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Abstract

We consider geometric multigrid methods for the solution of linear systems aris-
ing from isogeometric discretizations of elliptic partial differential equations. For
classical finite elements, such methods are well known to be fast solvers showing
optimal convergence behavior. However, the naive application of multigrid to
the isogeometric case results in significant deterioration of the convergence rates
if the spline degree is increased.

Recently, a robust approximation error estimate and a corresponding inverse
inequality for B-splines of maximum smoothness have been shown, both with
constants independent of the spline degree. We use these results to construct
multigrid solvers for discretizations based on B-splines with maximum smooth-
ness which exhibit robust convergence rates.
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1. Introduction

Isogeometric Analysis (IgA), introduced by Hughes et al. [15], is an approach
to the discretization of partial differential equations (PDEs) which aims to bring
geometric modeling and numerical simulation closer together. The fundamental
idea is to use spaces of B-splines or non-uniform rational B-splines (NURBS)
both for the geometric description of the computational domain and as dis-
cretization spaces for the numerical solution of PDEs on such domains. As for
classical finite element methods (FEM), this leads to linear systems with large,
sparse matrices. A good approximation of the solution of the PDE requires
sufficient refinement, which causes both the dimension and the condition num-
ber of the stiffness matrix to grow. At least for problems on three-dimensional

Email addresses: chofreither@numa.uni-linz.ac.at (Clemens Hofreither),
stefan.takacs@ricam.oeaw.ac.at (Stefan Takacs), zulehner@numa.uni-linz.ac.at (Walter
Zulehner)

December 22, 2015



domains or the space-time cylinder, the use of direct solvers does not seem feasi-
ble. The development of efficient linear solvers or preconditioners for such linear
systems is therefore essential.

For classical FEM, it is well-known that hierarchical methods, like multigrid
and multilevel methods, are very efficient and show optimal complexity, that is,
the required number of iterations for reaching a fixed accuracy goal is indepen-
dent of the grid size. In this case, the overall computational complexity of the
method grows only linearly with the number of unknowns.

It therefore seems natural to extend these methods to IgA, and several results
in this direction can be found in the literature. Multigrid methods for IgA
based on classical concepts have been considered in [10, 13, 14], and a classical
multilevel method in [2]. It has been shown early on that a standard approach
to constructing geometric multigrid solvers for IgA leads to methods which are
robust in the grid size [10]. However, it has been observed that the resulting
convergence rates deteriorate significantly when the spline degree is increased.
Even for moderate choices like splines of degree four, too many iterations are
required for practical purposes.

Recently, in [12] some progress has been made by using a Richardson method
preconditioned with the mass matrix as a smoother (mass-Richardson smoother).
The idea is to carry over the concept of operator preconditioning to multigrid
smoothing: here the (inverse of) the mass matrix can be understood as a Riesz
isomorphism representing the standard L2-norm, the Hilbert space where the
classical multigrid convergence analysis is developed. Local Fourier analysis in-
dicates that a multigrid method equipped with such a smoother should show
convergence rates that are independent of both the grid size and the spline
degree. However, numerical results indicate that the proposed method is not
robust in the spline degree in practice. This is due to boundary effects, which
cannot be captured by local Fourier analysis. Similar techniques have been used
to construct symbol-based multigrid approaches for IgA, see [8, 7, 9].

In the present paper, we take a closer look at the origin of these bound-
ary effects and introduce a boundary correction that deals with these effects.
We prove that the multigrid method equipped with a properly corrected mass-
Richardson smoother converges robustly both in the grid size and the spline
degree for one- and two-dimensional problems. For the proof, we make use
of the results of the recent paper [16], where robust approximation error esti-
mates and robust inverse estimates for splines of maximum smoothness have
been shown. We present numerical results that illustrate the theoretical results.
Throughout the paper we restrict ourselves to the case of splines with maximum
continuity, which is of particular interest in IgA.

The bulk of our analysis is first carried out in the one-dimensional setting.
While multigrid solvers are typically not interesting in this setting from a prac-
tical point of view, the tensor product structure of the spline spaces commonly
used in IgA lends itself very well to first analyzing the one-dimensional case
and then extending the results into higher dimensions. In the present work,
we extend the ideas from the one-dimensional to the two-dimensional case and
obtain a robust and efficiently realizable smoother for that setting.
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The paper is organized as follows. In Section 2, we introduce the spline spaces
used for the discretization and the elliptic model problem. A general multigrid
framework is introduced in Section 3. This framework requires a proper choice
of the smoother, which is discussed in detail for one-dimensional domains in
Section 4. In Section 5, we extend these results to the case of two-dimensional
domains. Some details on the numerical realization of the proposed smoother as
well as numerical experiments illustrating the theory are given in Section 6. In
Section 7, we close with some concluding remarks. A few proofs are postponed
to the Appendix.

2. Preliminaries

2.1. B-splines and tensor product B-splines

First, we consider the case of one-dimensional domains and assume, without
loss of generality, Ω = (0, 1). We introduce for any ` ∈ N0 = {0, 1, 2, . . .} a
uniform subdivision (grid) by splitting Ω into n` = n02` subintervals of length
h` := 1

n`
= 1

n0
2−` by uniform dyadic refinement. On these grids we introduce

spaces of spline functions with maximum smoothness as follows.

Definition 1. For p ∈ N := {1, 2, 3, . . .}, Sp,`(0, 1) is the space of all func-
tions in Cp−1(0, 1) which are polynomials of degree p on each subinterval ((i−
1)h`, ih`) for i = 1, . . . , n`. Here Cm(Ω) denotes the space of all continuous
functions mapping Ω→ R that are m times continuously differentiable.

We assume that the coarsest grid is chosen such that n0 > p holds. Note that
the spaces are nested for fixed spline degree p, that is, Sp,`−1(0, 1) ⊂ Sp,`(0, 1),
and the number of degrees of freedom roughly doubles in each refinement step.
The parameter ` will play the role of the grid level in the construction of our
multigrid algorithm.

As a basis for Sp,`(Ω), we choose B-splines as described by, e.g., de Boor [6].
To this end, we introduce an open knot vector with the first and last knot re-
peated p+1 times each, (0, . . . , 0, h`, 2h`, . . . , (n`−1)h`, 1, . . . , 1), and define the
normalized B-spline basis over this knot vector in the standard way. We denote

the B-spline basis functions by {ϕ(1)
p,` , . . . , ϕ

(m`)
p,` }, where m` = dimSp,`(Ω) =

n` + p. They form a partition of unity, that is,
∑m`

j=1 ϕ
(j)
p,`(x) = 1 for all x ∈ Ω.

In higher dimensions, we will assume Ω = (0, 1)d with d > 1 and introduce

tensor product B-spline basis functions of the form (x, y) 7→ ϕ
(j1)
p,` (x)ϕ

(j2)
p,` (y)

for two dimensions and analogous functions for higher dimensions. The space
spanned by these basis functions will again be denoted by Sp,`(Ω). The extension
to the case where Ω ⊂ Rd is the tensor product of d arbitrary bounded and open
intervals is straightforward. Similarly, it is no problem to have different spline
degrees, grid sizes, and/or number of subintervals for each dimension, as long
as the grid sizes are approximately equal in all directions. However, for the sake
of simplicity of the notation, we will always assume that the discretization is
identical in each coordinate direction.
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2.2. Model problem

For the sake of simplicity, we restrict ourselves to the following model prob-
lem. Let Ω = (0, 1)d and assume f ∈ L2(Ω) to be a given function. Find a
function u : Ω→ R such that

−∆u+ u = f in Ω,
∂u

∂n
= 0 on ∂Ω.

In variational form, this problem reads: find u ∈ V := H1(Ω) such that

(∇u,∇v)L2(Ω) + (u, v)L2(Ω)︸ ︷︷ ︸
(u, v)A :=

= (f, v)L2(Ω)︸ ︷︷ ︸
〈f, v〉 :=

∀v ∈ V.

Here and in what follows, L2(Ω) is the standard Lebesgue space of square in-
tegrable functions and H1(Ω) denotes the standard Sobolev space of weakly
differentiable functions with derivatives in L2(Ω).

Applying a Galerkin discretization using spline spaces, we obtain the follow-
ing discrete problem: find u` ∈ V` := Sp,`(Ω) ⊂ V such that

(u`, v`)A = 〈f, v`〉 ∀v` ∈ V`.

Using the B-spline basis introduced in the previous subsection, the dis-
cretized problem can be rewritten in matrix-vector notation,

A`u` = f
`
, (1)

where A` is the B-spline stiffness matrix. Here and in what follows, under-
lined symbols for primal variables, like u` and v`, are the coefficient vectors
representing the corresponding functions u` and v` with respect to the B-spline
basis.

Remark 1. Our model problem may seem rather restrictive in the sense that
we only allow for tensor product domains. In practical IgA problems, one often
uses such domains as parameter domains and introduces a geometry mapping,
usually given in the same basis as used for the discretization, which maps the
parameter domain to the actual physical domain of interest. As long as the ge-
ometry mapping is well-behaved, a good solver on the parameter domain can be
used as a preconditioner for the problem on the physical domain, and our model
problem therefore captures all essential difficulties that arise in the construction
of multigrid methods in this more general setting. Geometry mappings with
singularities as well as multi-patch domains are beyond the scope of this paper.

3. A multigrid solver framework

3.1. Description of the multigrid algorithm

We now introduce a standard multigrid algorithm for solving the discretized

equation (1) on grid level `. Starting from an initial approximation u
(0)
` , the

next iterate u
(1)
` is obtained by the following two steps:
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• Smoothing procedure: For some fixed number ν of smoothing steps, com-
pute

u
(0,m)
` := u

(0,m−1)
` + τL−1

`

(
f
`
−A` u(0,m−1)

`

)
for m = 1, . . . , ν, (2)

where u
(0,0)
` := u

(0)
` . The choice of the matrix L` and the damping pa-

rameter τ > 0 will be discussed below.

• Coarse-grid correction:

– Compute the defect and restrict it to grid level `−1 using a restriction
matrix I`−1

` :

r
(1)
`−1 := I`−1

`

(
f
`
−A` u(0,ν)

`

)
.

– Compute the correction p
(1)
`−1 by approximately solving the coarse-

grid problem

A`−1 p
(1)
`−1

= r
(1)
`−1. (3)

– Prolongate p
(1)
`−1 to the grid level ` using a prolongation matrix I``−1

and add the result to the previous iterate:

u
(1)
` := u

(0,ν)
` + I``−1 p

(1)
`−1

.

As we have assumed nested spaces, the intergrid transfer matrices I``−1 and

I`−1
` can be chosen in a canonical way: I``−1 is the canonical embedding and the

restriction I`−1
` its transpose. In the IgA setting, the prolongation matrix I``−1

can be computed by means of knot insertion algorithms.
If the problem (3) on the coarser grid is solved exactly (two-grid method),

the coarse-grid correction is given by

u
(1)
` := u

(0,ν)
` + I``−1A

−1
`−1 I

`−1
`

(
f
`
−A` u(0,ν)

`

)
. (4)

In practice, the problem (3) is approximately solved by recursively applying one
step (V-cycle) or two steps (W-cycle) of the multigrid method. On the coarsest
grid level (` = 0), the problem (3) is solved exactly by means of a direct method.

The crucial remaining task is the choice of the smoother. For multigrid
methods for elliptic problems with a FEM discretization, it is common to use
a damped Jacobi iteration or a Gauss-Seidel iteration as the smoother. This
is also possible if an isogeometric discretization is used, but leads to significant
deterioration in the convergence rates as p is increased ([10, 14]). This motivates
to choose a non-standard smoother. In the sequel of this section, we derive
conditions on the matrix L`, guaranteeing convergence, which we use in the
following two sections to construct a smoother for the model problem.
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3.2. Abstract multigrid convergence theory

As the two-grid method is a linear iteration scheme, its action on the error is
fully described by the iteration matrix. Let u∗` denote the exact solution of (1).

Then the initial error u∗` − u
(0)
` and the error after one two-grid cycle u∗` − u

(1)
`

are related by the equation

u∗` − u(1)
` = (I − T`−1)Sν` (u∗` − u(0)

` ),

where
S` = I − τL−1

` A`, T`−1 = I``−1A
−1
`−1 I

`−1
` A`.

Observe that S` and I − T`−1 are the iteration matrices of the smoother and of
the coarse-grid correction, respectively.

Throughout the paper we use the following notations. For a symmetric and
positive definite matrix Q` and a vector u`, we define ‖u`‖Q`

:= (Q`u`, u`)
1/2 =

‖Q1/2
` u`‖, where ‖ · ‖ and (·, ·) are the Euclidean norm and scalar product,

respectively. The associated matrix norms are denoted by the same symbols
‖ ·‖Q`

and ‖ ·‖. For ease of notation, we use the same symbols also for the norm
of functions u` ∈ V` and mean in this case their application to the coefficient
vector, i.e., ‖u`‖Q`

:= ‖u`‖Q`
. As A` is the matrix representation of the bilinear

form (·, ·)A, we have ‖u`‖A`
= ‖u`‖A, where ‖·‖A := (·, ·)1/2

A is the energy norm.
We assume that the matrix L` appearing in (2) is symmetric and positive

definite. Following the classical line of, e.g., [1], we show convergence in that
norm, i.e., we show that

q := ‖(I − T`−1)Sν` ‖L`
< 1, (5)

which obviously implies the q-linear convergence property

‖u∗` − u(1)
` ‖L`

≤ q‖u∗` − u(0)
` ‖L`

.

To analyze (5), we use semi-multiplicity of norms and obtain

‖(I − T`−1)Sν` ‖L`
= ‖L1/2

` (I − T`−1)Sν` L
−1/2
` ‖

≤ ‖L1/2
` (I − T`−1)A−1

` L
1/2
` ‖ ‖L

−1/2
` A`S

ν
` L
−1/2
` ‖. (6)

Therefore, it suffices to prove the two conditions

‖L1/2
` (I − T`−1)A−1

` L
1/2
` ‖ ≤ CA, (approximation property) (7)

‖L−1/2
` A`S

ν
` L
−1/2
` ‖ ≤ CSν−1, (smoothing property) (8)

cf. [11, eq. (6.1.5)] for this splitting. Then (5) follows immediately for ν > CACS ,
that is, if sufficiently many smoothing steps are applied. As we are interested
in robust convergence, the constants CA and CS should be independent of both
the grid size and the spline degree.

The approximation property (7) is a direct consequence of the following
approximation error estimate. Observe that T`−1 is the matrix representation
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of the A-orthogonal projector from V` to V`−1. For simplicity, we use the same
symbol T`−1 also for the A-orthogonal projector from V` to V`−1 itself and,
later on, also for the A-orthogonal projector from the whole space V = H1(Ω)
to V`−1.

Lemma 1. The approximation error estimate

‖(I − T`−1)u`‖2L`
≤ CA‖u`‖2A ∀u` ∈ V` (9)

is equivalent to the approximation property (7) with the same constant CA.

Proof. The estimate (9) can be rewritten as

‖X`‖ ≤ C1/2
A with X` := L

1/2
` (I − T`−1)A

−1/2
` ,

which is equivalent to ‖X`X
T
` ‖ ≤ CA. We have

X`X
T
` = L

1/2
` (I − T`−1)A−1

` (I − T`−1)TL
1/2
` = L

1/2
` (I − T`−1)2A−1

` L
1/2
` ,

where we used ((I − T`−1)A−1
` )T = (I − T`−1)A−1

` , which follows from I − T`−1

being self-adjoint with respect to A`. Since I−T`−1 is a projector, the statement
follows. �

The following lemma states that the smoothing property is a direct conse-
quence of an inverse inequality.

Lemma 2. Let A` and L` be symmetric and positive definite matrices. Assume
that the inequality

‖u`‖2A ≤ CI‖u`‖2L`
∀u` ∈ V` (10)

holds. Then for τ ∈ (0, C−1
I ], the smoother (2) satisfies the smoothing prop-

erty (8) with CS = τ−1. Under the same assumptions, ‖S`‖A`
≤ 1 holds.

Proof. The proof is based on [11, Lemma 6.2.1]. From (10), we immediately

obtain τ−1 ≥ ‖A1/2
` L

−1/2
` ‖2 = ρ(L

−1/2
` A`L

−1/2
` ), where ρ(·) is the spectral

radius. Observe that

L
−1/2
` A`S

ν
` L
−1/2
` = L

−1/2
` A`(I − τL−1

` A`)
νL
−1/2
` = Ā`(I − τĀ`)ν

with Ā` := L
−1/2
` A`L

−1/2
` and that Ā`(I − τĀ`)ν is symmetric. Furthermore,

we have the spectral radius bound ρ(τĀ`) = τρ(L
−1/2
` A`L

−1/2
` ) ≤ 1. Thus,

‖L−1/2
` A`S

ν
` L
−1/2
` ‖

= ρ(Ā`(I − τĀ`)ν) = sup
λ∈σ(Ā`)

λ(1− τλ)ν ≤ τ−1 sup
µ∈[0,1]

µ(1− µ)ν

= τ−1

(
ν

1 + ν

)ν
1

1 + ν
≤ τ−1

ν
,

which shows (8). Here σ(·) denotes the spectrum of a matrix. Similarly we have
‖S`‖A`

= ρ(I − τĀ`) ≤ 1. �
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Observe that estimate (10) is, indeed, of the typical form of an inverse in-
equality, if L` is a (properly scaled) mass matrix representing the L2 inner
product.

In view of Lemmas 1 and 2, we can state sufficient conditions for the con-
vergence of a two-grid method.

Theorem 3. Assume that there are constants CA and CI , independent of the
grid size and the spline degree, such that the approximation error estimate (9)
and the inverse inequality (10) hold. Then the two-grid method converges for
the choice τ ∈ (0, C−1

I ] and ν > ν0 := τ−1CA with rate q = ν0/ν.

Proof. The statement on the convergence of the two-grid method follows di-
rectly from (6), Lemma 1, and Lemma 2. �

The assumptions of Theorem 3 are also sufficient to prove convergence of
a symmetrical variant of the W-cycle multigrid method. Here, in addition
to the smoothing steps before the coarse-grid correction (pre-smoothing), we
perform an equal number of smoothing steps after the coarse-grid correction
(post-smoothing).

Theorem 4. Under the assumptions of Theorem 3, the W-cycle multigrid method
with ν/2 pre- and ν/2 post-smoothing steps converges in the energy norm ‖ · ‖A
for the choice τ ∈ (0, C−1

I ] and ν > 4ν0 = 4τ−1CA with rate q = 2ν0/ν.

Proof. Theorem 3 states that

‖(I − T`−1)Sν` ‖L`
≤ τ−1CA

ν
.

As S
ν/2
` (I − T`−1)S

ν/2
` is self-adjoint in the scalar product (·, ·)A`

, this implies

‖Sν/2` (I−T`−1)S
ν/2
` ‖A`

= ρ((I−T`−1)Sν` ) ≤ ‖(I−T`−1)Sν` ‖L`
≤ τ−1CA

ν
. (11)

The iteration matrix of the W-cycle multigrid method is recursively given by

W` = S
ν/2
` (I − I``−1(I −W 2

`−1)A−1
`−1I

`−1
` A`)S

ν/2
` for ` > 0,

and W0 = 0. Using the triangle inequality and semi-multiplicativity of norms,
we obtain for the convergence rate

q` = ‖W`‖A`
= ‖Sν/2` (I − I``−1(I −W 2

`−1)A−1
`−1I

`−1
` A`)S

ν/2
` ‖A`

≤ ‖Sν/2` (I − T`−1)S
ν/2
` ‖A`

+ ‖Sν/2` I``−1W
2
`−1A

−1
`−1I

`−1
` A`S

ν/2
` ‖A`

≤ ‖Sν/2` (I − T`−1)S
ν/2
` ‖A`

+ ‖S`‖νA`
‖A1/2

` I``−1A
−1/2
`−1 ‖2‖W`−1‖2A`−1

.

As the spaces V` are nested, we obtain A`−1 = I`−1
` A`I

`
`−1. Thus it follows

‖A1/2
` I``−1A

−1/2
`−1 ‖2 = ρ(I`−1

` A`I
`
`−1A

−1
`−1) = 1. Lemma 2 states that ‖S`‖A`

≤ 1.
Using these two statements, (11) and q`−1 = ‖W`−1‖A`−1

, we obtain

q` ≤
ν0

ν
+ q2

`−1.

Using the assumption ν ≥ 4ν0, one shows by induction that q` ≤ 2ν0/ν. �
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4. A robust multigrid method for one-dimensional domains

4.1. Robust estimates for a subspace of the spline space

For the model problem, we have V = H1(Ω) and

‖ · ‖A = ‖ · ‖H1(Ω). (12)

The standard multigrid convergence analysis as introduced by Hackbusch [11]
gives convergence in a (properly scaled) L2-norm,

‖ · ‖L`
= h−1

` ‖ · ‖L2(Ω), (13)

and thus the choice L` = h−2
` M`, where M` is the mass matrix, consisting of

pairwise L2-scalar products of the basis functions.
To show robust convergence of the multigrid solver with a Jacobi smoother,

one would show that the diagonal of A` and h−2
` M` are spectrally equivalent.

This equivalence holds robustly in the grid size, however the involved constants
deteriorate with increasing spline degree p. This issue is closely related to the
so-called condition number of the B-spline basis (see, e.g., [4]). The growth
of the condition number with p explains why standard Jacobi iteration and
Gauss-Seidel iteration do not work well for B-splines.

The aforementioned equivalence is not necessary for a direct application of
the choice L` = h−2

` M`, which is the mass-Richardson smoother already studied
in [12]. Local Fourier analysis indicates that this smoother should lead to robust
convergence of the multigrid solver. However, the numerical experiments in [12]
show that this is not the case and iteration numbers still deteriorate with p.
The reason for this effect is motivated as follows.

With the choice (12) and (13), the condition (10) reads

‖u`‖H1(Ω) ≤ C1/2
I h−1

` ‖u`‖L2(Ω) ∀u` ∈ V` = Sp,`(Ω). (14)

In other words, it is required that the spline space satisfies an inverse inequality
with a constant that is independent of the grid size and the spline degree.
However, such a robust inverse inequality does not hold, as the counterexample
given in [16] shows: for each p ∈ N and each ` ∈ N0, there exists a spline
w` ∈ Sp,`(Ω) with

|w`|H1(Ω) ≥ ph−1
` ‖w`‖L2(Ω). (15)

As we have to choose τ ≤ C−1
I for the smoother not to diverge, the existence

of such splines w` implies that one has to choose τ = O(p−2), which causes the
convergence rates to deteriorate. The splines w` in the counterexample are non-
periodic and therefore cannot be captured by local Fourier analysis and similar
tools which consider only the periodic setting.

In [16] it was shown that a robust inverse estimate of the form (14) does
hold for the following large subspace of Sp,`(Ω).
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Definition 2. Let Ω = (0, 1). We denote by S̃p,`(Ω) the space of all u` ∈
Sp,`(Ω) whose odd derivatives of order less than p vanish at the boundary,

∂2l+1

∂x2l+1
u`(0) =

∂2l+1

∂x2l+1
u`(1) = 0 for all l ∈ N0 with 2l + 1 < p.

The space S̃p,`(Ω) is almost as large as Sp,`(Ω): their dimensions differ by p (for
p even) or p− 1 (for p odd).

Theorem 5 ([16]). For all spline degrees p ∈ N and all grid levels ` ∈ N0, we
have the inverse inequality

|u`|H1(Ω) ≤ 2
√

3h−1
` ‖u`‖L2(Ω) ∀u` ∈ S̃p,`(Ω).

This result makes it clear that the counterexample (15) describes the effect of
only a few outliers (see also [3] on the topic of spectral outliers in IgA), connected
to the boundary. We make use of this fact by constructing a mass-Richardson
smoother with a (low-rank) boundary correction.

Using ‖u`‖2A = |u`|2H1(Ω) + ‖u`‖2L2(Ω) and h` ≤ 1, the inverse inequality
implies

‖u`‖A ≤ c‖u`‖h−2
` M`

∀u` ∈ S̃p,`(Ω). (16)

Here and in the sequel, we use c to refer to a generic constant which is indepen-
dent of both the grid level ` and the spline degree p.

In addition to the inverse estimate, also an approximation property for the
subspace S̃p,`(Ω) was proved in [16]. We slightly refine the result here as follows.

Theorem 6. We have the approximation error estimate

‖(I − T̃`)u‖L2(Ω) ≤ 2
√

2h`‖u‖H1(Ω) ∀u ∈ H1(Ω),

where T̃` : H1(Ω)→ S̃p,`(Ω) is the A-orthogonal projector.

The proof for this theorem is given in the Appendix.
Using (16) and Theorem 6, we immediately obtain assumptions (10) and (9)

of Theorem 3 with the choice V` = S̃p,`(Ω) and L` = h−2
` M`. Thus, a two-grid

method using the mass smoother would be robust in this subspace. However,
the problems we are interested in are typically discretized in the full spline space
Sp,`(Ω). We extend the choice of L` robustly to such problems in the following.

4.2. Extension of the inverse inequality to the entire spline space

In this section, we modify the mass matrix in such a way as to satisfy a
robust inverse inequality in the entire spline space. This is done by means of an
additional term which is essentially a discrete harmonic extension. We set

L̃` := h−2
` M` + (I − T̃`)TA(I − T̃`).

10



Here, the second term corrects for the violation of the inverse inequality in the
A-orthogonal complement of S̃p,`(Ω) by incorporating the original operator A.
This term satisfies the energy minimization property

‖u`‖(I−T̃`)TA(I−T̃`) = ‖(I − T̃`)u`‖A = inf
v`∈S̃p,`(Ω)

‖u` + v`‖A.

We now prove the inverse inequality for the modified norm ‖ · ‖L̃`
. The

proof requires both the inverse inequality and the approximation error estimate
in S̃p,`(Ω).

Lemma 7. We have the inverse inequality

‖u`‖A ≤ c‖u`‖L̃`
∀u` ∈ Sp,`(Ω)

with a constant c which is independent of ` and p.

Proof. Let u` ∈ Sp,`(Ω). Using the triangle inequality, the inverse inequality
(16) and again the triangle inequality we obtain

‖u`‖A ≤ ‖T̃`u`‖A + ‖(I − T̃`)u`‖A ≤ ch−1
` ‖T̃`u`‖M`

+ ‖(I − T̃`)u`‖A
≤ ch−1

` ‖u`‖M`
+ ch−1

` ‖(I − T̃`)u`‖M`
+ ‖(I − T̃`)u`‖A.

By Theorem 6, we have ‖(I − T̃`)u`‖M`
= ‖(I − T̃`)2u`‖M`

≤ ch`‖(I − T̃`)u`‖A,
and it follows

‖u`‖A ≤ c
(
h−1
` ‖u`‖M`

+ ‖(I − T̃`)u`‖A
)
.

The statement follows since ‖(I − T̃`)u`‖A = ‖u`‖(I−T̃`)TA`(I−T̃`). �

4.3. A robust multigrid method for the whole spline space

We first show that Theorem 6 can be easily extended to the projection into
the entire spline space.

Lemma 8. The approximation error estimate

‖(I − T`)u‖L2(Ω) ≤ ch`‖u‖H1(Ω) ∀u ∈ H1(Ω),

holds, where T` : H1(Ω)→ Sp,`(Ω) is the A-orthogonal projector.

Proof. As S̃p,`(Ω) ⊂ Sp,`(Ω), we have T̃` = T̃`T`. This identity, the triangle
inequality, Theorem 6, and the stability of the A-orthogonal projector T` yield

‖(I − T`)u‖2L2(Ω) ≤ 2(‖(I − T̃`)u‖2L2(Ω) + ‖(I − T̃`)T`u‖2L2(Ω))

≤ 2ch`(‖u‖2H1(Ω) + ‖T`u‖2H1(Ω)) ≤ 4ch`‖u‖2H1(Ω) ∀u ∈ H1(Ω). �

The robust inverse inequality (Lemma 7) together with the approximation
property (Lemma 8) allow us to prove robust convergence of the following multi-
grid method for the space V` := Sp,`(Ω). It turns out that we also obtain robust

convergence if we do not project into S̃p,`(Ω), but into a subspace SIp,`(Ω), which
may be easier to handle in practice.
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Theorem 9. Let SIp,`(Ω) ⊆ S̃p,`(Ω) a subspace and T I` : Sp,`(Ω)→ SIp,`(Ω) the
A-orthogonal projector. Consider the smoother (2) with the choice

L` := h−2
` M` + (I − T I` )TA`(I − T I` ). (17)

Then there exists a damping parameter τ > 0 and a choice of ν0 > 0, both
independent of ` and p, such that the two-grid method with ν > ν0 smoothing
steps converges with rate q = ν0/ν.

With the same choice of τ and with ν > 4ν0, also the W-cycle multigrid
method with ν/2 pre- and ν/2 post-smoothing steps converges in the energy
norm with convergence rate q = 2ν0/ν.

Proof. We show the assumptions of Theorem 3. The statements then follow
from Theorems 3 and 4.

Proof of assumption (10). Let u` ∈ Sp,`(Ω). Lemma 7 states

‖u`‖2A ≤ c(‖u`‖2h−2
` M`

+ ‖(I − T̃`)u`‖2A).

Using the energy-minimizing property of the projection operators, we obtain

‖(I − T̃`)u`‖A = inf
v`∈S̃p,`(Ω)

‖u` − v`‖A

≤ inf
v`∈SI

p,`(Ω)
‖u` − v`‖A = ‖(I − T I` )u`‖A

since SIp,`(Ω) ⊆ S̃p,`(Ω). Combining these estimates, we get the desired state-
ment

‖u`‖2A ≤ c‖u`‖2L`
. (18)

Proof of assumption (9). Let u` ∈ Sp,`(Ω). Lemma 8 implies

‖(I − T`−1)u`‖2h−2
` M`

≤ c‖u`‖2A

Since both I −T I` and I −T`−1 are A-orthogonal projectors and thus are stable
in the A-norm, we obtain the approximation error estimate (9) via

‖(I − T`−1)u`‖2L`
= ‖(I − T`−1)u`‖2h−2

` M`
+ ‖(I − T I` )(I − T`−1)u`‖2A

≤ (c+ 1)‖u`‖2A. �

The choice SIp,`(Ω) = S̃p,`(Ω) in the above theorem is admissible and results

in a robust multigrid method. However, the space S̃p,`(Ω) is somewhat difficult
to work with in practice since it is not easy to represent in terms of the standard
B-spline basis. Therefore, we choose a slightly smaller space for SIp,`(Ω) which
is based on a simple splitting of the degrees of freedom. To this end, we split
the spline space Sp,`(Ω) into “boundary” and “inner” functions,

Sp,`(Ω) = SΓ
p,`(Ω) + SIp,`(Ω),
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where SΓ
p,`(Ω) is spanned by the first p B-spline basis functions ϕ

(1)
p,` , . . . , ϕ

(p)
p,`

and the last p basis functions ϕ
(m`−p+1)
p,` , . . . , ϕ

(m`)
p,` , whereas the space SIp,`(Ω) is

spanned by all the remaining basis functions. By construction, SIp,`(Ω) consists
of all splines that vanish on the boundary together with all derivatives up to
order p− 1. Therefore, we have SIp,`(Ω) ⊆ S̃p,`(Ω).

Due to this subspace relation, the inverse inequality (16) remains valid in
SIp,`(Ω). However, the analogue of the approximation property Theorem 6 does
not in general hold in this smaller space. The existence of the larger subspace
S̃p,`(Ω) in which both properties hold is crucial for the proof of assumption (10)

above, even though we do not directly use the space S̃p,`(Ω) in practice.
Concerning the practical realization of such a smoother, observe that we can

reorder the degrees of freedom based on the splitting Sp,`(Ω) = SΓ
p,`(Ω)+SIp,`(Ω)

and write the matrix A` and the vector u` in block structure as

A` =

(
AΓΓ,` ATIΓ,`
AIΓ,` AII,`

)
, u` =

(
uΓ,`

uI,`

)
. (19)

Using a matrix representation of the projector T I` , direct computation yields

(I − T I` )u` =

(
uΓ,`

−A−1
II,`AIΓ,`uΓ,`

)
,

and therefore the matrix L` can be represented using the Schur complement as

L` = h−2
` M` + C` := h−2

` M` +

(
AΓΓ,` −ATIΓ,`A−1

II,`AIΓ,` 0

0 0

)
. (20)

We remark that uT` C`u` represents the (squared) energy of the discrete harmonic
extension of uΓ,` from SΓ

p,`(Ω) to Sp,`(Ω).

5. A robust multigrid method for two-dimensional domains

In this section, we extend the theory presented in the previous section to the
(more relevant) case of two-dimensional domains. As outlined in Remark 1, we
restrict ourselves to problems without geometry mapping, i.e., problems on the
unit square only. However, these approaches can be used as preconditioners for
problems on general geometries if there is a regular geometry mapping.

In the following, we are interested in solving the problem (1) with d = 2.
Here, we assume to have a tensor product space. Without loss of generality, we
assume for sake of simplicity that Ω = (0, 1)2 and

Sp,`(Ω) := Sp,`(0, 1)⊗ Sp,`(0, 1).

Below, we will use calligraphic letters to refer to matrices for the two-
dimensional domain, whereas standard letters refer to matrices for the one-
dimensional domain. Using the tensor product structure of the problem and
the discretization, the mass matrix has the tensor product structure

M` = M` ⊗M`,
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where⊗ denotes the Kronecker product. To keep the notation simple, we assume
that we have the same basis and thus the same matrix M` for both directions
of the two-dimensional domain. However, this is not needed for the analysis.

The stiffness matrix in two dimensions has the representation

A` = K` ⊗M` +M` ⊗K` +M` ⊗M`, (21)

where K` represents the scalar product (∇u`,∇v`)L2(Ω) in one dimension. This
decomposition reflects that

(u`, v`)A = (∂xu`, ∂xv`)L2(Ω) + (∂yu`, ∂yv`)L2(Ω) + (u`, v`)L2(Ω).

The problem of interest is now

A`u` = f
`
.

Here, the multigrid framework from Section 3 applies unchanged, only replacing
standard letters by calligraphic letters. Again, we have to choose a suitable
smoother by determining the matrix L`. To this end, we again have a look at
the approximation error estimate and the inverse inequality.

Let S̃p,`(Ω) := S̃p,`(0, 1)⊗ S̃p,`(0, 1) and let ‖ · ‖A be the energy norm for the
problem in two dimensions, i.e., such that ‖u`‖A = ‖u`‖A`

holds for all u` ∈
Sp,`(Ω). An approximation error estimate for the space S̃p,`(Ω) was shown in
[16, Theorem 8]. However, there, not the A-orthogonal projector was analyzed.
The following statement is analogous to Theorem 6 and can be proved based on
the one-dimensional result.

Theorem 10. The approximation error estimate

‖(I − T̃`)u`‖L2(Ω) ≤ ch`‖u`‖A ∀u` ∈ Sp,`(Ω),

where T̃` : Sp,`(Ω)→ S̃p,`(Ω) is the A-orthogonal projector, holds with a constant
c which is independent of ` and p.

Proof. Theorem 6 implies that

‖(I − T̃`)u`‖M`
≤ ch`‖u`‖A`

∀u` ∈ Sp,`(0, 1),

where T̃` : Sp,`(0, 1)→ S̃p,`(0, 1) is the A-orthogonal projector. Stability of the
A-orthogonal projector means that

‖(I − T̃`)u`‖A`
≤ ‖u`‖A`

∀u` ∈ Sp,`(0, 1).

Combining these statements, we obtain

‖(I − T̃` ⊗ T̃`)u`‖A`⊗M`+M`⊗A`
≤ ch`‖u`‖A`⊗A`

∀u` ∈ Sp,`(Ω).
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Note that A` = K` + M`. Therefore, A` = K` ⊗M` + M` ⊗K` + M` ⊗M` ≤
A`⊗M`+M`⊗A` holds, where ≤ is understood in the spectral sense. Moreover,

A`M−1
` A` = K`M

−1
` K` ⊗M` +K` ⊗K` +K` ⊗M` +K` ⊗K`

+M` ⊗K`M
−1
` K` +M` ⊗K` +K` ⊗M` +M` ⊗K` +M` ⊗M`

≥ K` ⊗K` +K` ⊗M` +M` ⊗K` +M` ⊗M` = A` ⊗A`

holds. Using these two estimates, we obtain further

‖(I − T̃` ⊗ T̃`)u`‖A`
≤ ch`‖u`‖A`M−1

` A`
∀u` ∈ Sp,`(Ω).

As the A-orthogonal projection minimizes the norm ‖ · ‖A = ‖ · ‖A`
, we obtain

‖(I − T̃`)u`‖A`
≤ ch`‖u`‖A`M−1

` A`
∀u` ∈ Sp,`(Ω),

or in matrix form
‖A1/2

` (I − T̃`)A−1
` M

1/2
` ‖ ≤ ch`.

By transposing and using A−1
` T̃ T` = T̃`A−1

` , it follows

‖M1/2
` (I − T̃`)A−1/2

` ‖ ≤ ch`

which can be equivalently rewritten as the desired result

‖(I − T̃`)u`‖M`
≤ ch`‖u`‖A`

∀u` ∈ Sp,`(Ω). �

Completely analogously to the proof of Lemma 8, we can extend this ap-
proximation error estimate to

‖(I − T`−1)u`‖L2(Ω) ≤ ch`‖u`‖A ∀u` ∈ Sp,`(Ω), (22)

where T` : H1(Ω)→ Sp,`(Ω) is the A-orthogonal projector.

From [16, Theorem 9], the following robust inverse inequality in S̃p,`(Ω),
analogous to the one-dimensional result (16), follows:

‖u`‖A ≤ 2
√

6h−1
` ‖u`‖L2(Ω) ∀u` ∈ S̃p,`(Ω).

As in Section 4 for the one-dimensional case, we could set up a smoother based
on the A-orthogonal projection to an interior space SIp,`(0, 1) ⊗ SIp,`(0, 1) and
prove, by completely analogous arguments, that the resulting multigrid method
is robust. However, the realization of this smoother requires the discrete har-
monic extension from a boundary layer of width p to the interior, which is too
computationally expensive.

Instead we propose a slightly modified smoother which better exploits the
tensor product structure of the underlying spaces. Using A` = K` + M`, we
obtain

A` ≤ A` ⊗M` +M` ⊗A`.
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As we have seen that A` ≤ cL` for the choice of L` introduced in Section 4, the
inverse inequality would be satisfied for the choice

L` ⊗M` +M` ⊗ L`,

which can be expressed using L` = h−2
` M` + C` from (20) as follows:

2h−2
` M` ⊗M` + C` ⊗M` +M` ⊗ C`

Instead we choose L` to be a slight perturbation of that matrix, namely,

L` := h−2
` M` ⊗M` + C` ⊗M` +M` ⊗ C` = h2

`(L` ⊗ L` − C` ⊗ C`),

Thus, L` is the sum of a tensor product matrix h2
`L` ⊗ L` and a low-rank

correction h2
`C` ⊗ C`. The following two lemmas show the assumptions for

multigrid convergence when using the smoother based on this L`.

Lemma 11. There is a constant c, independent of ` and p, such that A` ≤ cL`.

Proof. The one-dimensional inverse inequality (18) in matrix formulation reads
A` ≤ cL`. Using L` = h−2

` M` + C`, we obtain

A` ≤ A` ⊗M` +M` ⊗A` ≤ c(L` ⊗M` +M` ⊗ L`)
= c(2h−2

` M` ⊗M` + C` ⊗M` +M` ⊗ C`)
≤ 2c(h−2

` M` ⊗M` + C` ⊗M` +M` ⊗ C`) = 2cL`. �

Lemma 12. The approximation property

‖(I − T`−1)u`‖L`
≤ c‖u`‖A ∀u` ∈ Sp,`(Ω)

holds with a constant c which is independent of ` and p.

Proof. By an energy minimization argument, we know that C` ≤ A` and
therefore

L` ≤ h−2
` M` +M` ⊗A` +A` ⊗M`.

Furthermore, since M` ⊗A` +A` ⊗M` = A` +M` and h` ≤ 1, we obtain

L` ≤ 2h−2
` M` +A`.

Thus, using (22) and the stability of the A-orthogonal projector I − T`−1, we
have

‖(I − T`−1)u`‖2L`
≤ 2‖(I − T`−1)u`‖2h−2

` M`
+ ‖(I − T`−1)u`‖2A ≤ (2c+ 1)‖u`‖2A

for all u` ∈ S̃p,`(Ω). �

We now immediately obtain the following convergence result.
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Theorem 13. Consider the smoother (2) with

L` = h2
`(L` ⊗ L` − C` ⊗ C`),

where L` = h−2
` M` + C` and C` = (I − T I` )TA(I − T I` ) as in Section 4, and

T I` : Sp,`(0, 1) → SIp,`(0, 1) is the A-orthogonal projector. Then, there is some
damping parameter τ > 0 and some choice ν0 > 0, both independent of ` and p,
such that the two-grid method with ν > ν0 smoothing steps converges with rate
q = ν0/ν.

With the same choice of τ and with ν > 4ν0, also the W-cycle multigrid
method with ν/2 pre- and ν/2 post-smoothing steps converges in the energy
norm with convergence rate q = 2ν0/ν.

Proof. Lemma 11 and Lemma 12 show the assumptions (10) and (9) of The-
orem 3, respectively. The statements then follow from Theorems 3 and 4.
�

To obtain a quasi-optimal method, we need a way of inverting the matrix
L` efficiently. Grouping the degrees of freedom as in (19), we obtain

L` = h2
`L` ⊗ L` − h2

` [P
T
` ⊗ PT` ][Q` ⊗Q`][P` ⊗ P`] (23)

with

P` :=

(
I
0

)
and Q` := AΓΓ,` −ATIΓ,`A−1

II,`AIΓ,`. (24)

Exploiting the Kronecker product structure, L` ⊗ L` can be efficiently inverted
using the ideas from [5]. The second term, h2

` [P
T
` ⊗ PT` ][Q` ⊗Q`][P` ⊗ P`], is a

low-rank correction that lives only near the four corners of the domain. We can
thus invert the smoother using the Sherman-Morrison-Woodbury formula and
obtain

L−1
` = h−2

` (I + ([L−1
` P`]⊗ [L−1

` P`])R−1
` (PT` ⊗ PT` ))(L−1

` ⊗ L−1
` ),

where P` and Q` are defined as in (24),

R` := Q−1
` ⊗Q−1

` −W−1
` ⊗W−1

` , (25)

W` := Q` + h−2
` (MΓΓ,` −MT

IΓ,`M
−1
II,`MIΓ,`), (26)

and MII,`, MIΓ,` and MΓΓ,` are the blocks of the mass matrix M` if the degrees
of freedom are grouped as in (19).

6. Numerical realization and results

6.1. Numerical realization

As the proposed smoothing procedure appears rather complex, we give in
Listing 6.1 pseudo code describing how the two-dimensional smoother based on
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function smoother()

• given matrices: one-dimensional mass and stiffness matrices M`, A` ∈
Rm`×m`

• input: function value u
(0,n)
` ∈ Rm2

` , corresponding residual r
(0,n)
` ∈ Rm2

`

• Preparatory steps, only performed once:

1. Compute the Cholesky factorization of AII,`.

2. Determine Q` ∈ R2p×2p as defined in (24).

3. Compute the Cholesky factorization of MII,`.

4. Determine W` ∈ R2p×2p as defined in (26).

5. Determine R` ∈ R4p2×4p2 as defined in (25).

6. Compute the Cholesky factorization of R`.
7. Determine the sparse matrix L` ∈ Rm`×m` as defined in (20).

8. Compute the Cholesky factorization of L`.

• For each smoothing step do:

1. Determine q
(0)
` := h−2

` (L−1
` ⊗ L−1

` )r`.

2. Determine q
(1)
` := (PT` ⊗ PT` )q

(0)
` .

3. Determine q
(2)
` := R−1

` q
(1)
` using the Cholesky factorization of R`.

4. Determine q
`

:= ([L−1
` P`]⊗ [L−1

` P`])q
(2)
` using the Cholesky factor-

ization of L`.

5. Set p
`

= q
(0)
` + q

`
.

6. Update the function u
(0,n+1)
` := u

(0,n)
` + τp

`
.

7. Update the residual r
(0,n+1)
` := r

(0,n)
` − τA`p`.

• output: function value u
(0,n+1)
` , corresponding residual r

(0,n+1)
`

Listing 1: Pseudo-code implementation for the smoother in two dimensions
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the matrix L` as described in (23) can be implemented efficiently such that the
overall multigrid method achieves optimal complexity.

The overall costs of the preparatory steps are O(m`p
2 + p6) floating point

operations, where m` > p is the number of degrees of freedom in one dimension
and m2

` is the overall number of degrees of freedom.
Here, for the preparatory steps 1 and 3, O(m`p

2) operations are required,
as the dimension of the matrices AII,` and MII,` is m` − 2p = O(m`) and the
bandwidth is O(p). For the preparatory steps 2 and 4, it is required to solve
O(p) linear systems involving this factorization, which requires again O(m`p

2)
operations. The preparatory steps 5 and 6 just live on the 4 vertices of the square
and require O(p6) operations. The preparatory step 7 costs O(m`p) operations
just for adding A` and L`. The Cholesky factorization to be performed in the
preparatory step 8 has – as in the steps 1 and 3 – a computational complexity
of O(m`p

2) operations.
The steps 1 and 4 of the smoother itself require O(m2

`p) operations each, if
the tensor product structure L−1

` ⊗ L−1
` = (I ⊗ L−1

` )(L−1
` ⊗ I) is used (see [5]

for the algorithmic idea). Step 2 of the smoother requires O(m`p
2) operations.

In step 3, only O(p4) operations are required as R` is a dense 4p2× 4p2-matrix.
The steps 5 and 6, which are only adding up, can be completed with O(m2

`)
operations. Step 7 can be computed using the decomposition

A` = (I ⊗M`)(K` ⊗ I) + (M` ⊗ I)(I ⊗K`) + (M` ⊗ I)(I ⊗M`) (27)

with O(m2
`p) operations.

In summary, the preparatory steps require O(m`p
2 + p6) operations and

the smoother itself requires O(m2
`p) operations. Furthermore, also the coarse-

grid correction can be performed with O(m2
`p) operations, if the tensor product

structure of the intergrid transfer matrices I`−1
` and I``−1 is used. The overall

costs are therefore O(m2
`p+p6) or, assuming p5 ≤ m2

` , O(m2
`p) operations. The

method can therefore be called asymptotically optimal, since the multigrid solver
requiresO(m2

`p) operations in total, which is the same effort as for multiplication
with A`.

In the case of variable coefficients or geometry transformations, A` is no
longer a sum of tensor-product matrices. In this case, the computation of the
residual of the original problem requires O(m2

`p
2) operations, while the appli-

cation of the multigrid method as a preconditioner can still be performed with
O(m2

`p) operations.

6.2. Experimental results

As a numerical example, we solve the model problem from Section 2.2 with
the right-hand side

f(x) = dπ2
d∏

j=1

sin(π(xj + 1
2 ))

and homogeneous Neumann boundary conditions on the domain Ω = (0, 1)d,
d = 1, 2. We perform a (tensor product) B-spline discretization using uniformly
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sized knot spans and maximum-continuity splines for varying spline degrees p.
We refer to the coarse discretization with only a single interval as level ` = 0
and perform uniform, dyadic refinement to obtain the finer discretization levels
` with 2`d elements (intervals or quadrilaterals).

We set up a V-cycle multigrid method according to the framework estab-
lished in Section 3 and using the proposed smoother (20) for the one-dimensional
domain and (23) for the two dimensional domain. We always use one pre- and
one post-smoothing step. The damping parameter τ was chosen as τ = 0.14 for
d = 1 and τ = 0.08 for d = 2. In the one-dimensional case, we apply the damp-
ing factor only to the mass component of the smoother. This slightly improves
the iteration numbers but is non-essential.

Due to the requirement that the number of intervals exceed p so that the
space SIp,`(0, 1) is nonempty and the construction of the smoother is valid, we
cannot always use ` = 0 as the coarse grid for the multigrid method.

We perform two-grid iteration until the Euclidean norm of the initial residual
is reduced by a factor of 10−8. The iteration numbers using varying spline
degrees p as well as varying fine grid levels ` for the one-dimensional domain
are given in Table 1. Here we always used ` = 5 as the coarse grid since this is
an admissible choice for all tested p. We observe that the iteration numbers are
robust with respect to the grid size, the number of levels, and the spline degree
p.

In the two-dimensional experiments, for every degree p, we determine the
coarsest level on which SIp,`(0, 1) is nonempty and use the next coarser level as
the coarsest grid for the multigrid method. The resulting iteration numbers are
displayed in Table 2. Here, the bottom-most iteration number in each column
corresponds to a two-grid method, the next higher one to a three-grid method,
and so on. Again, the iteration numbers remain uniformly bounded with respect
to all discretization parameters, although they are much higher than in the one-
dimensional case. To mitigate this, we can solve the problem with Conjugate
Gradient (CG) iteration preconditioned with one multigrid V-cycle. As the
resulting iteration numbers in Table 3, now only for ` = 7, show, this leads to
a significant speedup while maintaining robustness.

p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12 23 20 20 20 20 20 20 20 20 19 19 19 19 18 18
` 11 23 20 20 20 20 20 20 20 19 19 19 19 18 19 18

10 23 20 20 20 20 20 20 19 19 19 19 18 17 17 17

Table 1: Multigrid iteration numbers in 1D for varying fine-grid levels and spline degrees.

7. Conclusions and outlook

We have analyzed in detail the convergence properties of a geometric multi-
grid method for an isogeometric model problem using B-splines. In a first step,
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p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 86 88 99 102 99 100 99 98 97 96 94 95 93 92 92
6 84 89 101 104 100 101 100 97 97 96 94 94 94 93 92
5 83 92 103 103 100 100 101 97 97 96 94 93 94 91 91

` 4 66 95 104 105 102 100 99 96 96 95 94 92 92 91 91
3 45 97 105 107 103 101 101 - - - - - - - -
2 32 97 114 - - - - - - - - - - - -
1 32 - - - - - - - - - - - - - -

Table 2: Multigrid iteration numbers in 2D for varying fine-grid levels and spline degrees.

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
` = 7 21 21 23 23 23 22 23 22 22 22 21 21 21 21 21

Table 3: Iteration numbers in 2D for CG preconditioned with V-cycle, varying p.

we discussed one-dimensional domains. Based on the obtained insights, in par-
ticular on the importance of boundary effects on the convergence rate, we then
proposed a boundary-corrected mass-Richardson smoother. We have proved
that this new smoother yields convergence rates which are robust with respect
to the spline degree, a result which is not attainable with classical [14] or purely
mass-based smoothers [12].

Exploiting the tensor product structure of spline spaces commonly used in
IgA, we extended the construction of the smoother to the two-dimensional set-
ting and again proved robust convergence for this case. We have shown how
the proposed smoother can be efficiently realized such that the overall multigrid
method has quasi-optimal complexity. Although we have restricted ourselves
to simple tensor product domains, our technique is easily extended to problems
with non-singular geometry mappings as discussed in Remark 1.

The extension of this approach to three or more dimensions remains open.
In particular, the representation of the smoother as the Kronecker product of
one-dimensional smoothers plus some low-rank correction as in (23) encounters
some difficulties in this case. Therefore, the construction of robust and efficient
smoothers for the three- and higher-dimensional cases is left as future work.
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Appendix

Our aim in this section is to prove Theorem 6. First, however, we show a
refined version of the main approximation result from [16].

Theorem 14. Let ` ∈ N0 and p ∈ N. Then

‖(I − Π̃`)u‖L2(Ω) ≤
√

2h`|u|H1(Ω) ∀u ∈ H1(Ω),

where Π̃` : H1(Ω)→ S̃p,`(Ω) is the H1
◦ (Ω)-orthogonal projector and

(u, v)H1
◦(Ω) := (∇u,∇v)L2(Ω) +

1

|Ω|

(∫

Ω

u(x)dx

)(∫

Ω

v(x)dx

)
.

Proof. The proof is a slightly improved version of the proof of [16, Theorem 1].

There, for any fixed u ∈ H1(Ω), a function u` ∈ S̃p,`(Ω) was constructed which
satisfies the approximation error estimate

‖u− u`‖L2(Ω) ≤
√

2h`|u|H1(Ω).

(The space S̃p,`(Ω) coincides with the space S̃p,h`
(Ω) in [16].) Now, it remains to

show that u` coincides with Π̃`u, i.e., that u` is the H1
◦ (Ω)-orthogonal projection

of u to the space S̃p,`(Ω). By definition, this means that we have to show that

(u− u`, ũ`)H1
◦(Ω) = 0 ∀ũ` ∈ S̃p,`(Ω). (28)

Now, let Ŝp,`(−1, 1) be the space of periodic splines on (−1, 1) with degree p and
grid size h` (cf. [16, Definition 2]). Note that, by construction in [16, Theorem 1],
u` is the restriction of w` to (0, 1), where w` is the H1

◦ -orthogonal projection of

w(x) := u(|x|) to Ŝp,`(−1, 1). Define w̃` ∈ Ŝp,`(−1, 1) by w̃`(x) := ũ`(|x|) and
observe (w−w`, w̃`)H1

◦(−1,1) = 2(u−u`, ũ`)H1
◦(0,1). As w` is by construction the

H1
◦ -orthogonal projection of w, we have (w−w`, w̃`)H1

◦(0,1) = 0. This shows (28)

and therefore u` = Π̃`u. �

The error estimate for the A-orthogonal, i.e., the H1(Ω)-orthogonal, projec-

tor T̃` now follows immediately by a perturbation argument.

Proof (of Theorem 6). Define, for u, v ∈ H1(Ω), the scalar product

(u, v)B := (u, v)A − (u, v)H1
◦(Ω) = (u, v)L2(Ω) −

1

|Ω|

(∫

Ω

udx

)(∫

Ω

vdx

)

and observe that the Cauchy-Schwarz inequality implies 0 ≤ (v, v)B ≤ (v, v)L2(Ω)

for all v ∈ H1(Ω). Let u ∈ H1(Ω) arbitrary. Orthogonality implies

((I − Π̃`)u,w`)H1
◦(Ω) = 0 ∀w` ∈ S̃p,`(Ω),

((I − T̃`)u,w`)A = 0 ∀w` ∈ S̃p,`(Ω). (29)
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The first of these two equations implies

((I − Π̃`)u,w`)A = ((I − Π̃`)u,w`)B ∀w` ∈ S̃p,`(Ω),

and subtracting (29) yields

((T̃` − Π̃`)u,w`)A = ((I − Π̃`)u,w`)B ∀w` ∈ S̃p,`(Ω).

With the choice w` := (T̃` − Π̃`)u as well as ‖ · ‖A = ‖ · ‖H1(Ω) and the Cauchy-
Schwarz inequality, we obtain

‖(T̃` − Π̃`)u‖2H1(Ω) ≤ ‖(I − Π̃`)u‖B‖(T̃` − Π̃`)u‖B ,

where ‖ · ‖B := (·, ·)1/2
B . Using ‖ · ‖B ≤ ‖ · ‖L2(Ω) ≤ ‖ · ‖H1(Ω), it follows that

‖(T̃` − Π̃`)u‖L2(Ω) ≤ ‖(I − Π̃`)u‖L2(Ω). Thus, using the triangle inequality and
Theorem 14 we obtain

‖(I − T̃`)u‖L2(Ω) ≤ ‖(I − Π̃`)u‖L2(Ω) + ‖(T̃` − Π̃`)u‖L2(Ω)

≤ 2‖(I − Π̃`)u‖L2(Ω) ≤ 2
√

2h`‖u‖H1(Ω). �
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