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Abstract. We investigate geometric multigrid methods for solving the
large, sparse linear systems which arise in isogeometric discretizations of
elliptic partial differential equations. We observe that the performance of
standard V-cycle iteration is highly dependent on the spatial dimension
as well as the spline degree of the discretization space. Conjugate gradi-
ent iteration preconditioned with one V-cycle mitigates this dependence,
but does not eliminate it. We perform both classical local Fourier anal-
ysis as well as a numerical spectral analysis of the two-grid method to
gain better understanding of the underlying problems and observe that
classical smoothers do not perform well in the isogeometric setting.

1 Introduction

Isogeometric analysis (IGA), a numerical technique for the solution of partial
differential equations first proposed in [7], has attracted considerable research
attention in recent years. The efficient solution of the discretized systems arising
in isogeometric analysis has been the topic of several publications [3,8,4,5,2,6].
In the present paper, our interest lies in geometric multigrid methods for isoge-
ometric analysis. Our aim in this article is mainly to enhance the understanding
of multigrid methods for IGA by spectral analysis and more extensive numeri-
cal experiments. In particular, we are interested in the effect the spline degree
has on the performance of multigrid iteration. The experiments from [6] show
that, while convergence rates for standard V-cycle iteration are h-independent
as predicted by the theory, they depend strongly on the spline degree p. This
effect is more pronounced in higher space dimensions. We investigate this effect
in more detail by analyzing the performance of classical smoothers as well as of
the coarse-grid correction step for different space dimensions and spline degrees.
We also clarify to what extent boundary effects are responsible.

We outline a simple geometric multigrid solver for IGA. After performing
some basic iteration number tests both with pure V-cycle iteration and with CG
iteration preconditioned by a V-cycle, we perform local Fourier analysis in 1D.
We then perform a more detailed numerical spectral analysis of the smoother and
the coarse-grid correction step for the eigenfunctions of the discretized problem
in order to elucidate the effect that increasing the spline degree has.
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2 Geometric multigrid for isogeometric analysis

For space reasons, we cannot present a full IGA framework and instead consider
a simple model problem. See, e.g., [7] for more details. Let Vh ⊂ H1

0 (Ω) denote a
tensor product B-spline space overΩ = [0, 1]d. We consider an IGA discretization
of the Poisson equation with pure Dirichlet boundary conditions: find uh ∈ Vh
such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ Vh
with the bilinear form and linear functions, respectively,

a(u, v) =

∫
Ω

∇u · ∇v dx, 〈F, v〉 =
∫
Ω

fv dx− a(g̃, v).

Here g̃ ∈ H1(Ω) is a suitable extension of the given Dirichlet data.
In the following, we outline the construction of a simple geometric multigrid

scheme for this problem. Let V0 denote a coarse tensor product spline space
over (0, 1)d. Performing uniform and global h-refinement by knot insertion, we
obtain a sequence of refined spline spaces V1,V2, . . . Let VH and Vh denote
two successive spline spaces in this sequence, and let P : VH → Vh denote the
prolongation operator from the coarse to the fine space. One step of the two-grid
iteration process is given by a pre-smoothing step, the coarse-grid correction, and
a post-smoothing step; i.e., given u0 ∈ Vh, the next iterate u1 is obtained by

u(1) := u0 + S−1(fh −Ahu0),
u(2) := u(1) + PA−1H P>(fh −Ahu(1)),

u1 := u(3) := u(2) + S−>(fh −Ahu(2)).

Here, S is a suitable smoother for the fine-space stiffness matrix Ah.
As usual, a multigrid scheme is obtained by considering a hierarchy of nested

spline spaces and replacing the exact inverse A−1H in the above procedure recur-
sively with the same procedure applied on the next coarser space, until V0 is
reached. We consider only the case of a single coarse-grid correction step, i.e.,
the V-cycle.

To test the multigrid iteration, we set up the Poisson equation −∆u = f with
pure Dirichlet boundary conditions on Ω = (0, 1)d. We choose tensor product
B-spline basis functions defined on equidistant knot vectors with spline degrees
p in every direction and maximum continuity, i.e., simple interior knots. The
right-hand side f and the boundary conditions are chosen according to the exact
solution u(x) =

∏d
i=1 sin(π(xi + 0.5)).

We then choose a random starting vector and perform V-cycle iteration as
described above. In Table 1, left half, we display the iteration numbers required
to reduce the initial residual by a factor of 10−8 in the Euclidean norm. The h-
independence is clearly observed. Furthermore, the scheme is highly efficient for
low spline degree p, yielding very low iteration numbers. In higher dimensions,
in particular for d = 3, we see a dramatic increase in the number of iterations
as the spline degree is increased. Very similar results have been observed in [6].
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V-cycle iteration PCG iteration
d N p p

1 2 3 4 1 2 3 4
1 ∼4,1k 11 8 7 9 7 6 5 6

∼262k 11 8 7 9 7 5 5 6
2 ∼66k 9 11 37 127 6 7 14 27
∼1,05m 9 11 36 125 6 7 14 27

3 ∼40k 9 38 240 1682 6 15 37 100
∼290k 9 38 236 1564 6 15 37 98

Table 1. V-cycle iteration numbers for the model Poisson problem. Columns from left
to right: space dimension d, number of unknowns N , V-cycle iteration numbers for
p = 1 to 4, iteration numbers for CG preconditioned with V-cycle for p = 1 to 4.

We also test preconditioned conjugate gradient (PCG) iteration with one V-
cycle as the preconditioner; see Table 1, right half. The iteration numbers are
significantly reduced for the previously unsatisfactory cases with d = 3 and high
spline degree p. A clear dependence of the iteration numbers on d and p remains.

We remark that the results remain quantitatively very similar for the model
problem −∆u+ u = f with pure Neumann boundary conditions.

3 Local Fourier analysis

We perform local Fourier analysis (LFA) for the two-grid method in the case
d = 1 as described in the literature [9,1]. For this, we set up a space of B-splines
of degree p on R with uniformly spaced knots Z · h at distances h = 1 as well
as the corresponding nested coarse space with knots at Z ·H, H = 2h. We then
compute, for p from 1 to 4, the stencils of the variational form of the operator
−∂xx on the fine space,
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We study the effect of these stencils on the Fourier modes (exp(iαθ))α∈Z
for θ ∈ (−π, π). As usual, the analysis decomposes into two parts, namely the
low frequencies |θ| < π/2 and the high frequencies |θ| ≥ π/2. Following the
standard procedure, we can compute the symbols of the fine-grid and prolon-
gation operators Âh(θ) ∈ C2×2, P̂ (θ) ∈ C2×1, respectively, based on the sten-
cils above, as well as the derived symbols R̂(θ) = P̂ (θ)∗ ∈ C1×2, ÂH(θ) =
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R̂(θ)Âh(θ)P̂ (θ) ∈ C1×1 of the restriction and coarse-grid operators, respectively.
Due to the use of Galerkin projection for constructing the coarse-grid operator,
we have R̂(θ) = (P̂ (θ))∗. For simplicity we analyze here only the Richardson
smoother, S = τ−1I, so that we have ĜS(τ, θ) = I − τÂh(θ) ∈ C2×2 for the
symbol of the error reduction operator GS = I − S−1Ah. The error reduction
rate of the two-grid operator is given by the spectral radius of

T̂ G(τ, θ) = ĜS(τ, θ)
∗
(
I − P̂ (θ)ÂH(θ)−1R̂(θ)Âh(θ)

)
ĜS(τ, θ) ∈ C2×2.

For fixed τ , we approximate the maximum maxθ∈(−π,π) σ(T̂ G(τ, θ)) by sampling
θ at equidistant points. The resulting error reduction rates are shown as functions
of τ in Figure 1 for the cases p = 1, 2, 3, 4. Furthermore, the experimentally
determined optimal choice of τ together with resulting error reduction factor
1/σ(T̂ G(τ, θ)) is shown in Table 2, left column. We compare these results with the
rates obtained in practice for a boundary value problem on (0, 1), set up to have
zero solution. The error reduction factor is here computed as the maximum ratio
between the Euclidean norms of two successive iterates in the two-grid iteration,
i.e., the worst-case error reduction. These numbers are shown in Table 2, middle
column. The optimal choice for τ was found experimentally.

We observe that the numbers begin to deviate significantly from the theoret-
ical LFA results as p is increased. This is due to the influence of the boundary
conditions, which are neglected in the LFA. The theoretical rates can be ap-
proached by performing extra smoothing near the boundaries. As suggested in
[1], we use Kaczmarz iteration for this purpose. In our tests, 5 Kaczmarz sweeps
on the first and last equations in the linear system, performed before the pre-
smoothing step, were sufficient to approach the theoretical rates quite closely, as
shown in Table 2, right column.
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Fig. 1. Error reduction rates in dependence of τ (x-axis) computed by LFA in 1D with
p = 1, 2 (top), p = 3, 4 (bottom).
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Local Fourier analyis numerical results with boundary sweeps
p τopt error reduc. τopt error reduc. τopt error reduc.
1 0.33 9.00 0.33 8.82 0.33 9.01
2 0.69 75.50 0.69 74.10 0.69 74.20
3 1.25 9.00 1.04 4.94 1.25 9.09
4 1.85 2.78 1.25 1.81 1.85 2.83

Table 2. Results of LFA for the 1-D case and comparison to numerical results.

We conclude that the results of the LFA are a good predictor for the per-
formance of the multigrid method, in particular if additional smoothing is per-
formed near the boundaries. Without these boundary sweeps, the performance
of the method suffers, but this is not the main factor in the bad performance
of the multigrid method: even in the boundary-less case of the LFA, the rates
deteriorate as p is increased.

4 Numerical spectral analysis

In this section, we take an alternative approach to spectral analysis which op-
erates directly on the matrices used in the multigrid method and can therefore
capture boundary effects.

We consider the problem ∆u = 0, u|∂Ω = 0 with u = 0 as its exact solution,
and set up a two-grid scheme as above with N unknowns on the fine grid. For
a given vector µ ∈ Rd, we perform one step of the symmetrized Gauss-Seidel
smoother, or one coarse-grid correction step, and measure the Euclidean norm
of the result. That is, we compute the error reduction factors

rS(µ) =
|GS>GSµ|
|µ|

, rCGC(µ) =

∣∣(I − PA−1H P>Ah)µ
∣∣

|µ|
.

As a basis, we choose the generalized eigensystem (µj) which satisfies

Ahµj = λjMhµj , j = 1, . . . , N,

where Mh is the mass matrix of the fine-grid isogeometric basis. In Figures 2-
4, we analyze the 1D, 2D, and 3D Laplace problem, respectively, using the
Gauss-Seidel smoother. Each figure contains one plot each for spline degrees
p = 1, 2, 3, 4. In each plot, we display the error reduction factors rS(µj) and
rCGC(µj) for the generalized eigenvectors over their respective eigenvalues λj .
The studied problems were relatively small, up to around N = 1000.

Throughout, the coarse-grid correction step reduces the lower part of the
spectrum in an efficient manner. The Gauss-Seidel smoother however fails to
perform robustly as the spline degree p is increased. Already in 1D, the plot for
p = 4 suggests difficulties for higher spline degrees. These difficulties start earlier
for higher space dimensions, as we see from the plots for d = 2, p = 4 as well
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Fig. 2. Error reduction in the basis (µj) in 1D with p = 1, 2 (top), p = 3, 4 (bottom).
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Fig. 3. Error reduction in the basis (µj) in 2D with p = 1, 2 (top), p = 3, 4 (bottom).
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Fig. 4. Error reduction in the basis (µj) in 3D with p = 1, 2 (top), p = 3, 4 (bottom).

as d = 3, p = 3. Here the smoother starts to become unusable, reducing some
high-frequency components by 10% or less.

We also test the damped Jacobi smoother, S−1 = τ diag(Ah)
−1. In Figure 5,

we plot its smoothing rates in the case d = 2, p = 4 with damping parameter
τ ranging from 0.1 to 1.0. Again, the smoother fails to reduce the error in the
upper part of the spectrum, regardless of τ .

5 Conclusions

We have studied a geometric multigrid method for isogeometric discretizations
using a simple model problem. As already observed in [6], V-cycle iteration num-
bers depend strongly on the spline degree p. The local Fourier analysis indicates
that even on the real line without boundary conditions, performance degrades
as p is increased. CG iteration preconditioned with one V-cycle predictably im-
proves the convergence in the badly performing cases.

The numerical spectral analysis shows that both the Gauss-Seidel and the
damped Jacobi smoother fail to reduce high-frequency error components for
higher p. Higher space dimension compound this problem.
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