+

3 X X X X
4 X X X X
5 X X X X
6 X X
7 X X × ×
8 X X × ×
9 X X × ×
10 X X × ×
11 X X × ×
12 X X × ×

Table 1: G`-safety of cells of level ` and ` + 1 (types A+, B+, C+) for Catmull-Clark (left) and Loop
(right) subdivision schemes for different valences ν. The check marks and crosses indicate whether the
cells are G`-safe or not, respectively.

Figure 9: A set of 18 Catmull-Clark subdivision blending functions of level ` (the corresponding vertices
are marked by bullets) whose restrictions to the cell of type B+ (shown in dark gray) for valence 5 are
linearly dependent.

In particular, this implies that any set of regular cells of level k is Gk-safe. We proved
the remaining checkmarks in the table by combining this fact with Lemma 9. More pre-
cisely, we considered the subset S of regular cells of some sufficiently high level k > ` that
are contained in the cell under consideration. We used symbolic computation to confirm
that the matrix in the lemma possesses full row rank. Lemma 2 then allows us to extend
the result to the entire cell under consideration. For the first two columns of the table, the
choice of k is related to [24, Conjecture 2].

Next, we consider the 16 crosses in the lower right part of the left table. If an irregular
cell of level ` contains an extraordinary vertex of valence other than 3, the Catmull-Clark
subdivision blending functions of level ` are not linearly independent on the cells of type B+

and C+. We recall the proof of this fact by a counting argument from [24]: The number of
subdivision blending functions whose supports contain the considered cell is 2ν + 8, where
ν is the valence of the extraordinary vertex. For ν ≥ 5 this number exceeds 16, which is the
dimension of the space of bicubic polynomials, see Figure 9. This observation can also be
justified by using Lemma 10 with k = `+ 1, since the matrix has more rows than columns
in this case. Finally, we use Lemma 10 with k = ` + 1 to prove the linear dependency of
subdivision blending functions on the cells of type A+, which has been visualized already
in [24, Fig. 4.4].

19

5.3. Loop subdivision

Similar to the previous section, we study linear independence of G` with respect to six
different types of cells. More precisely we consider regular and irregular cells of level `,
cells of level `+ 1 obtained when splitting a regular cell, and the three types A+, B+ and
C+ obtained when splitting an irregular cell, see Figure 8, right. The results concerning
linear independence on these six types of cells are summarized in Table 1, right. All entries
in the table are covered by results in [24] and we sketch how they can be confirmed by
using our framework.

The row for valence 6 (shown in gray) contains the results obtained for a regular cell of
level ` and for cells of level `+ 1 obtained when splitting it. The classification of the cells
into types A+, B+ and C+ does not apply in this case. The 12 blending functions whose
supports intersect these cells are known to be equal to the polynomial segments of the C2

box splines of total degree 4 on a type-I triangulation. The local linear independence of
box splines on type-I triangulations implies G`-safety of the regular cells of all levels.

In particular, this implies, as in the case of Catmull-Clark subdivision, that any set of
regular cells of level k is Gk-safe. The remaining entries of the table are then derived as in
the previous section, using Lemmas 9 and 2 for the checkmarks, where the set S is the set
of regular cells of some level k > ` contained in the cell under consideration, and Lemma
10 otherwise.

5.4. Butterfly subdivision

Recall that there are three types A, B and C of irregular cells of level `, see Figure 2,
left. Once again, when analyzing the G`-safety of a cell of level `+1, we need to distinguish
between different types of cells obtained by subdividing the irregular cells. We arrive at
10 different types A+ to J+ of cells of level `+ 1, see Figure 2, right. In addition, we also
need to distinguish between two different types of cells obtained by subdividing the regular
cells, which we will denote by K+ and L+, see again Figure 2, right. In summary, we need
to analyze G`-safety on regular cells of level `, on the three types of irregular cells of level
`, and on the 12 types A+ to L+.

Even in the vicinity of regular vertices, the blending functions generated by the But-
terfly subdivision scheme are not piecewise polynomials. We are not aware of any results
regarding local linear independence. The next result follows immediately from the inter-
polatory nature of Butterfly subdivision.

Lemma 11. Any subset of the vertex set V ` that is contained in the domain manifold M
is G`-safe for Butterfly subdivision.

We combine this observation with Lemma 9 and the second part of Lemma 2 to prove
that some of the cells are G`-safe. More precisely, for a suitable k > `, we choose the set
S to be the subset of the vertex set V k that is contained in the cell under consideration.
We then analyze the row rank of the corresponding matrix in Lemma 9, whose entries are
simply the values of the subdivision blending functions of level ` at the vertices forming
S. If this matrix possesses full row rank, then the second part of Lemma 2 allows us to
conclude that the entire cell is G`-safe.

In addition, we rely on Lemma 10 for identifying cells that are not G`-safe, simply by
analyzing the rank of the matrix specified there. In this case, the set S is the entire cell
under consideration. The matrix entries are then the values of the subdivision blending

20

` `+ 1
ν A B C A+ B+ C+ D+ E+ F+ G+ H+ I+ J+

3 X X X × X X X X X X X X X
4 X X X × × X X X X X X X X
5 X X X × × X X X X X X X X
6 X K+: X L+: X
7 X X X × × X X X X X X × ×
8 X X × × × X X X × × × × ×
9 X X × × × × × X × × × × ×
10 X X × × × × × × × × × × ×
11 X × × × × × × × × × × × ×
12 X × × × × × × × × × × × ×

Table 2: G`-safety of cells of level ` (types A, B, C) and level ` + 1 (types A+ to L+) for Butterfly
subdivision for different valences ν. The check marks and crosses indicate whether the cells are G`-safe or
not, respectively.

functions at vertices from the vertex set V k for a suitable k > ` within the cell and located
on the two layers (with respect to the grid of level k) surrounding it.

Our results are summarized in Table 2. The results for valences other than 7, 9 and
11 were obtained using symbolic computations. The remaining high odd valencies were
obtained by numerical computations in MATLAB as the coefficients involved [37] for these
valences do not admit representations by radicals. This complicates the symbolic manip-
ulation of the resulting expressions considerably.

5.5. Using the catalogs for maintaining linear independence

We use the catalogs presented in Tables 1 (right) and 2 for Loop and Butterfly subdi-
vision, respectively, in order to perform adaptive refinement with the help of the simple
refinement algorithm that was presented in Section 3.2. The different catalogs lead to
different results, as shown in the following example.

Example 12. We consider a subdomain hierarchy with only one levelM =M0 ⊇M1 =
∅, whereM is a domain manifold consisting of triangular cells, see Fig. 10. After selecting
a region Z (dark gray) for refinement, the algorithm generates a new subdomain hierarchy

M = M̃0 ⊇ M̃1 =M\WZ ⊇ M̃2 = ∅,
where the subset WZ is defined as

WZ = [U]0 ∩ (M\ Z), U =
⋃

M\Z⊇T∈C0

T,

cf. Eq. (7). In order to construct M̃1, we first generate U (shown in white) as the union of
all cells from the catalog C0 (see Tables 1 and 2) that are outside Z. In the second step,
we identify all blending functions (which correspond to the vertices that have been marked
by circles) of level 0 whose supports do not overlap with U . For some of them (hollow
circles), the support contains cells (shown in black) that are not contained in Z. Adding
these cells to Z gives M̃1 (black and dark gray). In the case of Loop subdivision (Fig. 10,
left), we need to add 8 cells of level 1 to obtain M̃1. For Butterfly subdivision (Fig. 10,
right), we need to add 6 cells of level 1. Although some cells (light gray) are not contained
in U , they are not included in M̃1 since each Butterfly blending function acting on them
takes non-zero values on U as well and hence the second part of Lemma 2 applies.

21

Figure 10: The result of the algorithm that maintains linear independence of (truncated) hierarchical
generating system created by adaptive refinement for Loop (left) and Butterfly (right) subdivision. A
region is marked for refinement (dark gray) and is then enlarged by adding certain cells (black) to ensure
linear independence. In the case of Butterfly subdivision, some cells (light gray), which are not G0–safe
individually, do not need to be refined since their union with the cells shown in white belongs to C0.

6. Conclusion

We have extended the construction of (truncated) hierarchical generating systems,
which was presented in [36] for functions defined on domains in R2, to functions defined
on domain manifolds. In order to guarantee linear independence, the framework of safe
subdomains has been introduced.

Based on these abstract results, we studied subdivision splines generated by the Catmull-
Clark, Loop and Butterfly subdivision schemes. In particular, we provided catalogs of safe
subdomains that allow the design of domain hierarchies with linearly independent (trun-
cated) hierarchical generating systems. For the two approximating schemes, these catalogs
are almost entirely covered by the results in [24], which we summarized and re-confirmed
using our framework. In addition we were able to obtain a similar catalog also for the
modified Butterfly subdivision introduced in [37]. It should be noted that the resulting
conditions for linearly independent (truncated) hierarchical generating systems based on
the Butterfly scheme are far more restrictive than those for Catmull-Clark and Loop sub-
division, due to the larger number of cells that are unsafe.

Potential applications include adaptive subdivision surface fitting and numerical sim-
ulation using isogeometric analysis. Truncated hierarchical Catmull-Clark subdivision is
explored in the recent article [35]. Clearly, besides using Catmull-Clark subdivision [1, 20],
which operates on quadrangular meshes, subdivision schemes for triangular meshes (such
as Loop subdivision) are of great interest for analysis as well, cf. [2]. Moreover, we feel that
the use of interpolatory subdivision schemes in isogeometric analysis might be appealing for
practitioners in the finite element community due to the simplicity of enforcing Dirichlet
boundary conditions.

In order to keep the presentation simple, our results have been formulated for three
specific subdivision schemes, which are also of substantial practical interest. It is possible
to use our approach for other schemes, in particular for any linear scheme that provides a
non-trivial system of safe subdomains.

22

Acknowledgments. The authors wish to thank Malcolm Sabin for his support, encour-
agement, and helpful suggestions concerning this work, and Pieter Barendrecht for making
his implementation of subdivision splines available, which was a useful starting point for us.
We also thank Neil Dodgson for his support during the first author’s visit to the Computer
Laboratory at the University of Cambridge.

The first two authors were supported by the European Union through FP7 Grant ITN
INSIST, GA no. 289361. The last author was supported by the Engineering and Physical
Sciences Research Council through Grants EP/H030115/1 and EP/K503757/1.

References

[1] D. Burkhart, B. Hamann, and G. Umlauf. Iso-geometric analysis based on Catmull-Clark solid
subdivision. Computer Graphics Forum, 29(5):1575–1784, 2010.

[2] F. Cirak and Q. Long. Subdivision shells with exact boundary control and non-manifold geometry.
Int. J. Numer. Meth. Engrg., 88(9):897–923, 2011.

[3] F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm for thin-shell finite-element
analysis. Int. J. Numer. Meth. in Engrg., 47(12):2039–2072, 2000.

[4] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD
and FEA. John Wiley & Sons, 2009.

[5] C. de Boor, K. Höllig, and S. Riemenschneider. Box splines. Springer–Verlag, 1993.

[6] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character animation. In Proc. Siggraph
1998, pages 85–94, New York, NY, USA, 1998. ACM.

[7] N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision scheme for surface interpolation with
tension control. ACM Transactions on Graphics, 9:160–169, 1990.

[8] D. R. Forsey and R. H. Bartels. Hierarchical B-spline refinement. Computer Graphics, 22:205–212,
1988.

[9] C. Giannelli, B. Jüttler, and H. Speleers. THB–splines: the truncated basis for hierarchical splines.
Comput. Aided Geom. Design, 29:485–498, 2012.

[10] C. Giannelli, B. Jüttler, and H. Speleers. Strongly stable bases for adaptively refined multilevel spline
spaces. Adv. Comput. Math., 40(2):459–490, 2014.

[11] E. Grinspun, P. Krysl, and P. Schröder. CHARMS: A Simple Framework for Adaptive Simulation.
ACM Trans. Graphics, 21(3):281–290, 2002.

[12] K. A. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric analysis using LR B-splines. Comput.
Meth. Appl. Mech. Engrg., 269:471–514, 2013.

[13] G. Kiss, C. Giannelli, and B. Jüttler. Algorithms and data structures for truncated hierarchical B-
splines. In M. Floater et al., editors, Mathematical Methods for Curves and Surfaces, volume 8177 of
Lecture Notes in Computer Science, pages 304–323. Springer, 2014.

[14] S. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI – Isogeometric tearing and interconnecting.
Comput. Meth. Appl. Mech. Engrg., 247-248:201–215, 2012.

[15] R. Kraft. Adaptive und linear unabhängige Multilevel B–Splines und ihre Anwendungen. PhD thesis,
Universität Stuttgart, 1998.

[16] X. Li, J. Deng, and F. Chen. Polynomial splines over general T-meshes. Visual Comput., 26:277–286,
2010.

[17] X. Li, J. Zheng, T. W. Sederberg, T.J.R. Hughes, and M.A. Scott. On linear independence of T–spline
blending functions. Comput. Aided Geom. Design, 29:63–76, 2012.

[18] R. Ling, W. Wang, and D. Yan. Fitting sharp features with Loop subdivision surfaces. Computer
Graphics Forum, 27(5):1383–1391, 2008.

23

[19] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution analysis for surfaces of arbitrary
topological type. ACM Trans. Graph., 16(1):34–73, January 1997.

[20] T. Nguyen, K. Karciauskas, and J. Peters. A comparative study of several classical, discrete differential
and isogeometric methods for solving Poisson’s equation on the disk. Axioms, 3(2):280–299, 2014.

[21] P. Novara and L. Romani. On extraordinary rules of quad-based interpolatory subdivision schemes.
Comput. Aided Geom. Design, 35–36:225–242, 2015.

[22] P. Novara, L. Romani, and J. Yoon. Improving smoothness and accuracy of modified Butterfly
subdivision scheme. Appl. Math. Comp., 2015. in press.

[23] J. Peters and U. Reif. Subdivision Surfaces, volume 3 of Geometry and Computing. Springer, 2008.

[24] J. Peters and X. Wu. On the local linear independence of generalized subdivision functions. SIAM
J. Numer. Analysis, 44(6):2389–2407, 2006.

[25] M. Sabin. Subdivision surfaces. In G. Farin, J. Hoschek, and M.-S. Kim, editors, Handbook of
Computer Aided Geometric Design, chapter 12, pages 309–325. Elsevier, 2002.

[26] R. Schmidt, R. Wüchner, and K.-U. Bletzinger. Isogeometric analysis of trimmed NURBS geometries.
Comput. Meth. Appl. Mech. Engrg., 241–244(0):93–111, 2012.

[27] M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, and T.J.R. Hughes. Isogeometric finite
element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Engrg., 88:126–
156, 2011.

[28] M.A. Scott, D.C. Thomas, and E.J. Evans. Isogeometric spline forests. Comput. Meth. Appl. Mech.
Engrg., 269:222–264, 2014.

[29] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche. T-spline
simplification and local refinement. ACM Trans. Graphics, 23:276–283, 2004.

[30] J. Shen, J. Kosinka, M.A. Sabin, and N.A. Dodgson. Conversion of trimmed NURBS surfaces to
Catmull-Clark subdivision surfaces. Comput. Aided Geom. Design, 31(7–8), 2014.

[31] H. Speleers and C. Manni. Effortless quasi-interpolation in hierarchical spaces. Technical Report
TW647, Dept. of Computer Science, KU Leuven, 2014.

[32] E.J. Stollnitz, A.D. DeRose, and D.H. Salesin. Wavelets for Computer Graphics. Morgan Kaufmann,
1996.

[33] A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to adaptive local
refinement in isogeometric analysis. Comput. Meth. Appl. Mech. Engrg., 200:3554–3567, 2011.

[34] X. Wei, Y. Zhang, T.J.R. Hughes, and M.A. Scott. Extended truncated hierarchical Catmull-Clark
subdivision. Technical Report 15, ICES, UT Austin, 2015.

[35] X. Wei, Y. Zhang, T.J.R. Hughes, and M.A. Scott. Truncated hierarchical Catmull-Clark subdivision
with local refinement. Comput. Meth. Appl. Mech. Engrg., 291:1–20, 2015.

[36] U. Zore and B. Jüttler. Adaptively refined multilevel spline spaces from generating systems. Comput.
Aided Geom. Design, 31:545–566, 2014.

[37] D. Zorin, P. Schröder, and W. Sweldens. Interpolating subdivision for meshes with arbitrary topology.
In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’96, pages 189–192. ACM, 1996.

[38] P. B. Zwart. Multivariate splines with nondegenerate partitions. SIAM J. Numer. Analysis, 10(4):665–
673, 1973.

24

