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Abstract The problem of constructing a normalized hierarchical basis for adap-
tively refined spline spaces is addressed. Multilevel representations are defined
in terms of a hierarchy of basis functions, reflecting different levels of refinement.
When the hierarchical model is constructed by considering an underlying sequence
of bases {I"’} ¢=o0,...,N—1 With properties analogous to classical tensor—product B—
splines, we can define a set of locally supported basis functions that form a parti-
tion of unity and possess the property of coefficient preservation, i.e., they preserve
the coefficients of functions represented with respect to one of the bases I'. Our
construction relies on a certain truncation procedure, which eliminates the con-
tributions of functions from finer levels in the hierarchy to coarser level ones.
Consequently, the support of the original basis functions defined on coarse grids is
possibly reduced according to finer levels in the hierarchy. This truncation mech-
anism not only decreases the overlapping of basis supports, but it also guarantees
strong stability of the construction. In addition to presenting the theory for the gen-
eral framework, we apply it to hierarchically refined tensor—product spline spaces,
under certain reasonable assumptions on the given knot configuration.

Keywords hierarchical splines - truncated hierarchical basis - partition of unity -
local refinement - stability

1 Introduction

The choice of the basis used to define a representation model is of extreme impor-
tance because it necessarily influences both the geometrical and numerical char-
acteristics of the resulting mathematical technology. Recent studies connected to
isogeometric analysis [12] are devoted to the investigation of appropriate adaptive
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(a) initial grid (b) marked regions  (c) global refinement (d) local refinement

Fig. 1 Given an initial tensor—product representation (a), an error estimator indicates regions
of the mesh which require further refinement (b). The tensor—product structure necessarily
implies a propagation of the refinement (c). Adaptive splines, instead, should provide a proper
local control of the refinement procedure (d).

spline bases which provide a well-localized mesh refinement, see, e.g., [1,6,7,13,
18,25,26]. The tensor—product structure underlying the B—spline/NURBS model
originally considered in [12] necessarily forces a global refinement of the geometry,
as shown in Figure 1.

The hierarchical spline model provides a natural strategy to guarantee the
locality of the refinement. Hierarchical representations are defined in terms of a
hierarchy of locally refined meshes, reflecting different levels of refinement. This
idea was first introduced in [9] by using a sequence of overlays to define hierarchical
spline surfaces. The possibility of restricting the refinement to specific regions of
the mesh allows an effective local surface editing. A hierarchical B—spline basis
was then developed in [14].

The hierarchical B—spline basis of [14], however, suffers from three major prob-
lems.

— First, the basis does not form a partition of unity. It is possible to address
this problem by appropriately rescaling the basis functions, but additional
assumptions are then needed to guarantee non—negativity of the scaling factors.

— Second, the support of the basis functions is relatively large. Consequently,
when applying the hierarchical construction without enforcing additional re-
strictions on the refinement strategies, the number of basis functions which act
on the same region of the parametric domain may easily increase. In particu-
lar, this happens when several refinement steps are needed to describe detailed
local features.

— Third, the hierarchical B-spline basis is only weakly stable! with respect to the
supremum norm. The absence of a stronger form of stability is implied by the
missing partition of unity and the relatively large support of the hierarchical
basis.

Different kinds of hierarchical splines defined over triangulations have also
been considered, see for example [23,27], in order to investigate the flexibility
of a hierarchical refinement procedure for more general mesh configurations. For
hierarchical splines over Powell-Sabin refined triangulations, strong stability of a
special basis was established in [23].

1 Weak stability of a basis means that the associated stability constants have at most a
polynomial growth in the number of hierarchical levels.
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In our paper we propose a general framework for the construction of a new basis
which overcomes the first and the third problem of the classical hierarchical basis
and also shows an improved behaviour with respect to the second one. More pre-
cisely, we consider adaptively refined multilevel spline spaces which are constructed
by considering an underlying basis with properties analogous to classical normal-
ized B-splines, such as local linear independence, compact support, non—negativity,
partition of unity. We propose a new basis possessing the following properties.

— We define a linearly independent set of locally supported basis functions for
the multilevel spline space that forms a convex partition of unity. To this end,
we propose a certain truncation procedure, which is applied to hierarchical basis
functions to eliminate the contributions from higher levels in the hierarchy.
The corresponding basis is denoted as truncated hierarchical spline basis. The
bases constructed in [10] and [23] fit in this general framework. The presented
truncation mechanism preserves the linear independence and non—negativity
properties of standard, i.e., non—truncated, hierarchical bases.

— The truncation gives basis functions with the same or smaller supports. Con-
sequently, the overlap between basis functions associated with different levels
in the hierarchy is effectively reduced. These properties lead to sparser systems
when this kind of basis is used in classical approximation problems, see [10].

— We prove that the truncation procedure preserves the corresponding coeffi-
cients of a function represented with respect to the underlying basis consid-
ered at any certain level. This property implies the partition of unity and the
preservation of the original Greville points.

— When assuming an underlying locally stable basis, we show that this preser-
vation of coefficients can be properly used to prove the strong stability of the
construction with respect to the supremum norm. This means that the con-
stants to be considered in the stability analysis of the basis do not depend
on the number of hierarchical levels. We also apply this general theory to the
context of truncated hierarchical B—splines (THB-splines), introduced in [10].
Assuming very mild conditions on the knot configurations, we show that the
stability properties of the THB—spline basis are improved with respect to the
standard — i.e., non-truncated and weakly stable — hierarchical B-spline case
originally considered in [14,15].

The remainder of this paper is organized as follows. Sections 2 and 3 describe
a general framework of adaptively refined spline spaces and present a recursive
definition for a hierarchical basis, assuming some specific properties for the choice
of the underlying spaces to be considered in the multilevel construction. In Sec-
tion 4 we introduce an alternative basis, based on the above mentioned truncation
procedure, together with its main properties. The preservation of coefficients and
its implications are subsequently discussed in Section 5. Section 6 introduces the
stability analysis by considering the case of a single mesh element and some re-
marks regarding the tensor—product construction. Section 7 discusses the stability
of truncated bases in the general setting previously introduced. To illustrate the
truncation mechanism, multivariate truncated hierarchical B—splines and their sta-
bility analysis are detailed throughout the text as a case study. We conclude in
Section 8 by summarizing the main results of this work. Finally, Appendix A is de-
voted to specific bounds for the number of truncated basis functions acting on any
point in the domain, by considering some restrictions on the configuration of the
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hierarchical sequence of subdomains. The local stability of univariate B—splines
and a counterexample for strong stability of the classical (i.e., non—truncated)
hierarchical construction are deferred to Appendix B and C, respectively.

2 Preliminaries

Given a bounded open domain 2 C R", we consider an infinite sequence of nested
linear spaces

vlcvtcvic...
Each space V* is assumed to be a finite-dimensional subspace of the space C (2,R)
of all continuous n—variate functions on (2 with values in R. The index ¢ of a space
V* will be called its level. We assume that each space V¢ is spanned by a finite
basis I'* with the following properties.

(A1) The functions in I'* are locally linearly independent: for any open subdomain
B C (2, those functions in {ﬂ g E I'*} that do not vanish identically on
B are linearly independent, where f | g € C(B,R) denotes the restriction of
fecC(2,R) to B.

(A2) The functions in I" have local and compact support: supp~y C 2 for all v € I'*.
Moreover, for each basis function v € FE, the boundary of the support consists
of a finite number of smooth arcs.

(A3) The functions in I'* are non-negative.

(A4) The functions in I'* form a partition of unity.

(A5) The two-scale relations between adjacent bases have only non-negative coeffi-
cients. More precisely, for any level ¢, each basis function in I'* can be ex-
pressed as a linear combination of basis functions in I'“*! with non-negative
coefficients.

Together, requirements (A3) and (A4) imply the convexr hull property. The local
linear independence (A1) implies that the support of any function 724—1 in ¢!
which contributes to the representation of a function 4* in I’ is contained in the
support of fyg.

Several families of basis functions and their corresponding function spaces sat-
isfy assumptions (A1-A5).

— From the classical univariate spline theory, it is known that B—splines [2,22],
NURBS [19] and many generalized B—splines [4,22] satisfy them. Moreover,
they also hold for tensor—products of these univariate splines which are defined
on Cartesian grids.

— The above assumptions are satisfied for type—I box splines [16] which are bivari-
ate functions defined on a three—directional grid. Note that linear independence
and local linear independence are equivalent for box splines [3]. Hence, (A1) is
satisfied.

— Finally, these assumptions are also satisfied for the bivariate Powell-Sabin B—
splines with triadic refinement studied in [23,24].

Motivated by these similarities between various spline spaces, we shall say that
It are spline bases and V* are spline spaces, provided that assumptions (A1-A5)
are valid.
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We denote with B the closure of an open set B C R™ and with B its boundary.
The boundaries 5upp7 of the supports of all basis functions v € I'* subdivide the
domain 2 into a number of connected so—called cells (or patches). More precisely,
we denote with IT¢ the set of connected components of

2\ |J osuwp~. (1)
NeT*

It satisfies

0= U r and mna’ =0 forall =, €I’
rellt
Note also that the cells are either contained or not contained in the supports of
basis functions,

Vyerfvrem’: rnsuppy#0 = = C suppH.

We further know that for each cell 7 € IT*F! of level £+1 there exists a cell n/ € IT*
of level ¢ such that = C .2

Throughout the text, we shall use the standard univariate and multivariate
tensor—product normalized B—spline basis as case study to illustrate different con-
structions and properties. This will be done in the frame of Examples 1 and 2
consisting of several parts each. For a third example, we refer to [23] where the
hierarchical setting, the truncation procedure and the stability analysis have been
elaborated for Powell-Sabin B-splines with triadic refinement.?

Example 1: univariate B—splines (part 1) Univariate B—splines may be used as
background basis for the hierarchical construction. We consider spline functions of
a certain degree d which are defined by knot sequences T* = (tf)l-=07___7me. These
knot sequences contain non—decreasing real values so that the multiplicities p of
the inner knot values satisfy

0<u(Tht) <d+1.

Here, u(T*,t) denotes the multiplicity of ¢ in T*. Observe that u(T*% t) = 0 if ¢ is
not a knot in 7¢. To guarantee the nested nature of the spline spaces, these knot
sequences are also assumed to be nested,

W(TH ) > (T, 8).

The domain 2 may be chosen as any open real interval. For each level ¢, let I'*
be the restriction of the B-spline basis of degree d to 2, and we denote with V*
the spline space spanned by I'“. For each level ¢, the set of cells IT* consists of all
non—empty knot spans which are contained in 2,

4 0 0 0 4 4 0 4
" = {Jtr, trga]: tg <tr #trp1 <tpo_g, r=0,...,m —1} (2)

We may observe that properties (A1-A5) are satisfied according to the classical
spline theory [2,22].

2 This can be shown as follows. Suppose there does not exist a cell 7’ of level £ such that
7 C «’, then there must be at least one coarse basis function of level £ whose support has a
boundary crossing through 7. This means that the coarse basis function cannot be represented
in terms of finer basis functions of level ¢ + 1 because all finer basis functions have at least
support over the entire cell ™ or no support at all over 7. This is in contradiction with the
assumptions (A1-A5).

3 Note that the truncated hierarchical basis is called quasi-hierarchical basis in [23,24].
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(a) 29D N1 D N2 (b) level 0 (c) level 1 (d) level 2

Fig. 2 An example of a 3-level subdomain hierarchy (a) for tensor—product bivariate splines.
The subdomains 2° (b), 2' (c), and £22 (d) are also shown (solid lines).

Example 2: tensor—product B—splines (part 1) In order to define multivariate
tensor—product spaces, we consider n knot sequences Tf,...,Tf; with the same
properties as T in the above example. Each knot vector Tf defines a B—spline basis
I'f which spans the spline space V. The basis I'* defined as the tensor-product of
I, Iy, ... T spans the tensor—product space VY = V{ @ V4 ®...® V. The domain
2 is the Cartesian product of the domains of the univariate spline spaces. For each
level ¢, the set of cells IT¢ consists of Cartesian products of intervals with respect
to the n dimensions. It is well-known that properties (A1-A5) which characterize
the univariate case are preserved by the tensor—product construction [22].

3 Multilevel spline spaces

In addition to the spaces V* and bases I'* we will consider a sequence of nested
open subdomains

2oton?o...
with 2° C 2, which we will call a subdomain hierarchy. Each o represents the
region selected to be refined at level £. We assume that the closure of each sub-
domain £2° coincides with the closure of a collection of cells w € IT¢ of level £. We
also assume that there exists an integer N such that

N =y.

The value of N represents the depth of the subdomain hierarchy. Thus, for a given
subdomain hierarchy with depth N, only the first N spline spaces V¢ will be used
for constructing the multilevel spline space.

Remark 1 The initial domain {2 has been introduced in order to allow for subdo-
mains 2° that are not just Cartesian products of intervals in the tensor—product
spline case, see, e.g. the domain in Figure 2.

Now, given nested spline spaces V¥ with spline bases I'* and nested subdomains
02°, the construction of a hierarchical basis can be described as follows. We start by
selecting all the basis functions in I"° whose support overlaps 2° and is not entirely
contained in £2'. The spline hierarchy is then completed by adding from each basis
I for £ =1,...,N —1, the subset of basis functions whose support is completely
contained in 2° and overlaps with DY = 0f \ 21, This selection procedure is
summarized in Definition 2, where we modify the usual support definition to

suppO f=suppfn °.
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Definition 2 Given a subdomain hierarchy (Qg)£=0,...,N—17 the hierarchical spline
basis H is recursively generated by the following algorithm.

(1) Initialization: HO = {’y crv: supp0 v # @} .
(II) Recurrence: HAAL = ”Hi{H U ”Hg"l, for£=0,...,N — 2, where

”Hifl = {'y en': suppofy 4 QE'H},
7-[?1 = {'y ertt. supp’~y C QHI} .

(1) H=HN"1.

We say that S = span is the multilevel spline space which is determined by the
subdomain hierarchy (Qz)ezo,...,N—y

Remark 3 In the above definition we construct the hierarchical basis by means of
r‘, ¢=0,...,N —1, which are full spline bases defined over the entire domain (2.
Of course, in a practical setting, it is sufficient to take into account only a selection
of basis functions in I'* that possibly overlap with the subdomain £2°.

Remark 4 The assumptions (A1-A5) on the bases I'* allow us to choose a se-
quence of spaces V! of different degrees, as long as the considered spaces form a
nested sequence. Hence, the hierarchical framework is not only confined to do
adaptive h-refinement, but also p-refinement and k-refinement are possible.

The key properties of the hierarchical basis constructed according to Defini-
tion 2 are summarized by the following proposition.

Proposition 5 By assuming that properties (A1-A5) hold for the bases FE, the hier-
archical basis H possesses the following properties:

(H1) linear independence: ZWG’H cyy=0&cy =0, VyeH;
(H2) non—negativity: ¥y € H, v > 0;
(H3) mnested nature of the spline spaces: spanH’ C span H'T for ¢ =0,...,N — 2.

Since we started by considering non—negative bases FZ, as described in (A3),
the non—negativity (H2) of the hierarchical basis H follows directly by definition.
Properties (H1) and (H3) can be proved by generalizing the corresponding proofs
for bivariate hierarchical B—splines, see Lemmas 2 and 3 in [25].

Next we consider two multilevel spline spaces S = span? and S = span#{
constructed by using the same underlying bases I'* over two different subdomain
hierarchies (QE)Z=O,...,N—1 and ((AZE)Z=O  f_q, With N < N. If the second domain
sequence enlarges the first one, then this property is inherited by the corresponding
multilevel spline spaces.

Proposition 6 If one of two sequences of nested subdomains is obtained by enlarging
the other one while keeping the biggest subdomain, i.e., 2° = 2° and ot c ot for
{=1,...,N—1, then SCS.

Proof We denote with §¢ = spanH’ and $¢ = span#’ the multilevel spaces
spanned by the intermediate hierarchical bases in Definition 2. Thus, S = gN—1

and § = SN-1,
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Clearly, the recurrence (II) in Definition 2 gives 7-[?'1 C H'*'. By combining
this with property (H3) of Proposition 5 we conclude that

span(S‘ UHG™) C (3)
On the other hand, using again the definition of the H‘*t! we obtain

S = span 1 = span(# T UHYG™) Cspan(#f UHET) = span(SEUHGY).

(4)

By combining these two observations we conclude that, for £ =0,..., N — 2,
S = span(S* UHS!),  and similarly ST =span(S‘UHGT).  (5)

When considering two sequences of nested subdomains, the relation Qi C o1
implies that more finer basis functions from I'“*' are included in ”Hg"l than in
”H?‘l, ie.

HE CHG (6)
After observing that H® = #° and $° = $° due to 2° = 2°, we can now prove

S =span(StUnGt) c S =span(S‘UHGY), €=0,...,N-2,

by induction over ¢. In particular, this means that S = SN=1 ¢ §N=1 When
N =N, §VN=1 = §N=1 "and then the proof is complete. If N < N instead, in view
of property (H3), we also have

Stc 8t y=N-1,...,N-2.
Finally, we obtain
S=sN"tcgN-tc.  .csV1=3.
]

The partition of unity property (A4) is not inherited by the hierarchical basis.
A simple way to recover the partition of unity property is by defining a weighted
basis W, by simply applying a suitable scaling to the hierarchical basis functions,
namely

WZ{w:wyy:’yG”H/\lzzveHwyy}.

In view of (A4), we have that 1 € V", and then such a scaling is guaranteed to
exist. However, the weights are not guaranteed to be positive and not even to be
non—zero.

The hierarchical construction of a weighted tensor—product B—spline basis was
discussed in [25]. Additional assumptions about the considered subdomains are
required for defining a suitable normalized hierarchical basis of this kind, in partic-
ular to ensure positivity of the scaling factors wy. The truncated hierarchical basis
— which will be studied in the next section — provides an alternative approach
which does not require us to make any additional assumption on the considered
subdomains.
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level 2 o?
level T ot
level 0 °
(a) knot vectors (b) subdomain hierarchy
(c) B-splines of level 2 (I"2) (d) hierarchical B-splines of level 2 (HNIT'2)
(e) B-splines of level 1 (') (f) hierarchical B-splines of level 1 (HNT'1)
(g) B-splines of level 0 (I"°) (h) hierarchical B-splines of level 0 (HN1"0)

Fig. 3 Univariate hierarchical B—splines of degree 3 considered in Example 1 (part 2). The
knot positions are visualized by vertical dotted lines.

(a) HO

(b) H!

(c) H =H?

Fig. 4 Hierarchical B—splines on 1, 2 and 3 levels defined over the subdomain hierarchy shown
in Figure 3(b) and constructed according to Definition 2.

Example 1: univariate B—splines (part 2) An example of univariate hierarchi-
cal B—splines of degree 3 is illustrated in Figure 3. The 3—level hierarchy is defined
starting by three nested knot vectors with knots of multiplicities 4 at the two
extrema of the intervals and single knots elsewhere. In Figure 4 we show the
hierarchical B-spline bases H°, H! and #? related to the subdomain hierarchy
shown in Figure 3(b). In particular, #° is built on 2° #H' on 2° D @'  and
#2 on 2 D 2! D 2. Note that % N FE, for some level £, is not equal to ”HE,
see Figure 3(h,f,d) versus Figure 4(a,b,c). The validity of properties (H1-H3) in
Proposition 5 for this example can be verified through Figures 3 and 4.
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(a) subdomain hierarchy

(b) knot lines on 20 — from left to right: level 0, 1, 2

(c) subdomains — from left to right: £29, 2%, 22 (solid lines)

Fig. 5 Nested subdomains of Example 2 (part 2) with triple knots along the boundary of £2°
(bold lines) and single knots elsewhere.

Example 2: tensor—product B—splines (part 2) Figure 5 shows an example of
a subdomain hierarchy with triple knots along the boundary of 2° and single
knots elsewhere. Triple knots are also taken along the parts of the boundary of £2*
and 22 coinciding with the one of £2°. Some bi-quadratic hierarchical B-splines
of level 0 and 1 defined on the considered hierarchical configuration are presented
in Figures 6 and 7.
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Fig. 6 Some bi-quadratic hierarchical B-splines of level 0 (in HNI°) considered in Example 2
(part 2).

Fig. 7 Some bi—quadratic hierarchical B-splines of level 1 (in HNI'') considered in Example 2
(part 2).

4 The truncated hierarchical basis

We now propose a strategy to construct a normalized basis for the multilevel spline
space S. The construction is based on the idea of eliminating the contributions of
functions from finer levels in the hierarchy to coarser level ones. Let

f= > &M (7)

~ere+t

be a function f € V¢ expressed in terms of the finer basis I, where c&(f)
denotes the coefficient of f € V¥ with respect to the basis element € I'*.

We decompose the sum in (7) into two parts by separating the contributions
of the basis functions in It whose support is or is not completely contained in
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the finer subdomain 2¢*', namely

f= Y. STy + > S

YEIH1, supp® yC 24+ YE !, supp® vZ 26+1

We define the truncation of f at level £+ 1 as the second sum on the right—hand
side in the above equation, namely

trunc‘t! f = > A ). (8)

YETH1, supp0 yZ Q¢+

At each level ¢, the truncation mechanism removes from the function f the con-
tribution of basis functions in I'“*' which are included in the hierarchical basis.

In combination with a selection procedure analogous to the one introduced
by Definition 2, we can use the truncation operation to reduce the support of
hierarchical basis functions of coarse levels. These observations lead us to the
following definition of truncated hierarchical spline bases.

Definition 7 Given a subdomain hierarchy (.QE)[:07___7N_1, the truncated hierarchi-
cal basis T is recursively generated by the following algorithm.

(1) Initialization: T° = HO°.
(II) Recursive case: T*+! = ’Tﬁ"'l u Té"’_l, fort=0,...,N — 2, where

Tﬁ“ = {truncHlT 7 e T  Asupp’ T € QHI} and Téﬂ = ”H?‘l.

() T=TN"1

The recursive construction of the truncated spline hierarchy can be phrased as
follows.

— First, in view of the nested construction of the spaces, by expressing each basis
function in 7 as a linear combination of the basis functions in ', we truncate
the existing basis functions in 7¢ whose support is not contained in £2¢*1
(these are the basis functions collected in T’ j“). Note that any basis function
in 7% whose support is contained in 21 would be completely truncated, i.e.,
eliminated. These basis functions, however, are not considered since they are
not included in the basis by the selection mechanism described in Definition 7.

— Second, the finer subdomain is covered by the functions in I'*! with support
in 2°F! (these are the basis functions collected in 7, é“).

The bases constructed in [10,23] fit into this general framework of truncated hi-
erarchical bases. In [23] it has been applied to Powell-Sabin B-splines on trian-
gulations, while the truncated hierarchical B-spline basis (THB-spline basis) has
been introduced in the recent paper [10] which considers the multivariate tensor—
product setting.

Remark 8 For a practical construction of the truncated hierarchical basis, we do
not need to consider full spline bases I'* defined over the entire domain 2, see
Remark 3. Moreover, only a small number of basis functions will be truncated
in each step of the definition, so we do not need to subdivide all coarser basis
functions in terms of finer ones. This locality should be exploited in a practical
implementation.
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Let 7 be a truncated hierarchical basis function and let v be the hierarchical
basis function in #* of a certain level ¢ from which 7 has been derived. Observe
that either v is introduced in the hierarchical basis from the very beginning, or
it is selected at the recursive step of a certain level, i.e., v € H" or v € H?l,
respectively. We say that v is the mother of 7, and that 7 is the child of v, namely

vy =mot(r) < 7= trunc" ! (truncN_2 ( . (trunc”l(fy)) . ))

< 1 = child(v).

The level of T is said to be the level of its mother, i.e., lev(r) = £ if mot(7) € I'‘.
For any function v € I' without a child we define child(y) = 0.

Any function 7 in T of level ¢ is derived from the corresponding mother ~
by subtracting the contributions of basis functions defined on finer levels whose
children are included in the truncated hierarchical basis. Consequently, the support
of v — 7 is contained in 2!, and the restrictions of 7 and v to D’ = 2\ /*!
are identical,

Tipe = child(y) |De =7 |De = mot(r) |De . 9)
The non—negativity and linear independence of the basis functions are preserved
by the truncation mechanism, as well as the nested nature of the spline spaces
defined level by level. In addition, the bases H and T span the same space S. We
summarize these observations in the following proposition.

Proposition 9 By assuming the properties (A1-A5) for the bases FZ, the truncated
hierarchical basis T possesses the following properties:

(T1) linear independence: Y _rcrT =0 cr =0, VT €T;

(T2) non—negativity: Y7 € T, T > 0;

(T3) nested nature of the spline spaces: span’TZ C span TH ¢=0,...,N—2;

(T4) the span of T is the multilevel spline space S which is determined by the subdomain
hierarchy, as introduced in Definition 2, i.e. S =spanH = spanT .

Proof In order to prove (T1) we consider a linear combination of 0 in terms of
truncated basis functions and decompose it into the contributions of basis functions
of the same level,

ZCTT: Z crT Z T+ o+ Z cr = 0.

TET TET,lev(T)=0 TET,lev(T)=1 TET,lev(T)=N-—1

(10)
The basis functions collected by the first sum in (10) are the only non—zero func-
tions acting on the region given by DY = 2°\ 2'. In virtue of (9) and of the local
linear independence of the basis I'°, these functions are locally linearly indepen-
dent on DY, and thus the corresponding coefficients ¢, must be zero. Excluding
the functions already considered in this first sum, the basis functions collected by
the second sum are the only non-zero functions which act on D' = 21\ 22. As
before, also the corresponding coefficients ¢ must be zero. Iterating this argument
N times proves (T1).

Due to the two-scale relation (A5), the non—negativity of the basis functions
in (T2) is also preserved by construction. Property (T3) and the equivalence of
the two multilevel spline spaces (T4) can be shown by generalizing Lemma 8 and
Theorem 9 in [10]. O
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(a) hierarchical B—splines on 2 levels (b) THB-splines on 2 levels

(c) hierarchical B—splines on 3 levels (d) THB-splines on 3 levels

Fig. 8 Univariate hierarchical (left) and truncated hierarchical (right) B-splines of degree 3
considered in Example 1 (part 3) with respect to the same subdomain hierarchy as in Figure 3.

In view of property (T4) and Proposition 6, we may conclude that the space
spanned by a truncated hierarchical basis defined over a sequence of subdomains
(Qz)gzo’m’ N_1 is contained in the span of a truncated hierarchical basis defined
over another sequence (f)g) 0=0,...N—1> which is the nested enlargement of the initial
sequence. In the remainder of the paper we study additional properties of truncated
hierarchical bases.

Example 1: univariate B—splines (part 3) Figure 8 presents the truncation mech-
anism applied to the set of hierarchical B—splines depicted in Figure 3. We obtain
the so—called univariate THB-splines, introduced in [10].

Example 2: tensor—product B—splines (part 3) Figures 9 and 10 show the trun-
cated children of the bivariate tensor—product hierarchical B—splines considered in
Figures 6 and 7, respectively. In [10] the use of the bivariate THB-spline model was
compared in the context of data fitting with respect to the classical hierarchical
B—spline construction described in Definition 2.

Remark 10 The truncation mechanism ensures that the corresponding basis func-
tions have the same or smaller support than in the case of the classical hierarchi-
cal basis. Consequently, the overlap between truncated basis functions associated
with different levels is reduced, and it leads to sparser matrices involved in related
approximation problems, see [10]. By considering some restrictions on the config-
uration of the hierarchical sequence of subdomains, we can also derive bounds for
the number of truncated basis functions acting on any point in the domain. This
discussion is deferred to Appendix A.

5 The preservation of coefficients and its consequences

The truncated basis preserves the coefficients of a function which is represented
with respect to one of the bases {Fg}gzo’m’N_l. Lemma 11 and Theorem 12 de-
scribe this property.

Lemma 11 Let T | De be the restriction of a truncated basis function T € T to Df =
QN QY with £ > ev(r), and let

T|DZ = Z C§(7)7|DZ (11)

~Nert
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Fig. 9 Bi—quadratic THB-splines of level 0 considered in Example 2 (part 3) and related to
the mother functions shown in Figure 6.

Fig. 10 Bi-quadratic THB-splines of level 1 considered in Example 2 (part 3) and related to
the mother functions shown in Figure 7.

be its representation with respect to the basis rt. Ify e rt possesses a child in T then
4
ey (1) =0.

Proof This is implied by the truncation operation defined in (8). Indeed, the trun-
cation at level £ removes the contribution of any v € I'* with a child in 7. O

In Theorem 12 we present the main result of this section. Together with the
two consequent corollaries — Corollary 13 and 14 hereinafter — it allows us to
extend the list of properties of the truncated construction. In addition, it plays a
key role in the proof of Theorem 19 in Section 7, where the stability analysis of
the basis is discussed.
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Theorem 12 (Preservation of coefficients) Let f ’ pe be the restriction of a function
festo Df =0t \ Q'Y We consider its representations with respect to I'* and T,

f‘De: Zcé(f)'V‘De:ZdT(f)T‘De- (12)

~yert TET

For each 7 € T with lev(t) = £ there exists v € I'* such that v = mot(r) and the
coefficients of T and 7 in the two representations (12) are identical,

d-(f) = & (). (13)
Proof Since f € S we have f|DZ € V”DZ. Thus, we can represent f|DZ with

respect to both I'¥ and 7, in terms of basis functions whose supports overlap D*
as in (12). The rightmost sum in (12) can be decomposed into

Z dT(f)T |DZ

TET

= Z dT(f)T|DZ+ Z dT(f)T|D2+ Z dT(f)T|DZ'
TET,lev(T)>4 TET, lev(T)={ TET,lev(T)<t

R (i) (i)
The three sums (i-iii) are now analyzed separately.

(i) This sum is empty. Indeed, the definition of the truncated basis implies that
supp®(7) C 2'°V(7) and Q') € 2! consequently supp®(r) N D! = 0.

(ii) For any 7 € T with lev(r) = £, there exists ¥ = mot(r) € I'* so that the
restrictions of v and 7 to D’ coincide, see (9). Consequently, the second sum
can be rewritten as

Z de(F)7 | pe = Z danitray (Y | e - (14)
TET,lev(T)=¢ ~y€eI, child(vy)eT

(iii) In view of the truncation process, we will prove that truncated basis functions
introduced at levels less than ¢ in the hierarchy can only contribute in terms
of basis functions of I" that have no child in 7. Indeed, we can rewrite the
corresponding truncated basis functions 7 in terms of the basis FE,

Y e Brlpe= Y. A > (™| pe

TET, lev(T)<L TET, lev(T)<{ yET?, child(y)ET

Ly > AT pe | - (15)

yEI, child(y)&T

According to Lemma 11 the coefficients cl;(T) for all v € I'* with child(y) € T
vanish, hence we may omit the first term in the brackets. After swapping the
order of summations we arrive at

Yoo dDTlpe= Y Y D) | e

TET,lev(T)<t yeIt, child(y)gT \TE€T,lev(T)<¥

= d5(f)

(16)
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In order to complete the proof we use the results from (i-ii), in particular the
relations in equations (14)—(16), and compare with the representation of f | pe i

(12),
f‘De = Z Cg(f)'V‘De = ZdT(f)T|De

yert TET

- Z d (f)y | pe + Z denita(y) ()Y | pe

~yET, child(v) €T ~yeI?, child(y)eT

where dé( f) is defined in (16). Comparing the coefficient with respect to any v € I'*
satisfying v = mot(r) for some 7 € T, which is equivalent to 7 = child(y) € T,
implies (13). O

This theorem implies that truncated hierarchical basis functions form a parti-
tion of unity, and that they inherit the Greville points from their mothers. This is
detailed in the next two corollaries.

Corollary 13 By assuming the properties (A1-A5) for the bases FE, the truncated
hierarchical basis T possesses the following property:
(T5) the truncated hierarchical basis T forms a convex partition of unity on £2°.

Proof By assumption (A4), we can represent the function f =1 on £2° as the sum
of all basis functions in I'*,

1= Y &y al)=1, (17)
yert
for each £ =0,..., N — 1. Since V° |m C spanT‘QO, this function on £2° can also
be represented in terms of the truncated basis T,
1= Z dT(l)T, (18)
TET

with certain coefficients d-(1). Consider an arbitrary but fixed 7 € 7 and let
¢ =1ev(7). The two representations (17) and (18) are also valid when restricted to

DY =0\ 't C o°.
Since 7 has a mother v = mot(7) € I'*, Theorem 12 implies that
14
dr(1) =y (1) = 1.
Finally, the non—negativity (see property (T2) of Proposition 9) gives the convex

partition of unity. m]
Let P1 be the space of n—variate linear polynomials, and let z, k = 1,...,n,
be the linear monomials of P1. Assuming that P; is a subspace of the spline space
V¥, then the corresponding Greville points gg = (gé,l, ey gém) are defined as the

coefficients in the spline representations of the linear monomials [11,20], i.e.,

¢
T = Z gy,k% kzla"'ana (19)
~yert

or, equivalently, gé, B = cg(:r & ). It is then possible to define control polygons/control
nets for spline functions, by considering coefficients in R™*! defined in terms of
the Greville points.
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level 2
F e 0000
level T
level 0
60— o 6 o o 00
(a) Greville points of underlying B—splines (b) Greville points of THB-splines

Fig. 11 Greville points of THB—splines of degree 3 defined over the subdomain hierarchy
shown in Figure 3, see Example 1 (part 4).

° ° °
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° ° °
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Fig. 12 Greville points of bi—quadratic THB—splines defined over the subdomain hierarchy
shown in Figure 5, see Example 2 (part 4).

Corollary 14 If the coarsest space VO contains the space of linear polynomials P,
then Greuville points can be associated with each basis I ¢ and with the truncated hier-
archical basis. We have the following simple relation between the Greville points:

(T6) the Greville point of each basis function in T coincides with the one of its mother,

_ lev(7)
gr = grnot(‘r)'

Proof Since V° oo ©spanT |, the considered polynomials in (19) can be repre-
sented in terms of the truncated basis 7. In virtue of Theorem 12, we can proceed
as in the proof of Corollary 13 to show that the original coefficients in (19) are
preserved by the truncation mechanism. O

Example 1: univariate B—splines (part 4) The Greville points of the
THB-splines of degree 3 reported in Figure 8(d) are shown in Figure 11.

Example 2: tensor—product B—splines (part 4) The Greville points of the bi—
quadratic THB—splines defined over the subdomain hierarchy introduced in Fig-
ure 5 are shown in Figure 12. Figure 13 relates the Greville points of truncated
hierarchical B—splines to the ones of their mothers.

6 Locally stable bases

Before analyzing the stability of a hierarchical basis, we first introduce the concept
of a locally stable basis.
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(¢) Greville points of THB-splines — from left to right: level 0, 1, 2

Fig. 13 Greville points of bi—quadratic THB—splines defined over the subdomain hierarchy

shown in Figure 5, see Example 2 (part 4).

Definition 15 Consider an n—variate spline function

which is represented in a certain basis I' satisfying (A1-A2). We denote by Cx a vector

@) =" er(Hr(u),

yel'

u=(u1,...,un) € 2,

of coefficients cy corresponding to all basis functions v € I' satisfying suppy 2 w. The
basis I' is said to be locally stable if there exist two constants ko and k1 such that the

inequalities

kol Crll < Ifllx < kal|Cr |l

(20)
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are satisfied for any vector of coefficients Cr and for any cell m € II related to the
basis I'.

Note that (20) involves two norms: one for functions (applied to f) and one for
vectors (applied to Cr). For simplicity we use the same symbol for both norms,
which should be of the same type. In particular, we consider the Loo (supremum)
norm for functions and the maximum norm for vectors,

ICII=1ICllco = max|c|, and [Ifllx = [lfllco,x = max|f(u)|
Besides (A1-A5) introduced in Section 2, we introduce an additional assump-
tion on the bases I' used in the hierarchical setting:

(A6) the bases I'* are assumed to be locally stable on the cells 7 € m‘,¢=0,... N—
1, in terms of stability constants which are independent of the level £.

We will use this assumption later on to prove strong stability of the truncated
basis. More precisely, there exists a constant K such that

Y4 Y4
IS < KLY Elloo,r (21)
~yert

holds for all levels ¢, for all cells € IT¢ and for any basis function ~ in I'* satisfying
supp’ v D 7. Note that the upper bound

/ 4 0
1Y Elloo,r < max{|cy| : supp”y 2 7}
~yert

follows directly from the convex partition of unity (A3—A4) of the basis 7,

Example 1: univariate B—splines (part 5) Unlike properties (A1-A5), property
(A6) — local stability — for the univariate B-spline case needs to be discussed
in more detail. This discussion is deferred to Appendix B. We present here the
related result. If there exists a positive constant T' so that

4 4

t —1

r+d r—d+1 S T, (22)
t[ _ t[
r+1 T

holds for all non—empty knot spans ]¢%, t£+1[€ IT* and for £ =0,...,N —1, then all
B-spline bases I' of degree d satisfy assumption (A6). Inequality (22) is trivially
satisfied when using uniform knot sequences, see for instance Figure 3.

Remark 16 As mentioned in Remark 4, B-spline bases I'* with different degrees
d* could be chosen at different levels ¢ in the hierarchical framework. However, we
need to choose all these degrees carefully, in order to ensure that there exists a
constant K in (21) which does not depend on the number of levels. This require-
ment is satisfied when all the degrees can be bounded from above by a constant
independent of the number of levels.

We now consider the tensor—product of two spline spaces in a hierarchical
construction, and we will show that the properties (A1-A6) are preserved for such
tensor—product spaces.
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Lemma 17 Consider two hierarchies of nested spline spaces V¢ and VE, (=0,...,N—
1, with domains 2 C R™ and 2 C R™. If both hierarchies of spaces satisfy the assump-
tions (A1-A6), then so does the hierarchy of tensor—product spaces Vvt VY with the
domain 2 x (2.

Proof The proof of (A1-A5) is obvious. In order to prove (A6), we consider the
restriction of a tensor—product function f to a cell w x 7, where 7 € IT* and # € II¥,

Flaa = Z Z O ] (23)

NeTt 5et
Since I'* satisfies (A6), there exists a constant K such that

el S KIS ey alloo = KIS €43 lloorn (24)
yert yert

holds for each ~ satisfying supp~y 2 7. Similarly, since I'* satisfies (A6), there
exists a constant K such that

1Y ey Y I<E DY | D 5 7(0) | Alloo, (25)

yert selt \vert

holds for each 4 satsfying suppy D 7 and for all u € m. Combining these two
bounds gives

leasl S KNS ens v loom < KRN SS Y egs vlloc,slloo
yert YErt 5l

< KKH Z Z C'y’y'V'AVHoo,Trxﬁ-a

yeIt 5ere
for all products v¥ satisfying suppyy 2 7 X 7. m

Example 2: tensor—product B—splines (part 5) Consider a set of univariate B—
spline spaces satisfying (A1-A6). According to Lemma 17, these properties are
inherited by their tensor—product spaces.

7 Strong stability of truncated hierarchical bases

We will now extend the notions of weakly and strongly stable wavelet bases, which
were introduced in the context of multiresolution analysis (see, e.g., [5]), to our
setting. Note that the multilevel spline spaces depend on the number of levels, but
also on the choice of the subdomain hierarchy. This is different from the case of
stability of wavelet expansions, which depend solely on the number of levels.

Consequently, weak and strong stability is a property which is shared by the
bases of all multilevel spline spaces that can be generated from a given sequence
of spaces V* with domain £ by specifying different subdomain hierarchies. This
means that the weak and strong stability is not just a property of a specific basis,
but it has to be considered as a property of a construction which generates a
basis for the adaptively refined multilevel spline space S from a given subdomain
hierarchy.
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Definition 18 Consider an n—variate spline function

f(u):ZC’Y(f)'V(u% u:(ul,...,un)eﬂo,

yeB

which is represented in a certain basis B € {H,T,...} of the multilevel space S =
span?# =span7.

A construction of a basis for the multilevel spline space S is said to be strongly
stable if there ezist two constants ko and ki such that the inequalities

kollCll < Ifllao < Ba[|C] (26)

are satisfied for any vector of coefficients C' = (Oy)we B related to the hierarchical basis
B and for any subdomain hierarchy (Qz)ezo,...,N—y

It is said to be weakly stable if there exist two polynomials ko(N) and k1(N) such
that the inequalities (26) are satisfied for any vector of coefficients C = (cy)yen related
to the hierarchical basis B defined on any subdomain hierarchy (Q£)€=0,1,~-,N—1’ where
N is the depth of the subdomain hierarchy.

In other words, the two constants (or polynomials) ko and ki, which identify
strong (or weak) stability in the above definition, are not just related to a particular
basis, but to all the hierarchical bases that can be obtained according to the given
construction by specifying different possible subdomain hierarchies.

Note again that (26) involves two norms. In particular, we consider the Lo
norm for functions and the maximum norm for vectors.

In the case of B—spline spaces, Kraft [15] showed that the construction of H
described in Definition 2 is weakly stable, provided that the nested subdomains
o* satisfy certain conditions. In addition, he provided a bi—quadratic counterex-
ample with respect to dyadic refinement (see Figure 15(a)) for strong stability of
‘H showing that k1 in (26) has to depend at least linearly on the number of hier-
archical levels. Appendix B presents an example which generalizes this argument
to multivariate tensor—product B—splines of any degree.

For analyzing the stability properties of the truncated hierarchical basis, we
need a mild assumption regarding the domain configuration:

(D) the closure of the subdomain 2! C 2¢ coincides with the closure of a col-
lection of cells w € IT¢ of level ¢ for £ = 0,...,N — 1, and the closure of £2°
coincides with the closure of a collection of cells 7w € IT°.

Note that, for hierarchical tensor—product B—splines, this condition on the domain
configuration is much milder than the domain restrictions considered in [15].

By using again the preservation of coefficients, we are able to prove strong
stability of truncated hierarchical bases. In the specific case of uniform hierarchical
Powell-Sabin B—splines, it has been shown already that the truncation procedure
leads to a strongly stable basis with respect to the supremum norm, see [23].

Theorem 19 By assuming the properties (A1-A6) and (D) for the bases I'*, the trun-
cated hierarchical basis T possesses the following property:

(T7) the construction of the truncated hierarchical basis is strongly stable with respect to
the supremum norm.
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Proof The stability estimate (26) needed to prove stability of the truncated basis
T with respect to the considered norms can be rewritten as

ko max |dr| < max |f(u)| < k1 max|dr| (27)

where dr = d(f) is the coefficient of f with respect to 7 € 7. We have to prove
that there exist constants kg and k; that are independent of the number of levels
N. Since the truncated hierarchical basis satisfies the convex partition of unity
property, the inequality on the right in (27) holds with k1 = 1. The proof of the
inequality on the left in (27) is more subtle.

Consider an arbitrary but fixed basis function 7* € 7T introduced at level
¢ =lev(7*) and truncated, if needed, at subsequent levels. Since 7* belongs to the
truncated hierarchical basis, and due to assumption (D), at least one cell = € IT*
satisfying m C 02°\ 2¢*! is necessarily part of the support of 7*. The restriction of
f to this cell, indicated as f |7r’ can be represented both in terms of basis functions

of I'* and of the truncated hierarchical basis,

f‘ﬂ': Z cl;(f)7|ﬂ: ZdT(f)T|7T'

~yerlt TET

By Theorem 12 we know that d.«(f) = cfnot(T*)(f). In addition, assumption (A6)
implies
¢
ldr ()] = lemot(r)| < Kl flloo,r < K| f oo, 20

Applying this to all 7 € T and choosing kg = 1/K completes the proof of (27). O

Example 1: univariate B—splines (part 6) In virtue of the analysis in the pre-
vious section, when the knot vectors satisfy (22), for ¢ = 0,..., N — 1, univari-
ate truncated hierarchical B—spline bases obtained for any choice of subdomains
2°, ..., 2N~ respecting (D) satisfy the hypothesis of Theorem 19. Consequently,
they are strongly stable with respect to the Loo norm.

Example 2: tensor—product B—splines (part 6) In virtue of Lemma 17, the sta-
bility result related to the univariate B—spline case can be generalized to the mul-
tivariate tensor—product setting as follows. Consider a set of univariate B—spline
spaces satisfying (A1-A6). According to Lemma 17, these properties are inher-
ited by their tensor—product spaces. Strong stability of the THB—splines is then
implied by Theorem 19. Hence, the truncated hierarchical bases for sequences of
nested multivariate tensor—product spline spaces of multi-degree d = (du,...,dn)
with associated nested subdomains £2° C R™ are strongly stable, provided that the
subdomain hierarchies satisfy assumption (D) and the knot vectors satisfy (22).

8 Closure

The construction and analysis of suitable hierarchical bases has been presented
for a class of multilevel spline spaces, which enable a local mesh refinement in
an effective and easy way. It has been shown that truncated hierarchical bases
have many interesting properties, see properties (T1-T7). In particular, truncated
splines are non—negative, they span nested spaces, they preserve the coefficients of
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a function represented in terms of the underlying basis (in particular the Greville
points), they form a convex partition of unity, and they are strongly stable with
respect to the supremum norm. Consequently, the truncation framework seems
to be a promising adaptive approximation tool, in terms of its relatively simple
construction and the properties of the spline hierarchy it defines.

The presented hierarchical framework can be applied to a wide range of spline
spaces, as long as they possess the properties (A1-A5). We have illustrated the
truncation procedure and its properties in the context of univariate and multivari-
ate tensor—product B—splines. Other spaces of interest that satisfy these proper-
ties are NURBS [19], many generalized B—splines [4], type—I box splines [16], and
Powell-Sabin B-splines with triadic refinement [23].

A Restricted hierarchies

The purpose of this section is to identify the advantage of the smaller supports which charac-
terize the truncated basis compared to the classical hierarchical basis. The enhanced locality in
the truncation framework could be suitably exploited in many applications. For example, the
number of basis functions which have some influence on a single mesh element has to be taken
into account in the characterization of the matrices involved in related approximation prob-
lems. For truncated hierarchical bases there exist domain configurations for which it is possible
to bound the number of basis functions acting on any given point. In particular, by considering
a specific class of restricted hierarchies, we prove that only truncated basis functions of at most
two levels are different from zero on each point in the domain. On the other hand, we also
provide a counterexample to show that this property is not true for classical hierarchical bases,
which may have all levels involved also for this kind of domain configurations.

Similarly to the definition in Kraft’s thesis [15] with respect to the B—spline case, we now
additionally consider the auxiliary subdomains

wEZ{pGQE|V’yGFAstuppy:}supp’yg_Qe},

for £=0,..., N —1. By taking into account the effect of the truncation mechanism introduced
in Section 4, we can prove the following result.

Proposition 20 If L C Wt for£=0,...,N—2, then for any point p in 2° the elements
in the truncated basis which take non—zero values at p belong to at most two different levels.

Proof We first note that any point p belongs to 2V—1 or D¢ = 2¢ \ 24+1 for a certain value of
the level ¢, and that w’ represents the biggest subset of ¢ such that ’H% spans the restriction
of V¢ to w’. For any 7 € T with lev() = £ — 1, the function trunc’ 7 defined by (8) is a linear
combination of basis functions v € I'¥ so that supp®y Nw? = @. Hence, any truncated basis
function 7 of level £ — 1 has its support entirely on ne-1 \we, and

supp? (trunc’r) Nw’ = 0.

If Q1 C Wt for £ =1,...,N —2, then also supp® (trunc’ 7) N 2¢+1 = (). This means that the
truncated child of a basis function introduced at level £ — 1 will be non—zero on 2¢=1\ 2¢+1,
In other words, only the supports of truncated basis functions of level £ — 1 and ¢ will contain
cells that belong to Dt = 0t \ L for £ =1,...,N — 2. Similarly, only the supports of
truncated basis functions of level N —2 and N — 1 contain cells that belong to 2N —1\ wN—1,
and only truncated basis functions of level N — 1 contain cells inside w™ ~1. m}

If the hierarchical configuration of the subdomains satisfies the hypothesis of Proposi-
tion 20, then the number of truncated basis functions acting on any given point of the domain
is bounded.
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(b) d=2

Fig. 14 Counterexample for Proposition 20 in the case of hierarchical B—splines in Remark 21.

Example 1 and 2: univariate and tensor—product B—splines (part 7) For univariate
and multivariate tensor-product B-splines of degree d/multi-degree d = (d1,...,dy), when
the hypothesis of Proposition 20 is satisfied, the number of truncated basis functions which
are non—zero on each cell of any level is then at most

n
2(d+1) and 2]][(di+1),
=1

respectively. These values do not depend on the number of levels.

Remark 21 The result presented in Proposition 20 does not hold for hierarchical B—spline
bases constructed according to Definition 2. Let us consider for example the following univari-
ate configuration:
— an nitial interval composed of 2d + 2 uniformly spaced single knots (2d + 1 knot spans);
— at each refinement step only the central subinterval is subdivided in 2d + 1 uniform parts.
Figure 14 shows the case d = 1,2 after two refinement steps. At the midpoint of the initial
interval all the hierarchical B—splines from level 1 to N — 1 are non—zero.
On the other hand, the hypothesis in Proposition 20 is satisfied for this mesh configuration,
so only THB-basis functions from at most two different levels will be non—zero at each point.

B Proof of (A6) for univariate B—splines

Lemma 22 We assume that there exists a positive constant T' so that (22) holds for all non-
empty knot spans ]t‘rz7 t£+1[ e 11t and for £=0,...,N —1. Then all univariate B—spline bases
I't of degree d satisfy assumption (A6).

Proof We consider the restriction of a spline function f € V¢ to a non—empty knot span
m =la, bl € IT? with a = tf, b= t2+1. It can be represented both in the B—spline basis and in

T
the Bernstein basis with respect to this knot interval,

r+1 d
fwy= > cvi(u) = kbj(u), uem (28)
i=r—d-+1 7=0

|
(BB)
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In the first representation, each basis function is a B—spline v; with knots tf_l, - ,tf T For
the second one, we use the Bernstein polynomials of degree d on ,

woo=() (5=2) (=) @

The coefficients ¢; of the B-splines can be obtained by evaluating the blossom (or polar form)
F of f via

oy =L o i W b i=r—d+1,...,r+1, (30)

7
see, e.g., [21]. The blossom F is obtained from the Bernstein-Bézier representation (BB) in
(28) by replacing the Bernstein polynomials b; with their blossoms

Bj(ul,...,ud):mz ﬁ(%;“) ﬁ (%) (31)

‘oeX i=1 i=j+1

where X denotes the set of all permutations of {1,...,d}. Due to assumption (22), for all

arguments uj, ... uq satisfying tf—d+1 <wu; < tf+d, the value of Bj(u1,...,uq) is bounded by

(‘;) T4. Consequently, the B—spline coefficients in (30) satisfy

d

lei| < (d+1)(,)Td max bl,  i=r—d+l..r+l (32)
J 3=0,...,

Due to the stability of the Bernstein basis* on 7 there exists another constant K’ which

depends only on the degree d such that

bl < K'l|flloo,x,  3=0,...,d. (33)
Combining the two inequalities (32)—(33) gives (A6) with K = (d + 1)(‘;)TdK’. O

For instance, if uniform knot vectors are used at all levels, then condition (22) is satisfied
with T'= 2d — 1.

In view of Theorem 19, when the hypotheses of Lemma 22 are satisfied, it follows that
the truncated hierarchical B-splines obtained for any choice of subdomains £2°,...,0N-1
respecting (D) are strongly stable with respect to the Loo norm.

C A counterexample for strong stability of the hierarchical basis for
multivariate tensor—product B—splines of any degree

Let V¢, ¢ = 0,...,N — 1, be the n—variate tensor—product spline spaces of multi—-degree
d = (di,...,dn) with d; > 1 defined on a grid spanned by uniformly spaced knot sequences in
each direction where the knot interval is equal to 27¢. We choose the sequence of nested open

subdomains as
— dl — d1
o =[] e (men- [5)]
} 5 1+ 2

R R

Two sequences of this kind are shown in Figure 15. On each level ¢, there is just one B—spline
’ylZ € V* whose support is completely in the finer subdomain 2¢+1 (see again Figure 15).
Hence, this B—spline will be eliminated from the hierarchical B—spline basis and replaced by
finer ones. Let 0 < go < 1 be the value of this B-spline evaluated at the origin 0 = (0,0...,0),
ie.,

g0 =(0). (34)

4 The stability of the univariate Bernstein basis was analyzed in [8]. Specific bounds for K’
in the case of univariate and multivariate triangular Bernstein bases were provided in [17].



Strongly stable bases for adaptively refined multilevel spline spaces 27

(a) (d1,d2) =(2,2) (b) (d1,d2) = (3,2)

Fig. 15 Counterexamples for strong stability of hierarchical B—splines.

Note that this value is independent of the choice of 2.
We now consider the spline function defined on £2¢ represented in the hierarchical basis H
with all coefficients equal to one,

f) =S e v, ey =1

YEH

We may observe that the sequence of subdomains considered here ensures that at each level
¢, all the B-splines of that level acting on the origin (except the one that is removed) are
included in the hierarchical basis. By evaluating the spline f at the origin and taking (34) into
account, we get

N-—-1
£0) = 3 (1 =4(0)) + 7N 1(0) = N(1 — go) + g0-
£=0

Hence,
[1flloo, 20 = N(L = go) + go = (N(1 — go) + go) max ley -

We conclude that the value of kq in (26) has to grow at least linearly with the number of levels
in the hierarchy. For instance one can consider k1 = N.
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