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Abstract

A spline space suitable for Isogeometric Analysis (IgA) on multi-patch domains is pre-
sented. Our construction is motivated by emerging requirements in isogeometric simu-
lations. In particular, IgA spaces should allow for adaptive mesh refinement and they
should guarantee the optimal smoothness of the discretized solution, even across interfaces
of adjacent patches.

Given a domain manifold M consisting of individual patches (isomorphic to the unit
square or cube) that are glued together along interfaces, we present a construction of
multi-patch B-splines defined on them. Their smoothness is enhanced by modifying or
merging locally basis functions around the boundary of each patch. The resulting multi-
patch B-splines with enhanced smoothness (MPBES) possess the property of local linear
independence and form a nonnegative partition of unity. Moreover, their span can be char-
acterized as the linear space of all piecewise polynomial functions on the domain manifold
that possess certain smoothness properties.

Subsequently, adaptively refined MBRES are obtained by generalizing the construction
of truncated hierarchical (TH) B-splines. More precisely, a nested sequence of spaces
spanned by MPBES is considered, corresponding to steps of local enrichment. In addition,
an inversely nested sequence of subdomains (which are submanifolds of M) is used to
specify the local refinement level of functions in these spaces. Finally, truncated hierarchical
MPBES are obtained by means of the selection and truncation mechanism of THB-splines.
The desired properties of linear independence and convex partition of unity are maintained.

The paper presents several numerical examples which demonstrate potential applica-
tions of the new basis in isogeometric analysis.

Keywords: isogeometric analysis, multipatch domains, adaptively refined multilevel splines

1. Introduction

The promising concept of Isogeometric Analysis (IgA) is based on the use of multivariate
spline functions for representing simultaneously the geometry of a physical domain and
the unknown quantities that are to be computed by a numerical simulation [7]. On the
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one hand, this facilitates the exchange of data between software tools used for geometric
design and numerical simulation (analysis), since both processes are based on the same
mathematical technology. On the other hand, it has been observed that the increased
smoothness of the spline functions has a beneficial effect on the accuracy and robustness
of the analysis.

Multivariate spline functions can be obtained efficiently by invoking tensor-product
constructions, and they are therefore straightforwardly defined on domains that are high-
dimensional boxes. However, such domains are not suitable for the representation of more
complex geometric shapes and the functions defined on them. One may distinguish between
two main approaches to address this problem.

The first one uses several patches to represent the computational domain, which are
coupled across the interfaces. Several possibilities for coupling the functions exist. These
include the use of mortar methods, FETI-type techniques, Nitsche’s method, and the
discontinuous Galerkin method [5, 13, 16, 18].

The second approach is based on a single global parameterization of the physical domain.
This is the case when using T-splines with extraordinary vertices (EVs) where special basis
functions have to be used in their vicinity [22]. Isogeometric Analysis based on subdivision
splines also falls into this category. Again, the presence of EVs enforces the use of particular
basis functions, which are typically piecewise polynomial functions consisting of an infinite
number of polynomial segments [6, 26, 28]. It should be noted that the most important
subdivision schemes generate relatively simple basis functions (box splines) consisting of
a few polynomial pieces in the vicinity of regular (i.e., non-extraordinary) vertices. The
use of special basis functions may cause difficulties concerning numerical quadrature or a
reduction of the approximation power in the vicinity of EVs.

The interesting concept of spline forests [23] can be seen as a blend between the two main
approaches. The domain is represented by several patches, but the basis functions along
the interfaces are identified to create globally continuous (C0-smooth) basis functions.

Besides the need to deal with domains of general shape, another challenge in IgA is
the issue of adaptive refinement, since this is not trivially supported by tensor-product
constructions. Here, two major approaches can be identified.

Firstly, the use of T-splines naturally provides the possibility of adaptive refinement
[1, 9] though it is necessary to impose restrictions on the mesh to maintain desirable
properties such as linear independence [2, 19], which entail certain complications with the
refinement algorithm. It should also be noted that the refinability of the special functions
at EVs has not yet been investigated.

Secondly, the classical technology of hierarchical B-splines [10, 17] has been employed
for IgA and is enriched with new constructions and results [11, 12, 21, 24]. In addition
to these two main approaches, there also exist other constructions such as LR-splines or
PHT-splines [14, 25].

In our present work we shall extend the hierarchical space construction to general
topologies by proper gluing of interfaces. However, our results extend naturally to more
general spaces of functions, such as subdivision splines or box splines, and also to more
general domains, which are topological manifolds [26, 27, 28].

Our construction, which is inspired by the concept of spline forests, uses a global
approach to generate a B-spline basis on multi-patch domains that possesses increased
smoothness across interfaces (MPBES). More precisely, we are able to guarantee maximal
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smoothness in the interior of the patches and in the kernel of the interfaces, which is the
region that is sufficiently far away from vertices and edges in the two- and three-dimensional
case, respectively. The use of standard B-splines guarantees optimal approximation power
and makes it possible to rely on standard methods for numerical quadrature.

We use recent results from the theory of LR splines [4] to prove the desired properties
of local linear independence and partition of unity. Moreover we characterize the span of
the MPBES by the smoothness properties of the piecewise polynomial functions contained
in it. As a benefit of the local linear independence, we can then invoke the framework
of truncated hierarchical generating systems [27] which produces a truncated hierarchical
B-spline basis for the space of adaptively refined spline functions on multi-patch domains.

The paper is organized as follows. The concept of domain manifolds and the definition
of smooth functions defined on it are recalled in Section 2. The B-splines with enhanced
smoothness on multi-patch domains (MPBES) are introduced in the next section, which
also studies their properties. Based on these results we use the hierarchical approach and
combine it with the truncation procedure to obtain a basis for adaptively refined spline
spaces on multi-patch domains in Section 4. Numerical examples illustrate the construction
and the properties of MPBES and their hierarchical generalization. Finally we conclude
this paper and provide a comparison to spline forests.

2. Domain Manifolds

More complicated domains in IgA cannot be represented by a single geometry mapping,
but a collection of several such mappings is required. This is in accordance to the design
process, that typically results in a large collection of patches describing a geometric object.
We recall the concept of a domain manifold (cf. [28]) which is used throughout the paper
in order to describe a multi-patch structure.

More precisely, the domain manifold – which may or may not possess a boundary –
consists of patches (topological quadrilaterals or cubes) that are joined across interfaces.
Each patch is represented by a parameterization, whose local domain is the n-dimensional
unit cube U = [0, 1]n. We denote with with U◦ = (0, 1)n and ∂U = U \ U◦ the interior
and the boundary of the cube. In addition, the set of all points of U with one of their
coordinates set to 1 or 0 is called a face of U .

In order to identify the individual patches that form the domain manifold, we introduce
a finite index set P ⊂ Z+. We use it to define the pre-manifold U ×P, which is the union
of all patches U × {p}, p ∈ P.

The adjacency between the patches is defined by identifying faces, as follows. We
consider a set of interface indices D ⊆ P × P. For each pair (p, p′) ∈ D we identify a
face of the patches with indices p and p′. We assume that p 6= p′. The faces are selected
by specifying an displacement. More precisely, for each (p, p′) ∈ D we have an associated
displacement δp

′

p : Rn → Rn. These displacements are isometries, that map one face of U to

another face, while the remaining points of U are mapped outside of U . Thus, δp
′

p (U) ∩ U
is a face.

For dimension n = 2, there are 32 possible displacements, given by a composition of
a translation, a rotation and a reflection. The translations put the domain north, south,
west or east of the reference domain, where it can be rotated and reflected. Figure 1 shows
an instance of a displacement δ, which is a combination of a translation to the east and a
rotation by π.
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Figure 1: Displacement of a patch p, n = 2.

For dimension n = 3, there are 288 possible displacements.
Two requirements have to be satisfied by the interface indices and associated displace-

ments. The first requirement (i) ensures that the neighborhood relation is symmetric and
possesses compatible displacements. Thus if one patch is a neighbor of another patch, also
this other patch is a neighbor of the first patch across the same interface. The second
requirement (ii) ensures that every face is identified with at most one other face:

(i) (p, p′) ∈ D ⇒ (p′, p) ∈ D and δp
′

p = (δpp′)
−1

(ii) δp
′

p (U) ∩ U = δp
′′

p (U) ∩ U ⇒ p′ = p′′

The interface indices and associated displacements specify the neighbor relation ≃ on
the pre-manifold U × P. Two points (x, p) and (x′, p′), which belong to two different
patches, are identified if (p, p′) is an interface index and the associated displacement maps
x to x′:

(x, p) ≃ (x′, p′) ⇔ ∃(p, p′) ∈ D : x′ = δp
′

p (x).

Clearly, this is only possible if both x and x′ are located on the boundary of U .
The extended neighbor relation ≃̂ is the transitive, reflexive closure of ≃. Note that the

symmetry is preserved by the closure. Using the fact that ≃̂ is an equivalence relation we
define the domain manifold M as the set of equivalence classes,

M = (U × P)/≃̂.

The elements m ∈ M are sets of the form m = {(x, p), (x′, p′), . . . } that possess finitely
many elements. It may happen that some faces of patches are not identified with another
face. In this case, the domain manifold M is a manifold with a boundary.

Note that p 6= p′ for any two elements (x, p) and (x′, p′) in m ∈ M. The points in
U◦ are the only elements in their equivalence class, whereas the points in the interior of
the faces generate equivalence classes consisting of two elements, see Fig. 2. Equivalence
classes with more than two elements can be present also. In the two-dimensional case
(n = 2), the number of elements in the equivalence classes of an (inner) corner point of U
is equal to its valence.

For later reference we recall the notion of a function on a manifold. A function f :
U × P → R on the pre-manifold is a function on M if it takes the same values for
equivalent points. Consequently, f has local representations fp, p ∈ P, satisfying

f : U × P → R : (x, p) 7→ fp(x)
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≃̂
(x, p) ∈ U × P

Figure 2: Instances of equivalence classes with 1-3 elements, n = 2.

and
(x, p) ≃̂ (x′, p′) ⇒ f(x, p) = f(x′, p′).

Moreover, a function f on M is continuous if

• ∀p ∈ P : fp |U◦∈ C(U◦), so fp is continuous on each patch, p ∈ P, and

• the functions fp, which are defined on U , continuously extend the restrictions fp |U◦ .

Likewise we also define the notion of higher order smoothness of a continuous function
f at certain points (x, p) in the interior of the manifold M. We do so by considering two
cases, depending on the location of the point x:

• If x ∈ U◦ is contained in the interior of a patch we use the standard definition,

f is Ck-smooth at (x, p) ⇔ ∃ǫ : fp |Nǫ(x)∈ Ck(Nǫ(x)),

where Nǫ(x) denotes the ǫ-neighborhood of the point x ∈ Rn.

• Assume that x is located on the boundary ∂U but is contained in the interior of a
face, where this face is an interface with another patch with index p′. We define the
function f̂ as the combination of fp and δp

′

p ◦fp′, considered on the domain U∪δp
′

p (U).
Its smoothness determines the smoothness of f at (x, p),

f is Ck-smooth at (x, p) ⇔ ∃ǫ : f̂ |Nǫ(x)∈ Ck(Nǫ(x)).

It is possible to define higher order smoothness at regular (non extra-ordinary) edges (for
n = 3) and vertices (for n = 2, 3) as well, where the regularity is identified by their valence.

3. Multi-patch B-splines with enhanced smoothness

We define a B-spline basis on the individual patches and then “glue” them together to
obtain a global set of basis functions, which are defined on the entire domain manifold.
Numerical examples illustrate the properties of this basis.
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3.1. B-splines on single patches

In order to define the B-splines on each patch we construct an appropriate LR-mesh,
see [3] for more information. Essentially, such a mesh is a partition Π of a domain into
boxes and a function µ, which specifies the knot multiplicity across the interfaces of these
boxes. The domain is an axis-aligned box U+ in Rn obtained by suitably enlarging the
unit cube U .

More precisely, we construct an LR-spline space on the extended local domain U+ ⊂ Rn

which will then be restricted to U . First we chose a degree d. To control the dimension of
the space, we specify the number of knot-spans in the interval [0, 1] in each dimension to
be ℓ ∈ N. Then we denote the density to be h = 1

ℓ
. For each choice of d and ℓ we consider

the extended domain U+ = [−hd, 1 + hd]n.
We introduce a partition of the interval [−hd, 1 + hd] into knot spans,

Y = {[hk, h(k + 1)] : k = −d, . . . , ℓ+ d− 1}.

Each knot hj, j = −d, . . . , l + d, is contained in two knot spans. The boundary knots
belong to one knot span only. We then define the partition Π of the whole domain U+ =
[−hd, 1 + hd]n into boxes:

Π = {y1 × · · · × yn : yi ∈ Y }.
These boxes define the set of all interfaces Γ,

Γ = {b ∩ b′| b, b′ ∈ Π where b 6= b′ and vold−1(b ∩ b′) 6= 0},

where vold−1 denotes the (d−1)–dimensional volume (if d = 3, this is the area).
The function µ, which specifies the knot multiplicities across interfaces, is defined on

this set, cf. Fig. 3. We wish to use a certain multiplicity µ0 satisfying 1 ≤ µ0 < d
everywhere except for certain interfaces near the boundary, which resemble a “skeleton
of boundary”. These interfaces will have knot multiplicity d. In order to simplify the
presentation we choose µ0 = 1.

local domain= [0, 1]2

K

multiplicity = 2

multiplicity = 1

domain boundary

F+ \K

F+

Figure 3: LR-spline after knot insertion, n = 2, d = 2, c = 2.

We define several auxiliary sets that allow us to identify the interfaces with increased
knot multiplicity, see Fig. 3. The extended face set F+ consists of the faces of U and their
extensions,

F+ =
⋃

n1,n2

n1+n2=n−1

R× · · · × R
︸ ︷︷ ︸

n1 times

×{0, 1} × R× · · · × R
︸ ︷︷ ︸

n2 times
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If we attempt to increase the multiplicity on the set F+, we immediately lose Cd−1 smooth-
ness over the entire interface. Therefore we rather identify the points, where we want to
keep the high-order smoothness. To control the size of this set, we have to specify the
smoothness parameter c ≥ d with c ∈ N. This parameter defines the kernel

K =
⋃

n1,n2

n1+n2=n−1

(ch, 1− ch)× · · · × (ch, 1− ch)
︸ ︷︷ ︸

n1 times

×R× (ch, 1− ch)× · · · × (ch, 1− ch)
︸ ︷︷ ︸

n2 times

,

which covers the interfaces with high-order smoothness. Note that an increase of c decreases
the set K that covers the points with high-order smoothness.

The knot multiplicity function µ is defined with the help of the sets F+ and K,

µ : Γ → N : γ 7→ µ(γ) =

{

d, γ ⊆ F+ \K
µ0 otherwise.

Figure 3 shows an instance of such an LR-mesh for n = 2.
Having defined the LR-mesh, which consists of the partition of the domain into boxes Π

and the knot multiplicity function µ on the set of interfaces, we recall how to construct the
associated set of LR-splines. First we consider an initial B-spline tensor-product space on
the domain by discarding the interior knots (i.e., the take Bernstein polynomials on U+).
Then we insert the knot line segments in a suitable ordering and split the basis functions
accordingly. More details for this process can be found in [8].

The set of LR B-splines will be denoted by L+, since it contains the local B-spline basis
on the extended domain.

Proposition 1. The set of LR-splines defined by the LR-mesh (Π, µ) possesses the N2S
property as defined in [4]. Consequently it has the property of local linear independence1

and forms a non-negative partition of unity.

Proof. We need to show that the set of LR-splines L+ possesses the following property:

∀β1, β2 ∈ L+ : β1 ≺ β2 ⇒ β1 = β2, (1)

where β1 ≺ β2 is true whenever β1 is obtained by B-spline refinement of β2. This was called
the non-nested support (N2S) property in [4], since there are no LR-splines with nested
supports.

If c satisfies ch ≥ 1
2
, then the set of LR splines is simply a tensor product B-spline

basis, which clearly has this property. The property is also trivially satisfied for dimension
n = 1. We consider now cases with n > 1 and ch < 1

2
.

We split the set L+ into two disjoint sets. The first one, denoted by Ls, is the set of all
functions having only single knots. The second one is denoted with Lm and contains the
remaining LR splines. For pairs of functions that belong to one of these sets the property (1)
is fulfilled, as they belong to a larger tensor-product B-spline basis. Moreover, no function
in Ls can be obtained by LR-refinement of a function contained in Lm, due to the presence

1A set of functions (βi)i∈I is said to be linearly independent on an open set Ω if 0 |Ω=
∑

i∈I
ciβi |Ω

implies ci = 0 whenever the support if φi overlaps Ω. It has the property of local linear independence if it
is linearly independent on any open set.
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of multiple knots. The remaining case is characterized by β1 ∈ Lm and β2 ∈ Ls. From [3]
we know that

β1 ≺ β2 ⇒ supp β1 ⊆ supp β2

and that the knot vectors of β1 can be obtained by inserting knots in the knot vectors of
β2. If β1 has multiple knots on the boundary, its knot vectors cannot be obtained in this
way from a function in Ls, because inserting boundary knots is impossible. So we need to
consider only functions from Lm, which have multiple knots in the interior of the support
but no multiple knots on the boundary. Due to our construction, a basis function cannot
have more than one multiple knot in each direction. We have to show that the support of
β1 is not strictly contained in β2.

First we have a look at functions β1 ∈ Lm, which have multiple knots in all directions.
We know that n > 1, so the knot lines with multiplicity greater than 1 meet in a point xC

in the inside of supp(β1). From the construction of the function µ we know, that up to a
distance of c ≥ d from this point xC the multiplicity is chosen to be d. So if our function
β2 ∈ Ls contains the support of β1, it has to have a multiple knot in its knot vector, which
contradicts the fact that it was found in Ls.

Now if we consider a function β1, which has s directions without multiple knots, there
are only two possibilities. Either at least one of the knot vectors of β2 of these s directions
differs from the corresponding knot vectors of β1, which means that β1 ⊀ β2, or all knots
coincide direction-wise. In the latter case these directions do not influence the argument,
which means that the same reasoning applies as in the case of multiple knots in all directions
in dimension n− s.

Figure 4 shows functions β1 and β2 which satisfy β1 ≺ β2 but are not allowed in
our setting. Figure 4 (a) is excluded, since the functions were constructed by choosing
c = 1 < d. Similarly, Figure 4 (b) depicts a case where β1 has a multiple knot in only one
dimension. Also, β2 is not contained in the basis constructed from Π and µ, as it was split
by inserting the multiple knot.

support of β1

support of β2

(a) (b)

Figure 4: Impossible combinations of β1 and β2, n = 2, d = 2.

Remark 2. In addition to local linear independence and partition of unity, the construction
of the local basis L+ on the extended domain ensures Cd−1-smoothness on U◦ ∪ (U ∩K).
More precisely, any function in spanL+ is Cd−1-smooth in the interior of the domain U
and the derivatives can be extended continuously to U ∩K.

All LR splines β ∈ L+ with supp(β) ∩ U◦ 6= ∅ form the finite local basis L on the
patch U :

L = {β : β ∈ L+ and supp(β) ∩ U◦ 6= ∅}.
A two-dimensional example of this local basis is shown in Figure 5, where each basis
function is represented by its Greville point. This point is defined as the mean value of the
inner local knots for each LR-spline.
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Consequently, the functions in L × P form the spline space on the union of patches
U × P that constitute the pre-manifold. These basis functions have the properties stated
in Theorem 1.

local domain = [0, 1]2

Greville points of face bf

Greville points of inner bf

Greville points of 3rd category bf

Figure 5: Local basis L, n = 2, d = 2, c = 2 (bf=basis function). The functions are represented by their
Greville points.

3.2. Global basis construction and properties

Now we will define an relation on the set of basis functions on the pre-manifold L×P:

(β, p) ∼ (β ′, p′) ⇔ β(x) = (β ′ ◦ δp′p )(x), ∀x ∈ Rn.

Again we obtain an equivalence relation ∼̂ by taking the transitive, reflexive closure of ∼.
The set of equivalence classes defines the global basis B as

B = (L× P)/∼̂.

Figure 6 shows an example of basis functions that are identified by the relation ∼̂ in the
planar case.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

support of face bf

support of 3rd category bf

local domain = [0, 1]2

relation ≃̂
Greville points of face bf

Greville points of 3rd category bf

Figure 6: Identifying the basis functions on the boundary, n = 2, d = 2, c = 2.

The basis B consists of elements β̂ = {(β, p), (β ′, p′), . . . }, where each element is a finite
set. These elements can be grouped into three categories. The first category, which consists
of inner basis functions, contains singletons only. The support of these functions is fully
contained within one patch. The second category, which consists of face basis functions,
contains sets with two elements. The support of these functions is fully contained within
two neighboring patches. All other basis functions form the third category.

Note that the restriction c ≥ d also implies that p 6= p′ holds for any two elements (β, p)
and (β ′, p′) in the same equivalence class. Consequently, each patch cannot contribute more
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than one basis function to each equivalence class. A counterexample with c < d is shown
in Figure 7. In this situation, we obtain more than two elements from the same patch
contributing to the same basis functions of the third category.

(p, p′) ∈ P
relation ∼

support of basis function

Figure 7: Violation of the condition c ≥ d leads to equivalence classes with more than one function per
patch. Here we consider 3 patches for degree 2 LR-Splines with n = 2, d = 2 and c = 1.

Every element β̂ ∈ B defines a function on the domain manifold M,

β̂ : Π → R : m 7→ β̂(m) =

{

β(x), if (x, i) ∈ m ∧ ∃β : (β, i) ∈ β̂

0 otherwise.

The value of β̂ is well defined. Indeed, the definition of the equivalence relations ∼̂ for
points and ≃̂ for basis functions implies that the function takes unique values for all
representatives (x, p) and (x′, p′) of a point m ∈ M.

The main properties of the global basis are summarized in the following result.

Theorem 3. The basis consisting of all β̂ is locally linear independent and forms a non-
negative partition of unity.

Proof. These properties are inherited from the properties of the local bases. According to
Proposition 1, each local basis has the non-nested support (N2S) property, which implies
local linear independence and non-negative partition of unity.

The local linear independence is important since it provides the possibility to establish
a hierarchical construction. This is discussed in Section 4.

We complete this section by characterizing the span of the global basis B by the smooth-
ness of its elements.

Lemma 4. Consider a domain Ω with two subdomains Ω1 and Ω2, and a linear space of
functions S(Ω) defined on it. Let B be a basis for this space, so that any given function
f ∈ S(Ω), f : Ω → R admits a unique representation

f =
∑

β∈B

cββ

with coefficients cβ ∈ R. We associate to each subdomain Ωi the set of basis functions Bi

that have support on Ωi, formally

Bi = {β ∈ B : β |Ωi
6= 0 |Ωi

}, i = 1, 2.
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If B1 (resp. B2) is linearly independent on Ω1 (resp. Ω2), then there exist unique coeffi-
cients ci,β ∈ R such that

f |Ωi
=

∑

β∈Bi

ci,ββ |Ωi
, i = 1, 2

and c1,β = c2,β for all β ∈ B1 ∩B2.

The proof is implied by the fact that cβ = ci,β for β ∈ Bi, i = 1, 2.

Theorem 5. We consider the space S on M containing all functions that possess the
following three properties:

(i) All functions f ∈ S are continuous functions on M,

(ii) they are are Cd−1 smooth at all points (x, p) ∈ ((K ∩ U) ∪ U◦)× P, and

(iii) the restrictions of any local representation fp to an arbitrary element b ∈ Π with
b ⊂ U , where Π is the partition of the extended local domains into boxes, is a tensor-
product polynomial of degree d.

It follows that the set B forms a basis for the linear space S.

Proof. Given a function f ∈ S, we consider all pairs of neighboring patches D that share
a face. For each pair (p, p′) we generate the LR-mesh which is obtained by gluing together
the LR-meshes of the two patches, see Figure 8(a). This LR-mesh can simultaneously be
seen as a mesh of a hierarchical B-spline with two levels, see again Fig. 8.

The completeness of hierarchical B-splines has been studied in [20]. In particular, the
hierarchical spline space is complete if the support of any B-splines basis function of level
0, restricted to Ω0 \Ω1, is a connected set. In our case this condition is satisfied. Since the
hierarchical B-splines agree with the LR-splines we obtain a unique representation of the
function f on the union of the two patches.

Moreover, due to the local linear independence of the basis and in view of Lemma 4,
the coefficients of the representation on the two neighboring patches coincide with the ones
in the local representations on each patch separately. Consequently, we are able to find
a globally consistent representation of the function f by identifying the matching local
coefficients from each patch.

domain of p

domain of p′

Ω1

Ω0

(a) Combined LR-mesh and domains (b) Space of level 0 (c) Space of level 1

Figure 8: LR-mesh and its corresponding hierarchical mesh, n = 2, d = 2 and c = 2
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3.3. Numerical examples

We present three examples to show the possibilities and advantages of this new basis
for IgA. First, we look at the parameterization of the smoothed geometry on an L-shaped
domain. Second, we solve an elliptic equation on a triangle with an extraordinary vertex.
Thirdly, we model a tunnel with a hole, consisting of several patches. The last example
will be revisited in the next section to demonstrate mesh adaptivity.

In the theory presented so far, we used reduced smoothness in the vicinity of all d− 2-
dimensional interfaces between neighboring patches. This was done mainly to simplify the
presentation. In practice, the degree of smoothness can be increased for regular configura-
tions. For instance we can maintain Cd−1-smoothness for dimension n = 2 for all boundary
vertices shared by two patches and for inner vertices possessing valence 4. In addition we
can use multiple knots along the boundary of the domain manifold in many cases to obtain
interpolating boundary basis functions.

The effect of these modifications is visualized for degree d = 2 in Figures 9, 10 and 11.
The third example contains an inner vertex with valence 4 where it is possible to maintain
C1-smoothness.

T1

T1

(a) Domain manifold (b) Type 1 (T1)

Figure 9: L-shape example with 2 patches of
the same type.

T2

T2T2

(a) Domain manifold (b) Type 2 (T2)

Figure 10: Triangle example with 3 patches of
the same type.

T1

T1

T3

T2

T1

T3

T2

T1 T1

T1

(a) Domain manifold (b) Type 3 (T3) (c) Type 4 (T4)

Figure 11: Tunnel example with 10 patches of 3 different types.

We have implemented the new basis for n = 2 in the C++ software library G+++SMO,
which provides useful functionality for IgA2. After the successful integration of the new
basis, we can now use the assembler and solver structure provided there. We also benefit
from the existing implementation of (truncated) hierarchical B-splines, which we use in
the next section 4 for a hierarchical construction based on our new basis.

2Geometry plus Simulation Modules, gs.jku.at/gismo, see also [15].
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L-Shape

Our first example resembles an L-shape (see Figure 9), consisting of two quadratic B-
spline patches. We construct the global basis and then we apply least-squares projection to
the coefficients, to achieve the geometry with increased smoothness across the (originally
C0) interface.

(a) Elements and patches. (b) Isoparametric curves of the resulting
domain.

Figure 12: Original parameterization with C0 multi-patch.

(a) Elements and smooth patches. (b) Isoparametric curves of the resulting
domain.

Figure 13: Smooth basis

Figure 12 shows the original elements of the basis and a net of isoparametrics on each
patch. Figure 13 shows the elements of the smoothed geometry and again the discretized
mesh. We observe that the flow of the mesh is smoother in the second geometry. Except
for the vicinity of the C0 corners, the mesh flows smoother across the interface and the
sharp angles, which are present in the original mesh in this area, have disappeared.
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Figure 14: Several basis functions on the smoothened L-shaped domain.

Figure 14 shows several basis functions on the domain. We observe the C0 smoothness
of the basis function in the corner, where the knot multiplicities were set to 2. In the middle
of the interface, a smooth basis function crosses the common face of the two patches.

Triangle

The domain manifold of our second example consists of three patches, which form a
triangle. Figure 10 shows the setup of the patches. In the local basis L, we chose the degree
d = 2 and ℓ = 9, which gives us 304 basis functions in the global basis B. The configuration
of the patches leads to an extraordinary vertex in the center of the triangle, where C0

continuity is present. We solve the Poisson equation with Dirichlet boundary conditions
for the source function f = 2 sin(x) cos(y), which has the exact solution g = sin(x) cos(y).
The domain and the exact solution are shown in Figure 15.

-0.8

-0.4

0

0.4

0.8

SolutionField

-0.999

0.998

Figure 15: Domain and Solution of the Triangle Example

At the coarsest level we have 304 degrees of freedom. We apply 6 steps of uniform
refinement, therefore increasing the number of degrees of freedom up to approx. 1 mil-
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lion. Our experimental results confirm the expected convergence rate 2 in the H1-error
(Figure 16(a)) and 3 in the L2-error (Figure 16(b)). Table 1 shows the results of the
computations in the global basis B, while Table 2 depicts the same calculations in the C0

multi-patch setting. We can see that the number of degrees of freedom in the C0 case is
slightly larger and the error with respect to both the norms are slightly lower.

ref. step 0 1 2 3 4 5 6

L2-error 0.010197 0.001010 9.5905e-05 9.9160e-06 1.1024e-06 1.2893e-07 1.5549e-08
H1-error 0.048802 0.010866 0.0024184 0.00057024 0.00013853 3.4153e-05 8.4796e-06
dof 304 1093 4129 16033 63169 250753 999169
times (sec) 0.0087361 0.033335 0.14523 0.70412 4.2031 23.442 161.91

Table 1: Solving the Poisson equation on the smooth triangle with uniform refinement (dof = number of
degrees of freedom).

ref. step 0 1 2 3 4 5 6

L2-error 0.0053265 0.00072434 7.2581e-05 8.2608e-06 9.9254e-07 1.2194e-07 1.5124e-08
H1-error 0.03962 0.010079 0.0023329 0.00056337 0.00013859 3.4385e-05 8.5648e-06
dof 331 1141 4219 16207 63511 251431 1000519
times (sec) 0.018511 0.059474 0.25062 1.4420 8.9197 34.760 163.18

Table 2: Solving the Poisson equation on the C0 triangle with uniform refinement (dof = number of degrees
of freedom).

log(
√
Dof)

log(H1-Error)

C0 Smooth

(a) Convergence of the H1-Error

log(
√
Dof)

log(L2-Error)

C0 Smooth

(b) Convergence of the L2-Error

Figure 16: Convergence plots

The effect of the increased smoothness of the new basis on the calculated solution is
visualized in Figure 17. The left subfigure shows the jump of the derivative in the first
coordinate along all the interfaces of the solution obtained using the C0 smooth basis
as opposed to the right subfigure, where we observe this jump only in a vicinity of the
extraordinary vertex.

The computations were done on 64-Bit Gentoo Linux workstation with an Intel i5-4570
quad core CPU with 3.20 GHz and 32 GB of memory. The total processing time (for
assembling and solving linear system) are shown in Table 1 for the basis B with increased
smoothness and in Table 2 for the C0 case.
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(a) C0 multi-patch (b) Basis B

Figure 17: Derivative of the numerical solution with respect to the first coordinate

By comparing the computing times in Tables 1 and 2 we observe that one achieves
substantially smoother results while keeping the times in the same order of magnitude as
in the C0 case.

4. Hierarchical multi-patch B-splines

In this section we present the extension of our construction to hierarchical B-splines,
which support adaptive refinement.

4.1. Construction and properties

Given a domain manifoldM and a degree d we can construct a sequence of nested spline
spaces SL, which is spanned by multi-patch B-splines BL with enhanced smoothness. The
upper index refers to the level of refinement. For the coarsest level L = 0 we choose
valid parameters ℓ0 and c0. The parameters for higher levels are obtained by doubling
these initial values in each refinement step, i.e., ℓL = 2Lℓ0 and cL = 2Lc0. This choice
of the parameters leads to nested spaces SL = spanBL, i.e. SL+1 ⊃ SL. Moreover, the
multi-patch B-splines are linked by non-negative refinement matrices. Consequently we
can apply the theory presented in [11, 27, 28], as follows:

• The (truncated) hierarchical generating system is defined by specifying a finite, in-
versely nested (i.e. ΩL ⊇ ΩL+1) sequence of subdomains (ΩL)L=0,...,N , which are
submanifolds of M, where Ω0 = M and ΩN = ∅. These subdomains specify the
desired adaptive refinement; the latter is typically driven by an a posteriori error
estimator.

• The hierarchical generating system H is obtained by collecting all multi-patch B-
splines βL ∈ BL of all levels L that satisfy

ΩL ⊇ supp βL 6⊆ ΩL+1.

This selection mechanism was established in [17].

• The truncated hierarchical generating system T is constructed by applying the trun-
cation procedure to the hierarchical generating system H. This is described in detail
in [11, 27].
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• Since the bases BL possess the property of local linear independence, both generating
systems H and T are linearly independent, hence they are bases of the adaptively
refined multilevel spline space on the domain manifold M.

• Moreover, since the bases BL form non-negative partitions of unity, the truncated
hierarchical generating system has this important property as well.

4.2. Numerical example

The example resembles a tunnel consisting of 10 patches. Figure 11 depicts the ar-
rangement and types of the patches.

We consider again the Poisson equation with the source function

f = 10 tanh(18− x− 2y)(1− tanh(18− x− 2y) tanh(18− x− 2y))

and we enforce Dirichlet boundary conditions that correspond to the exact solution g =
tanh(18− x− 2y). The solution has a very sharp feature, which we expect to be captured
by adaptive refinement. The domain and the exact solution are shown in Figure 18.
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-0.4

0

0.4

0.8

-1.000e+00

1.000e+00
SolutionField

Figure 18: Domain and solution of the tunnel example

We perform seven steps of adaptive refinement, guided by computing the error between
the exact and discretized solutions. In each step we refine all elements where the local
error exceeds 50% of the maximum error for this solution. Clearly, the number of refined
elements varies in each step, depending on the distribution of this error.

Figure 19 shows the advantage of the adaptive refinement with respect to uniform
refinement. The use of adaptive refinement significantly increases the rate of convergence
with respect to the number of degrees of freedom. The final control grid, which is obtained
after seven steps of adaptive refinement is shown in Figure 20.

For this example, the computations were done on a laptop with 64-Bit Debian Linux
with an Intel i7-4500 quad core CPU with 1.80 GHz and 16 GB of memory. The com-
putation times, the degrees of freedom and the L2 and H1 errors of the seven adaptive
refinement steps are reported in Table 3.
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log(dof)

log(H1-Error)

uniform refinementadaptive refinement

Figure 19: Convergence plot

Figure 20: Final control grid after 7 adaptive refinement steps

ref. step 0 1 2 3 4 5 6 7

L2-error 0.1048 0.008024 0.001855 0.001370 0.0003954 0.0001793 7.829e-05 5.152e-05
H1-error 0.4678 0.114 0.04503 0.03759 0.01481 0.00928 0.005020 0.00350
dof 266 412 660 694 1176 1584 2252 2985
times (sec) 0.08644 0.1873 0.4209 0.4573 0.9357 1.34 2.139 3.119

Table 3: Solving the Poisson equation on the tunnel with adaptive refinement (dof=number of degrees of
freedom).

Figure 21 shows several instances of basis functions on the domain. In particular,
in Figure 21(a), a truncated basis function of level 0 is visualized as well as its non-
truncated counterpart in Figure 21(b). Moreover, a smooth function crossing the interface
and function of third category (see Subsection 3.2) at an extraordinary vertex possessing
valence five is depicted.

5. Conclusion

Inspired by the concept of spline forests [23] we constructed the new basis of multi-patch
B-splines with enhanced smoothness (MPBES) across interfaces. Based on recent results
from the theory of LR splines [4] we were able to prove the local linear independence
and the partition of unity properties. In addition, we derived a characterization of the
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(a) Truncated functions (b) Non-truncated functions

Figure 21: Several instances of basis functions on the tunnel domain after two local refinements

space spanned by MPBES by the smoothness properties of the functions contained in it.
Finally, relying on the theoretical results concerning local linear independence, we were
able to invoke the framework of truncated hierarchical generating systems [27]. This led
us to define the truncated hierarchical B-spline basis for the space of adaptively refined
spline functions on multi-patch domains. While the theory was presented for the general
n-dimensional case, our implementation in the G+++SMO library [15] and the numerical
examples presented in the paper are currently restricted to the two-dimensional setting.

Compared to multi-patch B-splines that are only C0-smooth across interfaces (which
correspond to isogeometric spline forests), the use of MPBES substantially improves the
smoothness properties of the solutions (cf. Figure 17) and of the meshes obtained by dis-
cretizing the geometry mappings (see Fig. 13). Surprisingly, the additional computational
costs for maintaining the enhanced smoothness are negligible. In fact, the smoothness
enhancement reduces the total number of basis functions, thereby slightly reducing the
overall computation time, without much impact on the approximation power.

Future work will focus on the extension of our approach to basis functions that possess
increased smoothness everywhere. Clearly, this requires to define the smoothness of the
functions with respect to the physical domain.
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