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Abstract. We investigate geometric multigrid methods for solving the
large, sparse linear systems which arise in isogeometric discretizations of
elliptic partial differential equations. In particular, we study a smoother
which incorporates the inverse of the mass matrix as an iteration matrix,
and which we call mass-Richardson smoother. We perform a rigorous
analysis in a model setting and perform some numerical experiments to
confirm the theoretical results.

1 Introduction

Isogeometric analysis (IGA), a numerical technique for the solution of partial
differential equations first proposed in [11], has attracted considerable research
attention in recent years. The use of spline spaces both for representation of
the geometry and for approximation of the solution affords the method several
very interesting features, such as the possibility to use exactly the geometry
generated by CAD systems, refinement without further communication with the
CAD system, the possibility of using high-continuity trial functions, the use of
high-degree spaces with comparatively few degrees of freedom, and more. We
refer to [11,1] as well as the monograph [5] and the references therein for an
overview of the topic.

The efficient solution of the discretized systems arising in isogeometric anal-
ysis has been the topic of several publications in recent years, e.g., [4,12,6,7,3,8].
In the present paper, our interest lies in geometric multigrid methods for isogeo-
metric analysis. It is known by now that the simple classical multigrid smoothers
do not result in multigrid solvers with convergence rates which are robust in the
spline degree of the IGA discretization. In this paper, motivated by promising
results of a preliminary local Fourier analysis, we propose a smoother based on
inverting the mass matrix. We perform a rigorous analysis in a model setting and
find that, due to boundary effects, the smoother does not achieve total robust-
ness in the spline degree with a single smoothing step, but requires a number
of additional smoothing steps. We are able to quantify the needed number of
smoothing steps for robust convergence. To our knowledge, this is the first rig-
orous analysis of a multigrid method for IGA which takes the spline degree into
account explicitly.
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The remainder of the paper is structured as follows. In Section 2, we outline a
simple model problem and a geometric multigrid solver for IGA. In Section 3, we
perform the analysis of the two-grid method with our proposed mass-Richardson
smoother. In Section 4, we report the results of some numerical experiments
which confirm the theory.

2 Geometric multigrid for isogeometric analysis

For a detailed description of the IGA methodology, see, e.g., [11]. For the sake of
simplicity, we consider here only a simple model problem with a trivial geometry
map. Previous numerical experiments indicate that nontrivial but well-behaved
geometry maps do not significantly impact the convergence behaviour of multi-
grid methods for IGA.

Let Vh ⊂ H1
0 (Ω) denote a tensor product B-spline space over Ω = (0, 1)d. We

use here spline spaces with open knot vectors which have the same spline degree
p in each coordinate direction, and which have the same smoothness parameter
k in each coordinate direction, where k ∈ {1, . . . , p} describes splines which are
globally Ck−1. We also assume that the spline spaces are quasi-uniform in the
sense that the minimum knot span in any direction can be bounded from below
by some uniform constant times the maximum knot span.

We consider an IGA discretization of the Poisson equation with pure Dirichlet
boundary conditions: find uh ∈ Vh such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ Vh

with the bilinear form and linear functions, respectively,

a(u, v) =

∫
Ω

∇u · ∇v dx, 〈F, v〉 =
∫
Ω

fv dx− a(g̃, v).

Here g̃ ∈ H1(Ω) is a suitable extension of the given Dirichlet data.
In the following, we outline the construction of a simple geometric multigrid

scheme for this problem. Let V0 denote a coarse tensor product spline space
over (0, 1)d. Performing uniform and global h-refinement by knot insertion, we
obtain a sequence of refined spline spaces V1,V2, . . . Let VH and Vh denote
two successive spline spaces in this sequence, and let P : VH → Vh denote the
prolongation operator from the coarse to the fine space. One step of the two-grid
iteration process is given by a pre-smoothing step, the coarse-grid correction, and
a post-smoothing step; i.e., given u0 ∈ Vh, the next iterate u1 is obtained by

u(1) := u0 + S−1(fh −Ahu0),
u(2) := u(1) + PA−1H P>(fh −Ahu(1)),

u1 := u(3) := u(2) + S−>(fh −Ahu(2)).

Here, S is a suitable smoother for the fine-space stiffness matrix Ah.
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As usual, a multigrid scheme is obtained by considering a hierarchy of nested
spline spaces and replacing the exact inverse A−1H in the above procedure recur-
sively with the same procedure applied on the next coarser space, until V0 is
reached. We consider only the case of a single coarse-grid correction step, i.e.,
the V-cycle.

It is known that this multigrid algorithm with standard smoothers like the
Richardson, Jacobi or Gauss-Seidel smoothers is robust in the mesh size h. How-
ever, the same is not true for the spline degree p: especially in higher space dimen-
sions d, the iteration numbers for obtaining a desired accuracy increase strongly
with p. This soon results in iteration numbers which are no longer practical.

It is therefore of interest to find smoothers which result in better or even
completely robust iteration numbers with respect to p. An interesting choice is
what we will call the mass-Richardson smoother,

S = τ−1M,

whereM denotes the mass matrix and τ a real damping parameter. Local Fourier
analysis suggests that this smoother should lead to convergence rates which are
independent of p. However, as we will see, in actual boundary value problems a
certain dependence on p remains due to boundary effects.

We note that applying this smoother requires inverting the isogeometric mass
matrix in every iteration. Although the mass matrix is itself ill-conditioned for
higher spline degrees p, an efficient approach for inverting it has been described
in [9] by exploiting the tensor product structure of the spline spaces.

3 Analysis

We follow the ideas of the multigrid convergence theory as given by Hackbusch
[10]. For simplicity, we restrict ourselves to the analysis of the two-grid method
in either one or two space dimensions. From this, the convergence of the W-cycle
follows by a perturbation argument, but the convergence of the V-cycle needs
a different proof technique. Nevertheless, in practice we have observed that the
V-cycle performs similarly to the two-grid method.

For any function u defined on the fine grid, we will write u for its coefficient
vector in the fine-grid B-spline basis. In addition to the L2-norm

‖u‖0 := ‖u‖L2(Ω) = ‖u‖M ,

we will make use of the H2-like norm

|||u|||2 := sup
w∈V

a(u,w)

‖w‖0
= sup

w

w>Au

(w>Mw)1/2
= sup

w

w>M−1/2Au

(w>w)1/2

= sup
‖w‖=1

w>M−1/2Au = ‖M−1/2Au‖ = ‖Au‖M−1 =: |||u|||2.

By C, we will denote a generic constant which does not depend on the discretiza-
tion parameters h, p and k.



4

For purposes of the analysis, we will always make the choice τ = 1/λmax(M
−1A)

for the damping parameter.
We point out that we make use of the explicit spline approximation error

estimates presented in [2]. So far, these results are limited to the case of relatively
low-continuity splines, and this limitation therefore extends to our work.

3.1 Smoothing property

We will make use of the following polynomial inverse inequalities or Markov-type
inequalities (see, e.g., Schwab [13]).

Theorem 1. Let d = 1, I = (a, b) and h = b− a, then for any polynomial f of
degree at most p, we have

‖f ′‖L2(I) ≤ 2
√
3
p2

h
‖f‖L2(I)

Let d = 2. For an arbitrary quadrilateral I = (a, b)×(c, d) with size h1 = b−a,
h2 = d − c, setting h := max{h1, h2} and assuming h ≤ Cmin{h1, h2} with a
uniformly bounded constant C, we have

‖∇f‖L2(I) ≤ C
p2

h
‖f‖L2(I). (1)

Theorem 2. After ν steps of mass-Richardson smoothing, the resulting error
e(ν) = (I − τM−1A)νe satisfies

|||e(ν)|||2 ≤
Cp4

h2ν
‖e(0)‖M .

Proof. By iterating the statement of Theorem 1 over every non-empty knot span
of the spline space, we obtain for any f ∈ C(Ω) ∩ L2(Ω) which is piecewise a
polynomial of maximum degree at most p, and in particular for f ∈ Vh,

‖∇f‖L2(Ω) ≤ C
p2

h
‖f‖L2(Ω).

It follows that 〈Av, v〉 ≤ C p4

h2 〈Mv, v〉 and therefore λmax(M
−1A) ≤ C p4

h2 .
We have

‖Ae(ν)‖M−1 = ‖A(I − τM−1A)νe‖M−1

= ‖M−1A(I − τM−1A)νe‖M
= 1

τ ‖τM
−1A(I − τM−1A)νe‖M

= 1
τ ‖τM

−1/2AM−1/2(I − τM−1/2AM−1/2)νM1/2e‖
≤ 1

τ ‖X(I −X)ν‖‖e‖M
= 1

τ max{λ(1− λ)ν : λ ∈ σ(X)}‖e‖M
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with the symmetric matrix X = τM−1/2AM−1/2 which has the same spectrum
as τM−1A. Thus, σ(X) ⊂ [0, 1], and with the estimate λ(1 − λ)ν ≤ 1/(eν) for
λ ∈ [0, 1], we obtain

‖Ae(ν)‖M−1 ≤ Cλmax(M
−1A)

ν
‖e‖M ≤

Cp4

h2ν
‖e‖M . ut

3.2 Approximation property

We summarize some recent results from [2] on the approximation properties of
spline spaces with explicit dependence on h, p and k.

Theorem 3. Assume that, if d = 1, then k ≤ σ ≤ p + 1, or if d = 2, then
2k ≤ σ ≤ p + 1. There exists a spline interpolation operator Π : Hσ(Ω) → Vh
such that for all v ∈ Hσ(Ω) and j = 0, . . . , σ, we have

|v −Πv|H`(Ω) ≤ C(p− k + 1)−(σ−`)hσ−`|v|Hσ(Ω).

Theorem 4. Under the assumptions of Theorem 3 and full H2-regularity of
the boundary value problem, the errors e before and eCGC after the coarse-grid
correction step satisfy

‖eCGC‖M ≤ Ch2(p− k + 1)−2|||e|||2.

Proof. With u0 = u− e being the iterate before the coarse-grid correction step,
the correction tC ∈ VC such that eCGC = e− tC is given by

a(tC , wC) = 〈F,wc〉 − a(u0, wC) = a(e, wC) ∀wC ∈ VC .

For an arbitrary bounded linear functional F ∗ : L2(Ω) → R, we introduce the
solutions of the dual problems ξ̃ ∈ H1

0 (Ω), ξ ∈ V , and ξC ∈ VC , respectively, by

a(x̃, ξ̃) = 〈F ∗, x̃〉 ∀x̃ ∈ H1
0 (Ω),

a(x, ξ) = 〈F ∗, x〉 ∀x ∈ V,
a(xC , ξC) = 〈F ∗, xC〉 ∀xC ∈ VC .

We have the identity

〈F ∗, e− tC〉 = a(e− tC , ξ) = a(e, ξ)− 〈F ∗, tC〉 = a(e, ξ − ξC)

and thus

|〈F ∗, e− tC〉| ≤
|a(e, ξ − ξC)|
‖ξ − ξC‖0

‖ξ − ξC‖0 ≤ sup
w∈V

|a(e, w)|
‖w‖0

‖ξ − ξC‖0.

Using Theorem 3 and a standard Nitsche duality argument under the as-
sumption of full H2-regularity, we find that

‖ξ − ξC‖0 ≤ ‖ξ − ξ̃‖0 + ‖ξ̃ − ξC‖0 ≤ Ch2(p− k + 1)−2‖F ∗‖∗.

From the above two inequalities, it follows that

‖eCGC‖0 = ‖e− tC‖0 = sup
F∗

|〈F ∗, e− tC〉|
‖F ∗‖∗

≤ Ch2(p− k + 1)−2 sup
w∈V

a(e, w)

‖w‖0
. ut
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3.3 Two-grid convergence result

Theorem 5. Under the assumptions of Theorem 4, the errors e(0) and e(1) be-
fore and after one two-grid cycle with ν mass-Richardson presmoothing steps
and no postsmoothing satisfy

‖e(1)‖0 ≤
Cp4

ν(p− k + 1)2
‖e(0)‖0.

In particular, there exists a positive constant Cν independent of h, p and k such
that the choice

ν ≥ Cνp2

for the number of smoothing steps guarantees a convergence rate σ ∈ (0, 1) such
that ‖e(1)‖0 ≤ σ‖e(0)‖0 with σ independent of h, k and p.

Proof. The first estimate follows directly by combining the statements of The-
orem 2 and Theorem 4. By the assumptions of Theorem 4, we can conclude
p − k + 1 ≥ p/2 and hence p4/(p − k + 1)2 ≤ Cp2, which proves the second
statement. ut

4 Numerical experiments

We solve the described model Poisson problem with an exact solution u(x) =∏d
i=1 sin(π(xi + 0.5)) using two-grid iteration. We start with a random starting

vector and iterate until the initial residual is reduced by a factor of 10−8 in the
`2-norm. The obtained iteration numbers are more or less independent of the
mesh size, and we do therefore not report numbers for different h. The problem
sizes were relatively small with at most a few thousand degrees of freedom.

p k τ ν iter. ν iter.
1 1 0.13 1 34 1 34
2 2 0.16 4 9 2 17
3 2 0.16 9 5 3 13
4 2 0.15 16 4 4 11
5 2 0.14 25 4 5 10
6 2 0.13 36 3 6 13

Table 1. Iteration numbers in 1D. From left to right: spline degree p, smoothness
parameter k, damping parameter τ ; iteration numbers for ν = p2, ν = p smoothing
steps.

Both in 1D (Table 1) and in 2D (Table 2), the iteration numbers for p2
smoothing steps remain uniformly bounded as we increase p. This confirms the
theory with a choice of the constant Cν = 1 from Theorem 5. For comparison,
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p k τ ν iter. ν iter.
1 1 0.08 1 65 1 65
2 2 0.10 4 15 2 30
3 2 0.09 9 8 3 23
4 2 0.09 16 5 4 44
5 2 0.08 25 4 5 16

Table 2. Iteration numbers in 2D. From left to right: spline degree p, smoothness
parameter k, damping parameter τ ; iteration numbers for ν = p2, ν = p smoothing
steps.

we have also included the choice ν = p, which is not supported by theory but
serves as an interesting comparison.

We do not include CPU times here as we have not implemented the optimal
mass matrix inversion algorithm from [9] at present, and therefore the results
would be skewed towards lower smoothing numbers. We also note that the iter-
ation numbers can be reduced, often significantly so, by replacing the two-grid
iteration with CG iteration preconditioned by one two-grid cycle.
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