
Simultaneous optical flow and

source estimation: space-time

discretization and

preconditioning

R. Andreev, O. Scherzer, W.
Zulehner

G+S Report No. 20

November 2014



Simultaneous optical flow and source estimation:
space-time discretization and preconditioning

Roman Andreev1, Otmar Scherzer1,2, and Walter Zulehner3

1 Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

Altenberger Str. 69, 4040 Linz, Austria
2 Computational Science Center

University of Vienna
Oskar-Morgenstern Platz 1, 1090 Wien, Austria

3 Institute of Computational Mathematics
Johannes Kepler University

Altenberger Str. 69, 4040 Linz, Austria

Abstract. We consider the simultaneous estimation of an optical flow
field and an illumination source term in a movie sequence. The particular
optical flow equation is obtained by assuming that the image intensity is a
conserved quantity up to possible sources and sinks which represent vary-
ing illumination. We formulate this problem as an energy minimization
problem and propose a space-time simultaneous discretization for the
optimality system in saddle-point form. We investigate a precondition-
ing strategy that renders the discrete system well-conditioned uniformly
in the discretization resolution. Numerical experiments complement the
theory.
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1 Introduction

Optical flow is the apparent motion of objects, surfaces, and edges in a visual
scene. In Computer Vision the optical flow is calculated as the flow field regis-
tering pixels of a movie, which we understand as a sequence of ordered images.
The classical optical flow equation is based on the following assumptions:

1. Brightness constancy along each characteristic of the flow.
2. A slowly varying image sequence.

The first assumption implies that changes of intensities caused by varying il-
lumination (for instance shades) influence and distort the recovered flow. In
this paper we admit violations of this assumption, and aim at estimating global
changes of illumination and the effect of them onto the flow field. Indeed, the
problem we consider here consists in simultaneously determining the optical flow,
the brightness, and its possible sources and sinks in space and time. While stan-
dard optical flow algorithms process two successive frames of a movie sequence
at a time [16,17,18,3,13,6,1], we work with a continuous space-time simultaneous
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formulation similarly to [20]. An brief overview of gradient based optical flow
models and algorithms may be found in [14].

Related to our work is [21]. Therein, the standard optical flow constraint was
replaced by the continuity equation ∂tρ+∇ · (ρv) = 0, motivated by mass con-
servation in fluid flow. We relax the continuity equation by allowing distributed
sources g, and replace the momentum ρv by one unknown j, called the flux ; we
thus obtain the constraint ∂tρ+∇ · j = g.

The work [15], see also references therein, suggested incorporating physical
models to account for illumination changes, such as the diffusion of the heat
observed by infrared cameras. The parameters governing the physical model are
then estimated in parallel with the optical flow. Our ansatz is more naive in that
we treat the possible change in illumination as an additional unknown, but a
physical description can in principle be used instead.

As a further difference to the bulk of optical flow literature we treat the
density ρ as an unknown. We thus estimate (ρ, j, g) in parallel by minimizing a
functional J which consists of a discrepancy term for ρ and regularization terms
for j and g. This principle similar to [7]; however, using the flux j instead of the
velocity v results in linear optimality conditions characterizing the minimizer of
the functional J . While this is convenient for computation, it leads to somewhat
unexpected flow patterns (see Sections 5–6).

It is important to note that these optimality conditions form a set of equations
that are coupled in space-time. This is typical for optimal control problems with
spatio-temporal constraints due to the coupling of the original problem forward
in time and the adjoint problem backward in time. The main contribution of
this work is to propose and test a preconditioner for the discretized space-time
system in saddle-point form that is robust in the discretization parameters.

The outline of the paper is as follows. In Section 2 we introduce our optical
flow model, which consists in minimization of a quadratic cost functional over a
space of space-time dependent functions subject to an optical flow constraint. In
Section 3 the functional analytic framework is established. In Section 4 we rewrite
the optimality conditions in a saddle-point form and discuss its discretization and
preconditioning. In Section 5 we report on our numerical experiments. Section
6 concludes the paper.

In the following, 〈·, ·〉 denotes the duality pairing, while 〈·, ·〉X and ‖·‖X de-
note the scalar product and the norm of a Hilbert space X. The usual Lebesgue
and Sobolev spaces on a domain D are written as Lp(D) and Hs(D). We abbre-
viate ‖·‖L2(D) as ‖·‖D, and similarly for other L2 spaces.

2 Optical flow model

We consider a movie sequence of time length T > 0, with each frame defined on
a rectangular domain D ⊂ R2. We write J := (0, T ) for the temporal interval.
Our optical flow model is based on the scalar transport equation

∂tρ+∇ · j = g in J ×D. (1)
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Here, ρ denotes the density which is the intensity of the image considered as a
piecewise constant function; j denotes the flux which is the optical flow weighted
by the density; and g is a function that models varying spatial illumination.
The divergence ∇· acts on the spatial variable only. The functions ρ and g
are scalar-valued, while j is vector-valued on J̄ × D. Integrating (1) over a
subdomain D′ ⊂ D and using the divergence theorem for the j term, one sees
that the density ρ is either transported in or out of D′ over its boundary, or is
created/annihilated by means of the source term g.

In this paper we consider the problem of identifying the flux j and the source
g from a finite number of frames of a movie, indexed by T ⊆ J̄ :

ρτ ∈ L2(D), τ ∈ T . (2)

We aim at minimizing the data fidelity functional

FT (ρ) :=
1

2

1

T

∑

τ∈T
‖ρτ − ρ(τ)‖2D (3)

subject to the transport equation (1) and further constraints on the flux j and
the source g as discussed below. Here, the symbol

∑
τ∈T denotes the averaged

sum 1
#T
∑
τ∈T .

For comparison purposes we recall the standard optical flow equation, which
reads as follows:

∂tρ+ Φ · ∇ρ = 0 in J ×D. (4)

Equation (4) can be formally derived from (1) by identifying j and ρΦ and
neglecting small terms: Indeed, from (1) we get

∂tρ+ Φ · ∇ρ+ ρ∇ · Φ = 0 in J ×D. (5)

Hence, if the term ρ∇·Φ is negligible, and if there are no changes in illumination,
the equations are identical.

3 Functional analytic framework

We now introduce function spaces for which the transport equation (1) is well-
defined. We shall work with image intensity ρ ∈ H1,0 := H1(J ;L2(D)), flux
j ∈ H0,div := L2(J ;Hdiv(D)), and source g ∈ H0,0 := L2(J ;L2(D)). The super-
scripts indicate the Sobolev smoothness in time and space, respectively. Here,
Hdiv(D) is the space of vector-valued functions in [L2(D)]2 with distributional
divergence in L2(D). As a consequence of the Fubini–Tonelli theorem [22, Sec-
tion 0.3], the space H0,0 is isometrically isomorphic to L2(J × D). The norms
on H1(J) and Hdiv(D) are defined by

‖f‖2H1(J) := T−2 ‖f‖2J + ‖f ′‖2J , f ∈ H1(J),

‖v‖2Hdiv(D) := diam(D)−2 ‖v‖2D + ‖∇ · v‖2D , v ∈ Hdiv(D),
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where the scaling is so as to match the units. We introduce the product space

X := H1,0 ×H0,div ×H0,0

and associate it with the norm

‖(ρ, j, g)‖2X := ‖ρ‖2H1,0 + ‖j‖2H0,div + ‖g‖2H0,0 . (6)

The transport equation constraint (1) is reformulated via the linear operator

G : X → H0,0, G(ρ, j, g) := ∂tρ+∇ · j − g. (7)

Since G is continuous, the preimages of closed subsets are closed; in particular,
its kernel

Γ := G−1(0) ⊂ X (8)

is a closed linear subspace. It contains precisely the triples (ρ, j, g) ∈ X that
satisfy the transport equation (1).

Given two regularization parameters αj > 0 and αg > 0, we define the
penalization functional

R(j, g) :=
αj
2
‖j‖2H0,div +

αg
2
‖g‖2H0,0 , (j, g) ∈ H0,div ×H0,0, (9)

and, recalling FT from (3), the cost functional

J (ρ, j, g) := FT (ρ) +R(j, g), (ρ, j, g) ∈ X. (10)

The parameters αj and αg are dimensionless. The following lemma is straight-
forward.

Lemma 1. The functional J is Gâteaux differentiable on X. With ρτ from
(2), its Gâteaux derivative at (ρ, j, g) ∈ X is the continuous linear functional
J ′(ρ, j, g) = A(ρ, j, g)− `, where A : X → X ′ and ` ∈ X ′ are given by

〈A(ρ, j, g), (ρ̃, j̃, g̃)〉 =
1

T

∑

τ∈T
〈ρ(τ), ρ̃(τ)〉D + αj〈j, j̃〉H0,div + αg〈g, g̃〉H0,0 , (11)

`(ρ̃, j̃, g̃) =
1

T

∑

τ∈T
〈ρτ , ρ̃(τ)〉D, ∀(ρ̃, j̃, g̃) ∈ X. (12)

Moreover, A is continuous, self-adjoint, and Γ -elliptic,

∃α > 0 : 〈Av, v〉 ≥ α ‖v‖2X ∀v ∈ Γ. (13)

Further, A induces a seminorm |||·||| on X given by

|||(ρ, j, g)|||2 :=
1

T

∑

τ∈T
‖ρ(τ)‖2D + αj ‖j‖2H0,div + αg ‖g‖2H0,0 . (14)

This seminorm is a norm Γ = G−1(0), where it is equivalent to ‖·‖X .
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With the help of this lemma and standard arguments from variational calculus,
one can show strict convexity and coercivity properties of the functional J :

Lemma 2. The functional J defined in (10) is continuous and convex on X.
Moreover, it is strictly convex on Γ ,

J (λv+ + (1− λ)v−) < λJ (v+) + (1− λ)J (v−) ∀v± ∈ Γ, λ ∈ (0, 1), (15)

v+ 6= v−, and coercive on Γ ,

∃α > 0, β ≥ 0 : J (v) ≥ α ‖v‖2X − β ∀v ∈ Γ. (16)

Our optical flow problem now reads as follows:

Definition 1. For given regularization parameters α = (αj , αg), the optical flow
uα is the unique minimizer of the functional J over Γ .

Existence of the minimizer is due to standard arguments of the calculus of vari-
ations [12], because J is non-negative and proper (J 6= ∞) on Γ . Uniqueness
follows from the strict convexity (15) of J on Γ .

The minimizer uα of J is equivalently characterized in terms of first order
optimality conditions. By [12, Theorems 1.3–1.4 in §3.1.3], we have J ′(uα) = 0,
where J ′(u) ∈ Γ ′ is the Gateaux derivative of J at u ∈ Γ . To simplify the
notation we will omit the dependence on α. Using Lemma 1, the requirement
J ′(u) = 0 ∈ Γ ′ is equivalent to the variational problem

〈Au− `, v〉 = 0 ∀v ∈ Γ. (17)

The fact that this variational problem is posed on the implicitly defined subspace
Γ = G−1(0) leads to the saddle-point problem introduced in the next section.

4 Numerical solution

In order to minimize J we solve the equivalent variational problem (17). The
constraint u ∈ Γ is implemented using a Lagrange multiplier λ to complement
(17) to a saddle-point problem: Find (u, λ) ∈ X ×H0,0 such that

〈Au, v〉 + 〈Gu, µ〉 + 〈Gv, λ〉 = 〈`, v〉 ∀(v, µ) ∈ X ×H0,0. (18)

4.1 Discretization

In order to discretize (18) we introduce finite dimensional subspaces Xh ⊂ X and
Mh ⊂ H0,0, as specified below, and consider the discrete saddle-point system:
Find (uh, λh) ∈ Xh ×Mh such that

〈Auh, v〉 + 〈Guh, µ〉 + 〈Gv, λh〉 = 〈`, v〉 ∀(v, µ) ∈ Xh ×Mh. (19)
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With Ah : Xh → X ′h and Gh : Xh → M ′h, defined by Ahv := (Av)|Xh
and

Ghv := (Gv)|Mh
, v ∈ Xh, as well as `h := `|Xh

, the system (19) is equivalent to

Ah
(
uh
λh

)
:=

(
Ah G

′
h

Gh 0

)(
uh
λh

)
=

(
`h
0

)
, (20)

where G′h : Mh → X ′h is the H0,0-adjoint.
Analogously to the continuous case, we set

Γh := {uh ∈ Xh : 〈Guh, µ〉 = 0 ∀µ ∈Mh}. (21)

The Brezzi equivalence theorem, see [8, Satz III.4.3], states that the left-
hand-side of (19) defines an isomorphism Xh ×Mh → X ′h ×M ′h if and only if
the following two conditions are fulfilled:

1. A is Γh-elliptic,

∃αh > 0 : 〈Av, v〉 ≥ αh ‖v‖2X ∀v ∈ Γh. (22)

2. The discrete inf-sup constant is positive,

βh := inf
λ∈Mh\{0}

sup
v∈Xh\{0}

〈Gv, λ〉
‖v‖X ‖λ‖H0,0

> 0. (23)

We shall employ a discretization Xh ×Mh ⊂ X × H0,0 for which the two
rather restrictive conformity conditions

Γh ⊂ Γ and Mh ⊂ GXh (24)

hold. The first, together with Γ -ellipticity (13) of A, implies Γh-ellipticity (22) of
A, and the second immediately implies the discrete inf-sup condition (23) with
βh ≥ 1.

The square domain D is partitioned into non-overlapping open rectangles
and/or triangles, collected in Dh. Geometric compatibility conditions are im-
posed following [11, p.51]: each edge of any geometric element K ∈ Dh is either
part of the boundary ∂D or is also an edge of some other geometric element
K ′ ∈ Dh. By D∂

h we mean the set of edges E of all geometric elements in Dh

(shared edges occur only once). The temporal interval J = (0, T ) is partitioned
into open subintervals collected in Jh, such that J̄ =

⋃
I∈Jh Ī. Quantities in

H0,0, such as ∂tρ, ∇ · j, g, and λ, are discretized as piecewise constants on each
space-time geometric element I ×K, (I,K) ∈ Jh ×Dh. The conserved quantity
ρ ∈ H1,0 is discretized by continuous functions J → L2(D) that are affine on
each I ∈ Jh and have values in the space of piecewise constant functions on Dh.
The flux j ∈ H0,div is discretized by assigning a flux density jIE to each pair
(I, E) ∈ Jh ×D∂

h, such that jIE = 1
|I||E|

∫
I

∫
E
j(t, x) · n(x)dσ(x)dt, and interpo-

lated linearly into the inner of each geometric element I ×K ∈ Jh×Dh. This is
trivially possible on each rectangle, and corresponds to Raviart–Thomas inter-
polation on triangles [8, p.141]. It is then clear that the conformity conditions
(24), and therefore (22) and (23), are satisfied.
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4.2 Preconditioning

Several classes of preconditioners have been developed for saddle-point systems
of the form (20), see the survey [4]. Preconditioners based on approximations of
A−1h and of the Schur complement here Sh = GhA

−1
h G′h are most widely used.

However, our Ah is not, in general, invertible on the whole finite-dimensional
space Xh. Indeed, recall from (11) that A has the block structure

〈Ahv, v〉 =
1

T

∑

τ∈T
‖ρ(τ)‖2D + αj ‖j‖2H0,div + αg ‖g‖2H0,0 , (25)

where v = (ρ, j, g), so that the first block is not positive definite on H1,0.
In [5] a similar saddle-point system for a related problem from image regis-

tration was obtained, for which block-triangular preconditioners were proposed.
We replace the triangular preconditioner by the symmetric and indefinite pre-
conditioner Ph : Xh ×Mh → X ′h ×M ′h, given by

Ph :=

(
Âh 0
Gh I

)(
Â−1h 0

0 −Ŝh

)(
Âh G

′
h

0 I

)
, (26)

see [2]. It was shown in [19] that this allows to transform the indefinite saddle-
point system into a symmetric positive definite one for a new inner product
(see (27) below), so that the conjugate gradient (CG) method can be applied.
This is not possible for the preconditioned system of [5] due to nonreal spectrum.
Another well-known method to transform the indefinite saddle-point system into
a symmetric positive definite one was proposed in [10]. There it is also required
that Ah be positive definite on Xh, which is not true in our case.

It was shown in [19, Theorem 2.1] that if

Nh :=

(
Âh −Ah 0

0 GhÂ
−1
h G′h − Ŝh

)
(27)

is positive definite on Xh ×Mh then P−1h Ah is symmetric positive definite with
respect to the scalar product defined by Nh. To that end, assume:

1. Âh > Ah and GhÂ
−1
h G′h > Ŝh to assert that Nh > 0, as well as

2. Âh ≤M0Ah on kerGh, for some real constant M0 ≥ 1,
3. GhÂ

−1
h G′h ≤M1Ŝh for some real constant M1 ≥ 1.

Under those assumptions, the spectrum of P−1h Ah is positive and is contained
in an interval determined by the constants M0 and M1 [19, Theorem 2.2]. Im-

portantly, Âh ≤ M0Ah in the second condition is only required to hold on
kerGh = Γh, where Ah is positive definite by (22), and not on all of Xh.

We now specify our choice of Âh and Ŝh. For Âh we take the block operator
(25) with the first block replaced by

2Cρ

(
(#T )−2 ‖∂tρ‖2H0,0 + T−2 ‖ρ‖2H0,0

)
, (28)



8 R. Andreev, O. Scherzer and W. Zulehner

while the second and the third nonzero blocks are multiplied by two. Here,
Cρ > 0 is computed to satisfy

T−1
∑

τ∈T
|f(τ)|2 ≤ Cρ

(
(#T )−2 ‖f ′‖2J + T−2 ‖f‖2J

)
(29)

for all f ∈ H1(J). This entails Âh ≥ 2Ah, so that Âh > Ah is fulfilled in the first
assumption. The second assumption follows from the norm equivalence stated
in Lemma 1. The constant Cρ can be chosen independently of T and T , as long
as the subintervals defined by T are of comparable length.

For Ŝh we take the Cλ-fold of the Riesz isomorphism on H0,0, with, for
instance, 0 < Cλ < β2

h‖Âh‖−1, where βh > 0 is the discrete inf-sup constant (23).

Then GhÂ
−1
h G′h > Ŝh is fulfilled in the first assumption. The third assumption

follows by continuity of GhÂ
−1
h G′h on H0,0. In the numerical experiments below

we set Cλ = 1
2 .

It can be seen from the factorization (26) the application of the inverse of

the preconditioner only requires the application of Â−1h and Ŝ−1h (as well as Gh
and G′h). The application of Ŝ−1h is trivial since we work with piecewise constant

basis functions. In order to apply the block-diagonal operator Â−1h , it is useful

to observe that each block of Â has the Kronecker product form T ⊗ X. The
application of T⊗X and (T⊗X)−1 = T−1⊗X−1 is done by means of the matrix
identity (T ⊗X)±1Vec(u) = Vec(X±1uT±T), where Vec stacks the columns of
a matrix one after another into one long vector. In our Matlab implementation,
we use this identity and apply the direct solver to compute X−1u column-wise,
uT−T row-wise, etc. This technology is an important feature of space-time tensor
product discretizations.

5 Numerical examples

5.1 Robustness of preconditioner

We investigate the robustness of the discretization and the preconditioner with
respect to the spatial discretization. The image domain is D := (0, 3) × (0, 4)
and the temporal interval is J := (0, 2). A sequence of partitions D2−k , k =
0, 1, 2, . . . , 7, of D is obtained by subdividing D into (3 × 2k) × (4 × 2k) equal
rectangles. In each case, the partition Jh of J consists of 100 subintervals of
equal length (this choice is arbitrary). The input data (2) consists of two frames
ρ0 and ρ2, hence T = {0, 2}, as shown in Figure 1. The parameter choices in the
penalization functional (9) are αj = 10−4 and αg = 1, which promotes the flux
and puts a heavy penalty on the source term. We performed 20 CG iterations
with the preconditioner (26) and the energy norm (27) as described in Section
4.2. The residual in the energy norm is reduced by the iteration by a factor
≈ 106, for each choice of the spatial resolution level k. The results are depicted
in Figure 1. In Figure 2 (left) we report on the value of the cost functional in the
course of the CG iteration, for different spatial resolutions levels k. We observe
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that the iteration is robust in k. In Figure 2 (right), the convergence of the time-
averaged flux over the horizontal midline (for the final CG iterate) as a function
of the spatial resolution is shown. First order convergence in terms of the total
number of degrees of freedom is observed.
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Fig. 1. Top: Input data ρτ for τ = 0 (left) and τ = 2 (right). Middle, left to right : The
divergence of the computed flux, ∇ · j, at t ≈ 0, t ≈ 1 and t ≈ 2. For the purpose of
visualization, the flux is interpolated from the edges to the midpoint of each geometric
element. Bottom: The computed source term g at t = 0, 1, 2. Note the small scale of
10−3 in accordance with the choice of αg/αj = 104.

5.2 Vienna Prater movie

In this example we apply the method to a movie showing the Riesenrad at the
Vienna Prater park turning clockwise. A vertical dark strip moving from left to
right across the image has been superimposed artificially simulating shading, see
Figure 3. The movie consists of 200 frames of 256× 216 pixels each. This data is
mapped to the domain D = (0, 4)× (0, 3) and the temporal interval J = (0, 2).
The parameter choices in (9) is again αj = 10−4 and αg = 1. We look at frames
91 and 92 and zoom in on two regions highlighted in Figure 3. The computed
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Fig. 2. Left : The value of the cost functional J in the course of the conjugate gradient
iteration. The curves for different spatial resolutions overlap. Right : First order con-
vergence of the time-averaged flux over the horizontal midline as the spatial resolution
is increased. See Section 5.1.

discrete flux between these two frames in those two regions is shown in Figure 3.
It is interesting to note that the model generates a strong, almost uniform flux
j across the superimposed dark strip in the opposite direction of the movement
of the strip in order to transport the bright intensity from its bow to its stern.
One observes finer flow pattern within the strip away from its boundary caused
by the rotation of the Riesenrad, as the graycolor displaying ∇ · j in Figure 3
suggests. On the other hand, the moving bright spokes of the Riesenrad cause
the intensities to flow across them in the same direction (as one might expect
from the optical flow model).

6 Conclusions

We have considered a version of the in optical flow equations in which the image
brightness evolves as a conserved quantity up to possible sources (or sinks). We
have formulated the problem of estimating the optical flow and the source as
an energy minimization problem. We have investigated a space-time discretiza-
tion and preconditioning strategy for the resulting saddle-point equations. The
discretization was shown to be stable in the Galerkin sense, and the precondi-
tioner to be robust in the discretization resolution. In particular, applying the
conjugate gradient method (with a suitable scalar product for which the system
matrix is symmetric and positive definite) allows to solve the complete space-
time problem within a few iterations. We have found that the transport equation
model with the chosen penalization functional produces rather global flows; we
do not expect this to happen if the “kinetic energy” ‖j‖2/ρ is penalized instead
of the divergence of the flux j and wish to investigate this type of penalization
next. We note, however, that our model is typical for control problems with a
quadratic cost functional subject to a linear time-dependent PDE constraint,
and we therefore expect the results to be applicable elsewhere. It would further
be of interest to investigate robustness of the proposed preconditioner in the
penalization parameters.
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Fig. 3. Top: Two consecutive frames ρτ for τ ≈ 0.91 in the example in Section 5.2.
Highlighted in white are the regions of [33, 64]× [1, 36] pixels (left) and [65, 96]× [1, 36]
pixels (right). The Riesenrad rotates clockwise and the superimposed dark vertical strip
moves eastwards (→). Bottom: Computed discrete flux for the example in Section 5.2.
Left: The region of [33, 64]× [1, 36] pixels. Right: The region of [65, 96]× [1, 36] pixels.
In both cases, there is a strong flux westward (←) across the superimposed dark strip,
which moves eastwards (→). There is a less distinct flux directed north-east (↗) across
the bright spokes of the Riesenrad. The background color shows the divergence ∇ · j.
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