
Isogeometric Analysis with

Geometrically Continuous

Functions

M. Kapl, V. Vitrih, B. Jüttler,
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Abstract

We study the linear space of Cs-smooth isogeometric functions defined on a multi-patch
domain Ω ⊂ R2. We show that the construction of these functions is closely related to the
concept of geometric continuity of surfaces, which has originated in geometric design. More
precisely, the Cs-smoothness of isogeometric functions is found to be equivalent to geomet-
ric smoothness of the same order (Gs-smoothness) of their graph surfaces. This motivates
us to call them Cs-smooth geometrically continuous isogeometric functions. We present a
general framework to construct a basis and explore potential applications in isogeometric
analysis. Numerical experiments with bicubic and biquartic functions for performing L2 ap-
proximation and for solving Poisson’s equation and the biharmonic equation on two-patch
geometries are presented and indicate optimal rates of convergence.
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1. Introduction

In the framework of Isogeometric Analysis (IgA), which was introduced in [8], partial
differential equations are discretized by using functions that are obtained from a param-
eterization of the computational domain. Typically one considers parameterizations by
polynomial or rational spline functions (NURBS – non-uniform rational spline functions,
see [16]) but other types of functions have been used also. On the one hand, this approach
facilitates the data exchange with geometric design tools, since the mathematical tech-
nology used in Computer Aided Design (CAD) is based on parametric representations of
curves and surfaces. On the other hand, it has been observed that the increased smooth-
ness of the spline functions compared to traditional finite elements has a beneficial effect
on stability and convergence properties [3, 6].

Clearly, regular single-patch NURBS parameterizations are available only for domains
that are topologically equivalent to a box. Though it is possible to extend the applicability
of such parameterizations slightly by considering parameterizations with singular points
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(cf. [23]), it is preferable to use other techniques, due to the difficulties introduced by the
use of singularities.

One of the most promising approaches is to use multi-patch parameterizations, which
are coupled across their interfaces. Several coupling techniques are available, such as the
direct identification of the degrees of freedom along the boundaries as in [20], the use of
Lagrangian multipliers as in [10], or Nitsche’s method [12]. The approximation power of
T-spline representations of two-patch geometries was explored in [2]. However, these multi-
patch constructions in isogeometric analysis are limited to functions of low regularity (at
most C0 smoothness). Consequently, the resulting numerical solutions are highly smooth
almost everywhere, except across the interfaces between the patches of the multi-patch
discretization.

Another approach is the use of trimmed NURBS geometries, which can also be combined
with the multi-patch method. Such geometries have been used in the context of IgA (see
e.g. [9, 17, 19]). However, trimming implies unavoidable gaps, when two trimmed NURBS
patches are joined together (cf. [21]), and often requires advanced techniques for coupling
the discretizations, see [17]. Another related technique is the use of mapped B-splines on
general meshes [24].

The use of functions generated by subdivision algorithms has become a valuable alter-
native to NURBS, especially in Computer Graphics, since these functions lead to gap-free
surfaces of arbitrary topology (cf. [15]). One of the standard subdivision methods is the
Catmull-Clark subdivision, which generates surfaces consisting of bicubic patches, joined
with C2-smoothness everywhere except at extraordinary vertices, where they have a well-
defined tangent plane. A Catmull-Clark based isogeometric method for solids is presented
in [4]. Disadvantages of using subdivision methods are the possible reduction of the ap-
proximation power in the vicinity of extraordinary vertices, cf. [11] and the need for
special numerical integration techniques. In fact these functions are piecewise polynomial
functions with an infinite number of segments.

Another possibility to deal with domains of general topology is the use of T-splines,
which are a generalization of NURBS that allow T-junctions and extraordinary vertices
in the mesh (cf. [22]). Consequently, T-meshes can represent more complex geometries,
and this has been exploited in IgA, see e.g. [1, 2]. However, the mathematical properties
of the resulting isogeometric functions around the extraordinary vertices are not well un-
derstood. Around extraordinary vertices, T-splines are based on a special construction for
geometrically continuous surfaces.

Geometric continuity is a well-known and highly useful concept in geometric design [13]
and there exist numerous constructions for multi-patch surfaces with this property. It can
be used to construct isogeometric functions of higher smoothness [14], but the systematic
exploration of the potential for IgA has just started. Numerical experiments with a multi-
patch parameterization of a disk have been presented in [11]. The results indicate again
a reduction of the approximation power (and consequently a lower order of convergence)
which is caused by the extraordinary vertices, similar to the case of subdivision algorithms.

Our paper consists of two main parts. In the first part, which consists of Sections 2
and 3, we describe the concept of geometrically continuous isogeometric functions on gen-
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eral multi-patch domains, and we present a framework for computing a basis of the corre-
sponding isogeometric discretization space. In the second part (Section 4), we investigate
the approximation power of geometrically continuous isogeometric functions for a specific
configuration of two-patch geometries, in order to demonstrate their potential for IgA.
In addition to L2 approximation and solving Poisson’s equation, we also present results
concerning the biharmonic equation, where the use of C1-smooth test functions greatly
facilitates the (isogeometric) discretization. Our numerical results indicate that the geo-
metrically continuous representations maintain the full approximation power. This may
be due to the fact that the effect of geometric continuity in our approach is not restricted
to the vicinity of an extraordinary vertex as in earlier approaches, but spread out along
the entire interface between the patches.

2. Geometrically continuous isogeometric functions

In order to simplify the presentation we restrict ourselves to the case of two-dimensional
computational domains. Given a positive integer n, we consider n bijective, regular geom-
etry mappings

G(ℓ) : [0, 1]2 → R2, ℓ ∈ {1, . . . n},

which are represented in coordinates by

ξ(ℓ) = (ξ
(ℓ)
1 , ξ

(ℓ)
2 ) 7→ (G

(ℓ)
1 , G

(ℓ)
2 ) = G(ℓ)(ξ(ℓ)),

with G(ℓ) ∈ S(ℓ), where S(ℓ) is a tensor-product NURBS space of degree dℓ ∈ N2
0. Conse-

quently, each geometry mapping G(ℓ), ℓ ∈ {1, . . . , n}, is defined as a linear combination of

NURBS basis functions ψ
(ℓ)
i : [0, 1]2 → R, i.e.,

G(ℓ)(ξ(ℓ)) =
∑

i∈Iℓ
d
(ℓ)
i ψ

(ℓ)
i (ξ(ℓ)),

with a suitable index set Iℓ (a box in index space) and control points d
(ℓ)
i ∈ R2. Thus it

is a two-dimensional regular NURBS surface patch in R2. Each geometry mapping G(ℓ),
ℓ ∈ {1, . . . , n}, defines a quadrilateral subdomain or patch

Ω(ℓ) = G(ℓ)([0, 1]2).

We assume that the interiors of these subdomains are mutually disjoint, i.e.

G(ℓ)((0, 1)2) ∩G(k)((0, 1)2) = ∅

for ℓ, k ∈ {1, . . . , n} with ℓ 6= k. The computational domain Ω ⊂ R2 is the union of these
quadrilateral patches Ω(ℓ), i.e.,

Ω =
n⋃

ℓ=1

Ω(ℓ).
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On each patch Ω(ℓ), ℓ ∈ {1, . . . , n}, the space of isogeometric functions is given by

S(ℓ) ◦ (G(ℓ))−1.

Given a positive integer s, which specifies the order of smoothness, the space

V =
{
v ∈ Cs(Ω) : v|Ω(ℓ) ∈ S(ℓ) ◦ (G(ℓ))−1 for all ℓ ∈ {1, . . . , n}

}

contains the globally Cs-smooth isogeometric functions defined on the computational do-
main Ω.

Let us consider an isogeometric function w ∈ V in more detail. On each patch Ω(ℓ),
ℓ ∈ {1, . . . , n}, the function w is represented by

(w|Ω(ℓ))(x) = w(ℓ)(x) =
(
ω(ℓ) ◦ (G(ℓ))−1

)
(x), x ∈ Ω(ℓ), (1)

with ω(ℓ) ∈ S(ℓ). Note the difference between ω(ℓ), which is a function defined on the local
parameter domain [0, 1]2, and w(ℓ), which is the associated segment of the isogeometric
function defined on Ω(ℓ).

The associated graph surface F (ℓ) of w(ℓ) possesses the form

F (ℓ)(ξ(ℓ)) =
(
G

(ℓ)
1 (ξ(ℓ)), G

(ℓ)
2 (ξ(ℓ))︸ ︷︷ ︸

=G(ℓ)(ξ(ℓ))

, ω(ℓ)(ξ(ℓ))
)T

.

For any bivariate function f we denote with ∂if its partial derivative with respect to
the i-th argument. Depending on the domain of the function, this argument can be either
one of the local parameters ξ

(ℓ)
i or one of the coordinates xi in the physical domain.

We consider two neighboring patches Ω(ℓ) and Ω(k) with the common interface e(ℓk) =
Ω(ℓ)∩Ω(k), see Figure 1. Since w ∈ Cs(Ω), the derivatives up to order s of the functions w(ℓ)

and w(k) at the common interface have to be equal, i.e.,

(∂i1∂
j
2w

(ℓ))(x) = (∂i1∂
j
2w

(k))(x), x ∈ e(ℓk), (2)

for i + j ≤ s, where x = (x1, x2) are the global (world) coordinates with respect to the
computational domain Ω. We evaluate the derivatives at the boundary of the patches by
considering one-sided limits. Moreover we assume that the geometry mappings and their
inverses are at least Cs smooth.

We can also parameterize the graph surfaces F (ℓ) and F (k) with respect to the world
coordinates x1 and x2, simply as

(
x1, x2, w

(ℓ)(x1, x2)
)T

and
(
x1, x2, w

(k)(x1, x2)
)T
.

Clearly, these two parameterized surfaces are joined together with Cs smoothness along
e(ℓk). This is obvious for the first two coordinates, and it is implied by (2) for the third
one. Recall that two parametric surfaces are said to be joined together with geometric
smoothness of order s if there exist reparameterizations (parameter transformations) that
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G(ℓ)

G(k)

Ω(ℓ)

Ω(k)

Φ(ℓk)

ē(ℓk)

ē(kℓ)

e(ℓk)

Figure 1: The geometry mappings G(ℓ) and G(k) which are defined on a neighborhood of [0, 1]2.

transform them into two parametric surfaces that are joined together with Cs smoothness
[7, 13]. (Typically only a reparameterization of one of the two surfaces is considered, but
it is also possible to reparameterize both surfaces.) The two graph surfaces F (ℓ) and F (k)

satisfy the criterion of this definition. We thus obtain:

Theorem 1. Let w : Ω → R be an isogeometric function, which is defined on patches Ω(ℓ),
ℓ ∈ {1, . . . , n}, by isogeometric functions w(ℓ), given in (1). Then w ∈ V if and only if
for all neighboring patches Ω(ℓ) and Ω(k), ℓ, k ∈ {1, . . . , n} with ℓ 6= k, the associated graph
surfaces F (ℓ) and F (k) meet at the common interface with geometric continuity of order s.

Consequently, we will refer to the functions w ∈ V as Cs-smooth geometrically contin-
uous isogeometric functions. In fact, the surfaces themselves possess the standard smooth-
ness properties, but their graph surfaces are joined with geometric continuity.

The conditions (2) are equivalent to

(∂i1∂
j
2ω

(ℓ))(ξ(ℓ)) = (∂i1∂
j
2(ω

(k) ◦
(
G(k)

)−1 ◦G(ℓ)

︸ ︷︷ ︸
=φ(ℓk)

))(ξ(ℓ)), ξ(ℓ) ∈ ē(ℓk), (3)

for i+j ≤ s, where ē(ℓk) =
(
G(ℓ)

)−1
(e(ℓk)). To make these conditions well-defined, we addi-

tionally assume that the geometry mappings G(ℓ) and G(k) are defined on a neighborhood
of [0, 1]2, and that the reparameterization

φ(ℓk) : [0, 1]2 → [0, 1]2 : φ(ℓk)(ξ(ℓ)) =
(
(G(k))−1 ◦G(ℓ)

)
(ξ(ℓ))
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is hence also defined on the neighborhood of ē(ℓk) (see Figure 1).
Note that the conditions (3) are automatically satisfied for the functions

ω(ℓ) = G
(ℓ)
1 , ω(k) = G

(k)
1

and
ω(ℓ) = G

(ℓ)
2 , ω(k) = G

(k)
2 .

Returning to the general case and using these two observations, we conclude that the
graphs F (ℓ) and F (k) in (3) fulfill the conditions

(∂i1∂
j
2F

(ℓ))(ξ(ℓ)) = (∂i1∂
j
2(F

(k) ◦ φ(ℓk)))(ξ(ℓ)), ξ(ℓ) ∈ ē(ℓk), (4)

for i+j ≤ s, which is again in agreement with the definition of geometric continuity between
two surface patches. Consequently, Theorem 1 is equivalent to a very recent result of
Peters [14], who observed that matched G1-constructions yield C1-continuous isogeometric
elements, and to the possible extension of that result to higher order smoothness.

In contrast to the approach in [14], which is based on the usual viewpoint in geometric
design, we started our derivation from the given domain parameterization and not from the
reparameterization φ(ℓk). We feel that this viewpoint fits better into the IGA framework,
where the computational domain is central. It also leads to a natural framework for the
construction of a basis of the space V . This is described in the next section.

3. Constructing a basis for geometrically continuous isogeometric functions

Constructing a basis is an essential first step, which is required in order to use geomet-
rically continuous isogeometric functions for simulations. We will construct isogeometric
basis functions on Ω, which span the space V of all Cs smooth geometrically continuous
isogeometric functions. On each patch Ω(ℓ), ℓ ∈ {1, 2, . . . n}, any such basis function –
which we again denote by w – is given by a representation of the form (1). According
to Theorem 1, the functions w are Cs–smooth on Ω if and only if the graph surfaces join
with geometric smoothness of order s across the common interface e(ℓk) for all neighboring
patches Ω(ℓ), Ω(k), ℓ, k ∈ {1, 2, . . . , n}, with ℓ 6= k.

We choose a basis (ψ
(ℓ)
j )j∈Iℓ for each local spline space S(ℓ), e.g., the NURBS basis

functions on each patch. Consequently, the functions ω(ℓ) ∈ S(ℓ), which define the basis
function, have a local representations

ω(ℓ)(ξ(ℓ)) =
∑

j∈Iℓ

b
(ℓ)
j ψ

(ℓ)
j (ξ(ℓ)).

Using Eq. (1) and (2) we obtain constraints on their coefficients,

∑

j∈Iℓ
b
(ℓ)
j (∂i1∂

j
2(ψ

(ℓ)
j ◦

(
G(ℓ)

)−1
))(x) =

∑

j∈Ik
b
(k)
j (∂i1∂

j
2(ψ

(k)
j ◦

(
G(k)

)−1
))(x), x ∈ e(ℓk), (5)
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Since we are considering a finite-dimensional space of functions, these constraints are equiv-
alent to finitely many linear constraints on the coefficients b

(ℓ)
j and b

(k)
j , which can be

formulated as a homogeneous linear system

Sb = 0, b =
(
b
(ℓ)
j

)
j∈Iℓ,ℓ∈{1,2,...,n}

. (6)

We may choose a basis of the null space (the kernel) of the matrix S. Each basis vector
defines now via (1) a function

ωi =
(
ω
(ℓ)
i

)
ℓ∈{1,2,...,n}, i = 1, 2, . . . , dim(ker S).

Consequently, every function ωi then defines by (1) an isogeometric basis function

wi =
(
w

(ℓ)
i

)
ℓ∈{1,2,...,n} ∈ Cs(Ω).

Clearly, a possible strategy for a suitable basis of the null space of S could be the
selection of local basis functions with small supports and the avoidance of (global) basis
functions having large supports if feasible. Moreover, it is possible to extend the linear
system (6) by adding further linear equations to satisfy certain conditions for the basis,
e.g., the fulfillment of the boundary conditions for solving the Poisson’s equation and the
biharmonic equation (see Sections 4.3 and 4.4).

Let us consider the case of two patches for s = 1 in more detail.

Example 2. We consider two patches G(ℓ)(ξ(ℓ)) and G(k)(ξ(k) with a common edge,

G(ℓ)(1, ξ2) = G(k)(0, ξ2), ξ2 = ξ
(ℓ)
2 = ξ

(k)
2 ∈ [0, 1], (7)

which is parameterized identically by both NURBS patches. Consequently, the isogeomet-
ric function is continuous across this edge if

ω(ℓ)(1, ξ2) = ω(k)(0, ξ2). (8)

We consider the tangent planes of the two graph surfaces F (ℓ) and F (k) at the points of
the common edge. They are spanned by the derivative vectors

∂1F
(ℓ)(1, ξ2), ∂2F

(ℓ)(1, ξ2) and ∂1F
(k)(0, ξ2), ∂2F

(k)(0, ξ2),

respectively. The C1-smoothness of the isogeometric test function is guaranteed if the 3×4
matrix formed by them has rank 2 only, since then the two tangent planes at any point
G(ℓ)(1, ξ2) are identical. Due to the identity

∂2F
(ℓ)(1, ξ2) = ∂2F

(k)(0, ξ2),

which is implied by the continuity conditions (7) and (8), this is equivalent to

det
(
(∂1F

(ℓ))(1, ξ2), (∂1F
(k))(0, ξ2), (∂2F

(k))(0, ξ2)
)
= 0, ξ2 ∈ [0, 1], (9)

which is a well-known condition for first oder geometric continuity between two surface
patches, cf. [7]. If for example F (ℓ) and F (k) are polynomial patches, then the left-hand
side of (9) is a polynomial and we can obtain the desired system of linear equations (6) by
setting all its coefficients to zero. ♦
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(a) (b) (c) (d)

Figure 2: Different two-patch domains which are defined by two biquartic Bézier patches G(1) and G(2).
The blue edge is the common edge of both patches. Only the red control points influence the dimension.
The black ones can be chosen arbitrarily.

k Domain (a) Domain (b) Domain (c) Domain (d)

0 10 10 9 3
1 16 16 13 3
2 22 21 17 3
3 28 26 21 3

k ≥ 1 (conjecture) 10 + 6k 11 + 5k 9 + 4k 3

Table 1: The number of geometrically continuous isogeometric basis functions of the second type for some
particular values of k for the domains shown in Fig. 2. For general k, the number is conjectured.

The dimension of the null space of S depends heavily on the geometry. The following
example for different two-patch domains demonstrates this observation.

Example 3. Let us consider four different pairs of geometry mappings G(1) and G(2),
which define computational domains Ω consisting of two quadrilateral patches Ω(1) and
Ω(2) (see Figure 2). All initial geometry mappings are given as biquartic Bézier patches
[0, 1]2 → R2. For the instances (a)-(c), these patches are (suitably degree-elevated) bilinear
representations of the plane, whereas in (d), the two patches are non-degenerate biquartic
representations, which are obtained by slightly changing the red control points of the
biquartic Bézier patches of (c), except the points on the boundary of the domain Ω. In
addition, the domains (a) and (b) consist of two symmetric rectangles and trapezoids,
respectively, which is in contrast to the domains (c) and (d), where the two patches are
not symmetric.

It should be noted that the results presented below concerning the dimension of V
depend only on the location of the control points along the interface and in the two neigh-
boring columns, which are shown in red. The location of the remaining control points can
be modified.

By inserting in both parameter directions k ∈ N0 equidistant inner knots of multiplic-
ity 3, we arrive at the knot vectors

(0, 0, 0, 0, 0, 1
k+1

, 1
k+1

, 1
k+1

, 2
k+1

, 2
k+1

, 2
k+1

, . . . , k
k+1

, k
k+1

, k
k+1

, 1, 1, 1, 1, 1),

and obtain a B-spline representation of degree (4, 4) of the biquartic Bézier patchesG(1) and
G(2). For each pair of these B-spline representations, it is possible to construct two different
kinds of C1-smooth geometrically continuous isogeometric functions, which contribute to
a basis of the space V .
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The basis functions of the first kind consists of local basis functions with a support that
is contained in one of the two patches only. More precisely, these functions are obtained by
composing the biquartic tensor-product B-splines on one of the patches with the inverse
geometry mappings,

ψ
(ℓ)
i ◦ (G(ℓ))−1

where the support of the B-spline does not intersect the interface with the other patch.
Consequently, these functions have only one non-zero coefficient b

(ℓ)
j and all coefficients b

(ℓ)
j,i

of these functions, which correspond to the control points of the common edge or one of
the neighboring columns of the two patches G(1) and G(2) (i.e the red control points for

k = 0), are zero. Since the coefficients b
(ℓ)
j,i of these isogeometric functions do not depend

on the initial geometry, they have the same value for all four instances (a)-(d), and we
obtain the same number of such functions for all cases.

In contrast, the functions of the second kind depend on the initial geometry. Here, the
coefficients b

(ℓ)
j,i, which do not correspond to the control points of the common edge or one

of the neighboring columns of the two resulting spline patches, are zero.
Let ν(k) denote the number of the functions of the second kind, which are obtained

by inserting in both parameter directions k ≥ 0 equidistant inner knots of multiplicity 3.
This number heavily depends on the initial geometry which is presented in Table 1. We
explicitly computed the number of these functions for several small values of k and used
these results to formulate a conjecture for the general case.

Note that for the domain (d) we obtain (independently of k) only 3 such functions.
The existence of at least 3 functions are guaranteed, since the constant function and the
two (additional) linear functions on the computational domain are always contained in
the space V . For the instances (a)-(c) the number ν(k) linearly increases with respect to
k, which provides us a possibility to generate a sequence of nested spaces of C1-smooth
geometrically continuous isogeometric functions by refining the geometry mappings in an
appropriate way (see Subsection 4.1). ♦

4. Numerical results

In this section we will consider the first nontrivial case, i.e., two-patch domains with
C1-continuous test functions over them. For different two-patch domains we will construct
sequences of nested spaces of C1-smooth geometrically continuous isogeometric functions
by using bicubic and biquartic graphs of isogeometric elements. We will use these result-
ing functions to solve different partial differential equations, including L2 approximation,
solving the Poisson’s equation and solving the biharmonic equation.

4.1. Setting of two-patch configurations

We consider again the case of a two-patch domain Ω, consisting of two patches Ω(1) and
Ω(2), i.e. Ω = Ω(1)∪Ω(2), which are glued together in such a way that they share the whole
common edge (see e.g. Figure 2 and 3). We will construct a sequence of nested spaces
of C1-smooth geometrically continuous isogeometric functions defined on this two-patch
domain Ω.
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More precisely, we consider the case of two bilinear patches without any further symme-
tries (similar to case (c) in Figure 2), which are represented as bicubic (p = 3) or biquartic
(p = 4) patches using degree elevation. In addition, in order to obtain a finer space, we
insert 2L − 1, L ∈ N, equidistant inner knots of multiplicity p − 1 in both parameter di-
rections, where L is the level of the refinement. Moreover we also modified some of the
control points (sufficiently far away from the interface) to obtain more general geometries.

By solving the linear system (6), we obtain C1-smooth geometrically continuous isoge-
ometric basis functions for a refined space, which will be denote by Vh, where h = O(2−L).
The geometrically continuous isogeometric functions are globally C1-smooth and piecewise
C∞-smooth, and therefore belong to the space H2(Ω). Since all functions v′ ∈ Vh′ can be
represented as linear combinations of functions v ∈ Vh for h ≤ h′, we get a sequence of
nested spaces Vh ⊂ H2(Ω).

Later, for solving the Poisson’s equation and the biharmonic equation, respectively, we
will need C1-smooth geometrically continuous isogeometric functions wi, which satisfy the
boundary conditions

wi(x) = 0 on ∂Ω

and

wi(x) =
∂wi

∂n
(x) = 0 on ∂Ω,

respectively. We obtain sequences of nested spaces by solving the linear system (6) with
additional linear equations for the corresponding boundary conditions. These spaces will
be denoted by V0,0h and V1,0h, respectively. In case of the Poisson’s equation we get

V0,0h ⊂ H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω},

(more precisely, V0,0h ⊂ H1
0 (Ω)∩H2(Ω)), and in case of the biharmonic equation we obtain

V1,0h ⊂ H2
0(Ω) = {v ∈ H2(Ω) : v =

∂v

∂n
= 0 on ∂Ω}.

Example 4. We consider the three different computational domains Ω, shown in Figure 3
(first row), which consist of two quadrilateral patches Ω(1) and Ω(2). For the domains (a)
and (b), the corresponding initial geometry mappings G(1) and G(2) are bilinear parame-
terizations, which are represented as Bézier patches of degree (p, p) for p = 3, 4. In case
of domain (c), the initial geometry mappings G(1) and G(2) are again Bézier patches of
degree (p, p) for p = 3, 4, but they are chosen in such a way that the control points of the
common edge and of the first neighboring columns are a part of a bilinear parameteriza-
tion. In addition, the figure also shows the different exact analytic solutions, which will be
used in the remaining examples in this section to verify the order of convergence.

Table 2 reports the number of isogeometric basis functions for various levels L of re-
finement and for the different boundary conditions. ♦

In the following subsections we present three possible applications of these isogeometric
functions over two-patch domains, in order to demonstrate their potential for IgA on the
basis of several examples.
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(a) (b) (c)
Computational domains Ω

Graphs of functions z on Ω

Graphs of functions u on Ω with the property u = 0 on ∂Ω.

Graphs of functions ũ on Ω with the property ũ = ∂ũ
∂n = 0 on ∂Ω.

Figure 3: Three different two-patch domains Ω (first row) on which different functions are defined, which
are to be approximated by L2 norm minimization (second row) in Example 5, or used as exact solutions
(third row) for Poisson’s equation in Example 6, or as exact solutions (fourth row) for the biharmonic
equation in Example 7.

4.2. L2 approximation

Let z : Ω → R be a smooth function defined on a two-patch domain Ω = Ω(1) ∪ Ω(2).
In addition, let {wi}i∈I for I = {1, 2, . . .dimVh} be a set of C1-smooth geometrically
continuous isogeometric functions, which form a basis of a subspace Vh of H2(Ω). We
approximate the function z by the function

uh(x) =
∑

i∈I
ciwi(x), ci ∈ R,

11



b.c. L2 approximation Poisson’s equation Biharmonic equation
Bicubic Biquartic Bicubic Biquartic Bicubic Biquartic

L # patches # bfct # k2 # bfct # k2 # bfct # k2 # bfct # k2 # bfct # k2 # bfct # k2

0 2 23 7 39 9 5 1 15 3 - -
1 8 57 9 109 13 27 3 67 7 - 35 3
2 32 173 13 357 21 119 7 279 15 75 3 211 11
3 128 597 21 1285 37 495 15 1135 31 403 11 995 27
4 512 2213 37 4869 69 2015 31 4575 63 1827 27 4291 59
5 2048 8517 69 19849 133 8127 63 18367 127 7747 59 17795 123

Table 2: The number of C1-smooth geometrically continuous isogeometric basis functions (# bfct: in total,
# k2: second kind) for each level L for the three domains in Fig. 7 without boundary conditions (for L2

approximation) and with homogeneous boundary conditions of order 0 and 1 (for Poisson’s equation and
for the biharmonic equation).

using the least squares approach, i.e., we compute the coefficients {ci}i∈I such that

‖uh − z‖20 =
∫

Ω

(uh(x)− z(x))2dx → min
ci, i∈I

. (10)

The minimization problem (10) can be formulated as a system of linear equations
Kc = z for the unknown coefficients c = (ci)i∈I , where the elements of the (mass) matrix
K = (ki,j)i,j∈I and of the vector z = (zi)i∈I are

ki,j =

∫

Ω

wi(x)wj(x)dx and zi =

∫

Ω

z(x)wi(x)dx.

Since the functions wi are given as in (1) the entries ki,j and zi can be rewritten as

ki,j = k
(1)
i,j + k

(2)
i,j , k

(ℓ)
i,j =

∫

[0,1]2
ω
(ℓ)
i (ξ(ℓ))ω

(ℓ)
j (ξ(ℓ))| detJ (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

and

zi = z
(1)
i + z

(2)
i , z

(ℓ)
i,j =

∫

[0,1]2
z(G(ℓ)(ξ(ℓ)))ω

(ℓ)
i (ξ(ℓ))| det J (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

where J (ℓ) is the Jacobian of G(ℓ).

Example 5. We use the isogeometric basis functions on the three domains described in
the previous example to apply L2 approximation to smooth functions, which are defined
on the domains (a)-(c).

More precisely, we approximate for all three domains the same function

z(x1, x2) = 2 cos(2x1) sin(2x2), (11)

restricted to the different domains, see Figure 3 (second row). The resulting H0-errors (i.e.
L2-errors) and convergence rates for the different level L of refinement are presented in
Table 3. The numerical results indicate that the convergence rate is optimal with respect
to the H0-norm, which is O(h4) and O(h5) for bicubic and biquartic cases, respectively. ♦

12



Bicubic Biquartic
Domain (a) Domain (b) Domain (c) Domain (a) Domain (b) Domain (c)

L ||z−uh||0
||z||0

c.r. ||·||0
||z−uh||0

||z||0
c.r. ||·||0

||z−uh||0
||z||0

c.r. ||·||0
||z−uh||0

||z||0
c.r. ||·||0

||z−uh||0
||z||0

c.r. ||·||0
||z−uh||0

||z||0
c.r. ||·||0

0 0.62276 - 0.60175 - 0.44238 - 0.09259 - 0.36954 - 0.09068 -
1 0.05315 3.5505 0.18912 1.67 0.04593 3.2679 0.0157 2.5603 0.03667 3.333 0.00987 3.1992
2 0.00614 3.114 0.01192 3.9879 0.0054 3.0917 0.00042 5.235 0.00272 3.7524 0.00031 4.9781
3 0.0005 3.6293 0.00126 3.2469 0.00038 3.8381 9.6 10−6 5.438 0.00005 5.6651 8.3 10−6 5.2331
4 0.00004 3.7407 0.0001 3.5831 0.00003 3.7617 2.6 10−7 5.2044 1.3 10−6 5.3824 2.3 10−7 5.1522
5 2.5 10−6 3.9087 7.4 10−6 3.8275 1.9 10−6 3.8892 7.5 10−9 5.1122 3.6 10−8 5.1611 6.7 10−9 5.1263

Table 3: The relative H0-errors with the estimated convergence rates (c.r.; the dyadic logarithm of the
ratio of two consecutive relative errors) obtained by approximating the function z, defined in (11), using
L2 norm minimization (see Example 5 and Figure 3, first and second row).

4.3. Poisson’s equation

We consider again a two–patch domain Ω = Ω(1) ∪ Ω(2), and a set {wi}i∈I for I =
{1, 2, . . .dimV0,0h} of C1-smooth geometrically continuous isogeometric functions, which
form a basis of a subspace V0,0h ⊂ H1

0 (Ω). We consider the following problem for the
unknown function u over the computational domain Ω,

{
△u(x) = f(x) on Ω
u(x) = 0 on ∂Ω

(12)

with f ∈ H0(Ω). Using the weak formulation and a applying isogeometric Galerkin pro-
jection (cf. [6]) leads to a system of linear equations

Sc = f

for the unknown coefficients c = (ci)i∈I , where the entries of the stiffness matrix S =
(si,j)i,j∈I and of the load vector f = (fi)i∈I are given by

si,j =

∫

Ω

(∇wi(x))
T∇wj(x)dx and fi =

∫

Ω

f(x)wi(x)dx, (13)

respectively. Using the isogeometric approach, we rewrite these integrals as

si,j = s
(1)
i,j + s

(2)
i,j , s

(ℓ)
i,j =

∫

[0,1]2
(∇ω(ℓ)

i (ξ(ℓ)))TN (ℓ)(ξ(ℓ))∇ω(ℓ)
j (ξ(ℓ)) dξ(ℓ), ℓ = 1, 2,

and

fi = f
(1)
i + f

(2)
i , f

(ℓ)
i,j =

∫

[0,1]2
f(G(ℓ)(ξ(ℓ)))ω

(ℓ)
i (ξ(ℓ))| detJ (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

with

N (ℓ)(ξ(ℓ)) =
(
J (ℓ)(ξ(ℓ))

)−T (
J (ℓ)(ξ(ℓ))

)−1

| detJ (ℓ)(ξ(ℓ))|, ℓ = 1, 2.
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Domain (a) Domain (b) Domain (c)
||u−uh||0

||u||0
c.r. ||·||0

||u−uh||1
||u||1

c.r. ||·||1
||u−uh||0

||u||0
c.r. ||·||0

||u−uh||1
||u||1

c.r. ||·||1
||u−uh||0

||u||0
c.r. ||·||0

||u−uh||1
||u||1

c.r. ||·||1

L Bicubic
0 0.76824 - 0.79715 - 0.85307 - 0.78634 - 0.77419 - 0.79388 -
1 0.0312 4.6219 0.06712 3.5701 0.15608 2.4504 0.21366 1.8798 0.08635 3.1645 0.16776 2.2425
2 0.00145 4.4272 0.00762 3.1382 0.0053 4.88 0.01752 3.6084 0.01184 2.867 0.03805 2.1406
3 0.00009 4.0313 0.00097 2.9709 0.00021 4.625 0.00177 3.3082 0.00055 4.4407 0.00402 3.2438
4 5.7 10−6 3.9702 0.00012 2.9675 0.00001 4.2529 0.00021 3.0843 0.00003 4.4278 0.00048 3.0505
5 3.6 10−7 3.9765 0.00002 2.981 6.8 10−7 4.0479 0.00003 3.014 1.5 10−6 4.0772 0.00006 2.9304

L Biquartic
0 0.01303 - 0.0256 - 0.16407 - 0.20565 - 0.06356 - 0.10765 -
1 0.00059 4.4648 0.00207 3.6269 0.0064 4.6792 0.01542 3.7376 0.01069 2.5717 0.03546 1.6022
2 0.00002 4.8915 0.00013 3.9454 0.0002 5.0164 0.00094 4.0393 0.00055 4.2792 0.00341 3.3765
3 5.6 10−7 5.1539 7.8 10−6 4.1024 5.3 10−6 5.2141 0.00005 4.2045 0.00002 4.9272 0.00023 3.9074
4 1.4 10−8 5.3021 4.3 10−7 4.18 1.3 10−7 5.3376 2.6 10−6 4.2651 5 10−7 5.1786 0.00001 4.0898
5 3.5 10−10 5.3383 2.4 10−8 4.1744 3.2 10−9 5.3586 1.4 10−7 4.2482 1.3 10−8 5.2902 7.5 10−7 4.1526

Table 4: The relative Hi-errors, i = 0, 1, with the corresponding estimated convergence rates (c.r.: the
dyadic logarithm of the ratio of two consecutive relative errors) obtained by solving the Poisson’s equations
for different exact solutions u, for the domains (a)-(c) (see Example 6 and Figure 3, first and third row).

Example 6. We consider again the three computational domains, which are shown in
Figure 3 (first row). For each of the domains (a)-(c) we consider a different right side
function f of the Poisson’s equation (12), which are obtained by differentiating

ua(x1, x2) = 10−
5
2x2
(

1
12
x1+x2)(4x1+x2− 14

)(
1
3
x1+x2− 3

)(
1
8
x1−x2+3

)(
9
4
x1+x2+

13
2

)
,

ub(x1, x2) =
1

20
√
10

(
18
25
x1 − x2

)
(x1 + x2)

(
3 + 21

20
x1 − x2

) (
3− 25

48
x1 − x2

)
(
19
10

+ 21
50
x1 + x2

) (
290
93

− 110
93
x1 + x2

)
,

and

uc(x1, x2) =
1

100
√
2

(
2
(
128327
48672

+ x1
)
+
(
x2 − 185

156

)2)(
2
(
215
72

− x1
)
+
(
x2 − 11

6

)2)

(
1
9
x1 + x2

) (
3
10
x1 − x2

) (
3 + 1

7
x1 − x2

) (
3− 1

3
x1 − x2

)
,

respectively. The three functions satisfy the boundary conditions u = 0 on ∂Ω, and are
visualized in Figure 3 (third row). The resulting H i-errors, i = 0, 1, with the corresponding
convergence rates are presented in Table 4. The numerical results indicate convergence
rates of O(h4−i) and O(h5−i) in the H i-norms, i = 0, 1, for the bicubic and the biquartic
case, respectively. ♦

4.4. Biharmonic equation

Higher order smoothness of isogeometric elements is particularly advantageous for solv-
ing high order partial differential equations. An example of such an equation is (the weak
formulation of) the biharmonic equation, where C1 smoothness of isogeometric functions
is an advantage, since test functions from the space H2(Ω) are required (cf. [5, 18]).

Let {wi}i∈I for I = {1, 2, . . .dimV1,0h} be a set of C1-smooth geometrically continuous
isogeometric functions, which form a basis of a subspace V1,0h of H2

0 (Ω), where Ω = Ω(1) ∪
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Ω(2) is a two-patch domain. As a model problem we consider the first biharmonic boundary
value problem for the unknown function u over the computational domain Ω,

{
△2u(x) = f(x) on Ω

u(x) = ∂u
∂n

(x) = 0 on ∂Ω
, (14)

with f ∈ H0(Ω). Using the weak formulation, we compute u ∈ H2
0 (Ω) such that

∫

Ω

△u(x)△v(x)dx =

∫

Ω

f(x)v(x)dx

for all v ∈ H2
0 (Ω) (see [18]). Using the Galerkin projection we find vh ∈ V1,0h by solving

the system of equations

∫

Ω

△uh(x)△vh(x)dx =

∫

Ω

f(x)vh(x)dx

for all vh ∈ V1,0h, which leads to a system of linear equations. More precisely, we are solving
the linear system Sc = f , for the coefficients of

uh(x) =
∑

i∈I
ciwi(x),

where

si,j =

∫

Ω

△wi(x)△wj(x)dx and fi =

∫

Ω

f(x)wi(x) dx,

respectively. After some computations we arrive at the following formulas for the elements
of the stiffness matrix and the load vector for the two-patch isogeometric case:

si,j = s
(1)
i,j +s

(2)
i,j , s

(ℓ)
i,j =

∫

[0,1]2
tr
(
M̃

(ℓ)
i (ξ(ℓ))

)
tr
(
M̃

(ℓ)
j (ξ(ℓ))

) 1

| det J (ℓ)(ξ(ℓ))|
dξ(ℓ), ℓ = 1, 2,

and

fi = f
(1)
i + f

(2)
i , f

(ℓ)
i,j =

∫

[0,1]2
f(G(ℓ)(ξ(ℓ)))ω

(ℓ)
i (ξ(ℓ))| detJ (ℓ)(ξ(ℓ))| dξ(ℓ), ℓ = 1, 2,

with

M̃
(ℓ)
i (ξ(ℓ)) =

(
J (ℓ)(ξ(ℓ))

)−T

M
(ℓ)
i (ξ(ℓ))

(
J (ℓ)(ξ(ℓ))

)−1

,

where M
(ℓ)
i =

(
m

(ℓ)
i; r,s

)
r,s=1,2

is given by

m
(ℓ)
i; r,s =

(
∂2F

(ℓ)
i

∂ξ
(ℓ)
r ∂ξ

(ℓ)
s

(ξ(ℓ)))T ·
(
∂F

(ℓ)
i

∂ξ
(ℓ)
1

(ξ(ℓ))× ∂F
(ℓ)
i

∂ξ
(ℓ)
2

(ξ(ℓ))

))
.
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Bicubic Biquartic
||u−uh||0

||u||0
c.r. ||·||0

||u−uh||1
||u||1

c.r. ||·||1
||u−uh||2

||u||2
c.r. ||·||2

||u−uh||0
||u||0

c.r. ||·||0
||u−uh||1

||u||1
c.r. ||·||1

||u−uh||2
||u||2

c.r. ||·||2

L Domain (a)
1 - - - - - - 0.03487 - 0.0825 - 0.21691 -
2 0.0854 - 0.10026 - 0.19868 - 0.01122 1.6367 0.01529 2.4316 0.04748 2.1916
3 0.01023 3.0619 0.01322 2.9231 0.04907 2.0175 0.00068 4.0498 0.00118 3.6939 0.0077 2.6253
4 0.00099 3.3717 0.00147 3.1638 0.01207 2.0237 0.00003 4.6554 0.00006 4.2169 0.00095 3.0169
5 0.00007 3.9088 0.00013 3.5344 0.00286 2.0758 8.8 10−7 4.9244 3.2 10−6 4.3237 0.00011 3.0704

L Domain (b)
1 - - - - - - 0.28053 - 0.36533 - 0.45296 -
2 0.26249 - 0.35642 - 0.46964 - 0.0067 5.3871 0.0182 4.327 0.05738 2.9808
3 0.00751 5.1264 0.01511 4.5602 0.07582 2.6309 0.00059 3.6641 0.00235 2.9509 0.01407 2.0271
4 0.0007 3.4276 0.00252 2.5817 0.0214 1.825 0.00002 4.9899 0.00015 3.935 0.00187 2.9112
5 0.00004 4.0957 0.00026 3.3062 0.00514 2.0572 3.7 10−7 5.4819 7.9 10−6 4.2917 0.0002 3.206

L Domain (c)
1 - - - - - - 0.15127 - 0.19195 - 0.34591 -
2 0.23492 - 0.26927 - 0.39737 - 0.00435 5.12 0.01153 4.0569 0.06199 2.4803
3 0.0037 5.9883 0.00827 5.0256 0.06516 2.6084 0.00141 1.6242 0.00273 2.0813 0.01605 1.9491
4 0.00149 1.3077 0.00266 1.637 0.01976 1.7218 0.00008 4.076 0.00022 3.6083 0.00284 2.499
5 0.00014 3.4688 0.0003 3.1319 0.00491 2.0072 3.2 10−6 4.7036 0.00001 4.1635 0.00036 2.9718

Table 5: The relative Hi-errors, i = 0, 1, 2, with the corresponding estimated convergence rates (c.r.;
the dyadic logarithm of the ratio of two consecutive relative errors) obtained by solving the biharmonic
equations for different exact solutions ũ, for the domains (a)-(c) (see Example 7 and Figure 3, first and
fourth row).

Example 7. We numerically solve the biharmonic equation (14) over the same three
computational domains Ω with the same associated initial geometry mappings G(1) and
G(2) as in Example 5 and 6 (see Figure 3, first row). We use the nested spaces V1,0h ⊂ H2

0 (Ω)
of C1-smooth geometrically continuous isogeometric functions for degree p = 3, 4, where
the number of resulting functions (for each level L) are presented in Table 2. Note, that for
the bicubic and the biquartic case, there do not exist non-trivial geometrically continuous
isogeometric functions for low levels L, due to the boundary conditions. Therefore, the
coarsest level starts with L = 2 and L = 1 for p = 3 and p = 4, respectively.

The right-hand side functions f of the biharmonic equation (14) for the domains (a)-
(c) are obtained by differentiating the functions ũ = u2, where u are the corresponding
functions from Example 6. These functions fulfill the boundary conditions ũ = ∂ũ

∂n
= 0

on ∂Ω, and are visualized in Figure 3 (fourth row). The resulting H i-errors, i = 0, 1, 2,
with the corresponding convergence rates are presented in Table 5. For the the numerical
results indicate a convergence rate O(h2) and O(h3) for the bicubic and the biquartic case,
respectively. ♦

5. Conclusion

We discussed Cs-smooth geometrically continuous isogeometric functions defined on
multi-patch domains Ω ⊂ R2. Their construction is based on the observation that the
geometric smoothness of the graph of such a function is equivalent to the smoothness of
the function over Ω. We also sketched a procedure to construct a basis for the space of
Cs-smooth geometrically continuous isogeometric functions.
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The potential of the resulting geometrically continuous isogeometric functions has been
demonstrated by several examples, including L2 approximation, the Poisson’s equation and
the biharmonic equation. For these examples, we considered different two patch-domains Ω
consisting of two quadrilateral patches, for which we generated geometrically continuous
isogeometric functions of order 1 and degree p = 3, 4. For all three different applications,
the numerical results indicated optimal convergence rates.

This is different from the experiments reported in [11], where a reduction of the order
of convergence for geometrically continuous discretizations has been observed. A possible
explanation is the fact that the effect of geometric continuity in those experiments was
concentrated at an extraordinary vertex, while we spread it out along the entire interface
between two patches. In fact, many constructions for geometrically continuous surfaces
in geometric modeling aim at limiting the effect of geometric continuity to the vicinity of
extraordinary vertices [13], as it is then possible to use standard constructions everywhere
except at very few places. However, our experiments seem to indicate that spreading
out the effect to geometric continuity is more appropriate for applications in isogeometric
analysis, in order to maintain the approximation power. Moreover, the latter approach
makes it also simpler to obtain nested spaces by h-refinement.

The present paper is restricted to two-patch domains. In order to overcome this limita-
tion, we are currently working on using our general framework to generate C1 smooth ge-
ometrically continuous isogeometric functions for multi-patch domains with extraordinary
vertices. A detailed investigation of the structure of the resulting spaces of geometrically
continuous isogeometric functions is of interest, too. On the one hand we could generate
basis functions with a small support, if feasible. On the other hand we aim at finding
explicit formulae, depending on the initial geometry, for the coefficients of the isogeometric
functions.

Another possible topic of future work is a theoretical investigation of experimentally ob-
tained approximation power of the geometrically continuous isogeometric functions. More-
over, one may use the considered class of two-patch domains as a reference configuration
to construct geometrically continuous isogeometric functions for more general two-patch
domains, such as domains without a line as common boundary. Finally, the extension of
the concept of geometrically continuous isogeometric functions to three-dimensional multi-
patch domains should be considered.
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