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Abstract. In this work, we study the approximation properties of a
new method, that applies the Isogeometric Analysis (IGA) discretiza-
tion concept and the Discontinuous Galerkin technique on the inter-
faces, for solving linear diffusion with discontinuous diffusion coefficients.
The computational domain is divided into non-overlapping sub-domains,
called patches in IGA, where B−Spline finite dimensional approxima-
tions spaces are constructed. The solution of the problem is approxi-
mated in every sub-domain without imposing any matching grid con-
ditions and without any continuity requirements for the discrete solu-
tion on the interfaces. Numerical fluxes with interior penalty jump terms
are applied in order to treat the discontinuities of the discrete solution
on the interfaces. We present an a priori error analysis for problems
set in two- and three- dimensional domains, with solutions belonging to
W l,p, l ≥ 2, p ∈ ( 2d

d+2(l−1)
, 2]. In any case, we show optimal convergence

rates of the discretization with respect to ‖.‖DG-norm.

Key words: linear elliptic problems, discontinuous coefficients, Dis-
continuous Galerkin discretization, Isogeometric Analysis, non-matching
grids, low regularity solutions, a priori error estimates.

1 Introduction

The finite element methods (FEM) and, in particular, discontinuous Ga-
lerkin (DG) finite element methods are very often used for solving ellip-
tic boundary value problems which arise from engineering applications,
see, e.g., [1],[2],[3]. Although the isoparametric FEM and even FEM with
curved finite elements have been proposed and analyzed long time ago,
cf. [4], [5], [6], [1], the quality of the numerical results for realistic prob-
lems in complicated geometries depends on the quality of the discretized
geometry (triangulation of the domain), which is usually performed by a
mesh generator. In many situations (e.g. fluid dynamics problems), ex-
tremely fine meshes are required around objects, singular corner points
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e.t.c. in order to achieve numerical solutions with desired resolution. This
fact leads to an increased number of degrees of freedom, and thus to an
increased overall computational cost for solving the discrete problem, see,
e.g., [7].

Recently, the Isogeometric Analysis (IGA) concept has been applied
for approximating solutions of elliptic problems [8], [9]. IGA generalizes
and improves the classical FE (even isoparametric FE) methodology in
the following direction: complex computational domains can be exactly
represented as images of parametric functions which are constructed by
using superior classes of finite dimensional spaces e.g. B-Splines, Non-
Uniform Rational B-Splines (NURBS), see [10], [11]. The same class of
functions is used to approximate the exact solution without increasing
the computational cost for the computation of the resulting stiffness ma-
trices [12], systematic h−k refinement procedures can easily be developed
[13], and, last but not least, the method can be materialized in parallel
environment incorporating fast domain decomposition solvers [14], [15],
[16].

During the last two decades, there has been an increasing interest in
discontinuous Galerkin finite element methods for the numerical solution
of several types of partial differential equations, see, e.g., [17] and [2].
This is due to the advantages of the local approximation spaces without
continuity requirements that DG methods offer [18], [19], [20], [21].

In this paper, we develop a method by trying to combine the best fea-
tures of the two aforementioned methods. Specifically, we study and an-
alyze the IGA approximation properties to elliptic boundary value prob-
lems with discontinuous coefficients. The problem is set in a complex,
bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, which is subdivided in a
union of non-overlapping sub-domains, say S(Ω) := {Ωi}Ni=1. For sim-
plicity, we assume that the discontinuity of the diffusion coefficients is
only observed across sub-domain boundaries (interfaces). The weak solu-
tion of the problem is approximated in every sub-domain applying IGA
methodology, [9], without matching grid conditions along the ∂Ωi, as well
without imposing continuity requirements for the approximation spaces
on ∂Ωi. By construction, DG methods use discontinuous approximation
spaces utilizing numerical fluxes on the interfaces, [22], and have been
efficiently used for solving problems on non-matching grids in the past,
[21], [23], [24]. Here, the numerical scheme is formulated by applying nu-
merical fluxes with interior penalty coefficients on the interfaces of the
sub-domains (patches), and using IGA in every patch independently. The
resulting discretization technique is called Discontinuous Galerkin Iso-
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geometric Analysis (DGIGA). A crucial point in the presented work, is
the expression of the numerical flux interface terms as a sum over the
micro-elements edges taking note of the non-matching sub-domain grids.
This gives the opportunity to proceed in the error analysis by applying
the trace inequalities locally as in DG finite element methods. There are
many papers, which present DG finite element approximations for elliptic
problems, see, e.g., [18], [25], the monographs [20],[19], and, in particu-
lar, for the discontinuous coefficient case, [21], [26]. However, there are
only a few publications on the DGIGA and their analysis. In [27], the au-
thor presented discretization error estimates for the DGIGA of plane (2d)
diffusion problems on meshes matching across the patch boundaries and
under the assumption of sufficiently smooth solutions. This analysis obvi-
ously carries over to plane linear elasticity problems which have recently
been studied numerically in [16]. In [28], the DG technology has been
used to handle no-slip boundary conditions and multi-patch geometries
for IGA of Darcy-Stokes-Brinkman equations. DGIGA discretizations of
heterogenous diffusion problems on open and closed surfaces, which are
given by a multipatch NURBS representation, are constructed and rigor-
ously analysed in [29].

In the first part, we give a priori error estimates in the ‖.‖DG norm
under the usual regularity assumption on the exact solution, i.e. u ∈
W 1,2(Ω)∩W l≥2,2(S(Ω)). Next, we consider the model problem with low

regularity solution u ∈ W 1,2(Ω) ∩ W l≥2,p∈( 2d
d+2(l−1)

,2)
(S(Ω)) and derive

error estimates in the ‖.‖DG. These estimates are optimal with respect to
the space size discretization. We note that the error analysis in the case
of low regularity solutions includes many ingredients of the DG FE error
analysis of [30] and [26] on low regularity boundary value problems. To
the best of our knowledge, optimal error analysis for IGA discretizations
combined with DG techniques for solving elliptic problems with discon-
tinuous coefficients in general domains Ω ⊂ Rd, d = 2, 3 have not been
yet presented in the literature.

The paper is organized as follows. In Section 2 the PDE problem is
described. In Section 3, we introduce some notations. The local Bh(S(Ω))
approximation space and the numerical scheme are also presented. Several
auxiliary results and the analysis of the method for the case of usual
regularity solutions are provided in Section 4. The analysis of the method
for low regularity solutions is given in Section 5. Section 6 includes several
numerical examples that verify the theoretical convergence rates. The
paper closes with the conclusions.
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2 The model problem

Let Ω be a bounded Lipschitz domain in Rd, d = 2, 3, with the boundary
∂Ω. For simplicity, we restrict our study to the model problem

−div(α∇u) = f in Ω, and u = uD on ∂Ω, (2.1)

where f and uD are given smooth data. In (2.1), α is the diffusion coef-
ficient and assume be bounded by above and below by strictly positive
constants.

The weak formulation is to find a function u ∈ W 1,2(Ω) such that
u := uD on ∂Ω and satisfies

a(u, φ) =l(φ), ∀φ ∈W 1,2
0 (Ω), (2.2a)

where

a(u, φ) =

∫

Ω
α∇u∇φdx, and l(φ) =

∫

Ω
fφ dx. (2.2b)

Results concerning the existence and uniqueness of the solution u of prob-
lem (2.2) can be derived by a simple application of Lax-Milgram Lemma,
[31]. To avoid unnecessary long formulas below, we only considered in
(2.1) non-homogeneous Dirichlet boundary conditions on ∂Ω. However,
the analysis can be easily generalized to Neumann and Robin type bound-
ary conditions on a part of ∂Ω, since they are naturally introduced in the
DG formulation.

3 Preliminaries - DG notation

Throughout this work, we denote by Lp(Ω), p > 1 the Lebesgue spaces for

which
∫
Ω |u(x)|p dx <∞, endowed with the norm ‖u‖Lp(Ω) =

( ∫
Ω |u(x)|p dx

) 1
p .

By D(Ω), we define the the space of C∞ functions with compact sup-
port in Ω, and by Ck(Ω) the set of functions with k − th order contin-
ues derivatives. In dealing with differential operators in Sobolev spaces,
we use the following common conventions. For any ( multi-index) α =
(α1, ..., αd), αj ≥ 0, j = 1, ..., d, with degree |α| = ∑d

j=1 αj , we define the
differential operator

Da = Dα1
1 · · ·Dαd

d ,with Dj =
∂

∂xj
, D(0,...,0)u = u. (3.1)
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We also denote by W l,p(Ω), l positive integer and 1 ≤ p ≤ ∞, the Sobolev
space functions endowed with the norm

‖u‖W l,p(Ω) =
( ∑

0≤|α|≤m
‖Dαu‖pLp(Ω)

) 1
p , (3.2a)

‖u‖W l,∞(Ω) = max0≤|α|≤m‖Dαu‖∞. (3.2b)

For more details for the above definitions, we refer [32].
In order to apply the IGA methodology for the problem (2.1), the

domain Ω is subdivided into a union polygonal sub-domains, S(Ω) :=
{Ωi}Ni=1, such that

Ω̄ =
N⋃

i=1

Ω̄i, with Ωi ∩Ωj = Ø, if j 6= i. (3.3)

The subdivision of Ω assumed to be compatible with the discontinuities
of α, [21],[26]. In other words, the diffusion coefficient assumed to be
constant in the interior of Ωi and its discontinuities can appear only on
the interfaces Fij = ∂Ωi

⋂
∂Ωj .

As it is common in the IGA analysis, we assume a parametric domain
D̂ of unit length, (e.g. D̂ = [0, 1]d). For any Ωi, we associate n = 1, ..., d

knot vectors Ξ
(i)
n on D̂, which create a mesh T

(i)

hi,D̂
= {Êm}Mi

m=1, where

Êm are the micro-elements. We shall refer T
(i)

hi,D̂
as the parametric mesh

of Ωi. For all Êm ∈ T
(i)

hi,D̂
we denote by hÊm the diameter of Êm and

by hi = max{hÊm} the parametric meshsize of T
(i)

hi,D̂
. Further, we assume

the following properties on every T
(i)

hi,D̂
,

– if Êm ∈ T (i)

hi,D̂
then hi ∼ hÊm , and also for the boundary edges eÊm ⊂

∂Êm holds that hÊm ∼ eÊm ,

– quasi-uniformity: for two adjacent micro-elements Êm, Ên it holds
hÊm ∼ hÊn ,

On every T
(i)

hi,D̂
, we construct the finite dimensional space B̂(i)

hi
spanned

by B-Spline basis functions of degree k, [10],

B̂(i)
hi

= span{B̂(i)
j (x̂)}

dim(B̂(i)
hi

)

j=0 , (3.4a)
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where every j-base function B̂
(i)
j (x̂) in (3.4a) is derived by means of tensor

products of one-dimensional B-Spline basis functions, e.g.

B̂
(i)
j (x̂) = B̂

(i)
j1

(x̂1) · · · B̂(i)
jd

(x̂d). (3.4b)

For simplicity in the following error analysis, we consider the case where

the basis functions of every B̂(i)
hi
, i = 1, ..., N have the same degree, k.

Every sub-domain Ωi ∈ S(Ω), i = 1, ..., N , is exactly represented
through a parametrization (one-to-one mapping), [12], having the form

Φi : D̂ → Ωi, Φi(x̂) =
∑

j

C
(i)
j B̂

(i)
j (x̂) := x ∈ Ωi, (3.5a)

with x̂ = Ψi(x) := Φ−1i (x), (3.5b)

where C
(i)
j are the control points.Based on Φi of (3.5), we construct a

mesh T
(i)
hi,Ωi

= {Em}Mi
m=1 for every Ωi, whose vertices are the images of

the vertices of the corresponding parametric mesh T
(i)

hi,D̂
through Φi. If

hΩi = max{hEm}, Em ∈ T
(i)
hi,Ωi

is the sub-domain Ωi mesh size, then
based on definition (3.5) of Φi, there is a constant C := C(‖Φi(x̂)‖∞)
such that hi ∼ ChΩi . In what follows, we denote the sub-domain mesh
size by hi without the constant C := C(‖Φi(x̂)‖∞) explicitly appearing.

The mesh of Ω can be considered to be Th(Ω) =
⋃N
i=1 T

(i)
hi,Ωi

, where
we note that there are no matching mesh requirements on the interior
interfaces Fij = ∂Ωi

⋂
∂Ωj , i 6= j. For the sake of brevity in our notations,

the interior faces of the boundary of the sub-domains are denoted by FI
and the collection of the faces that belong to ∂Ω by FB, e.g. F ∈ FB if
there is a Ωi such that F = ∂Ωi

⋂
∂Ω. We denote the set of all sub-domain

faces by F .
Further, we define on Ω the finite dimensional B−Spline space

Bh(S(Ω)) = B(1)
h1
× ... × B(N)

hN
, where every B(i)

hi
is defined on T

(i)
hi,Ωi

as
follows

B(i)
hi

:= {B(i)
hi
|Ωi : B

(i)
h (x̂) = B̂

(i)
h ◦Ψi(x), ∀B̂(i)

h ∈ B̂(i)
hi
}. (3.6)

For every Ê ∈ T
(i)

hi,D̂
, we denote by D̃

(i)

Ê
its support extension, the

union of all the basis function B̂
(i)
j ∈ B̂(i)

hi
supports whose support in-

tersects Ê. Analogously, we define the union support in physical sub-

domain Ωi by D
(i)
E to be the image of D̃

(i)

Ê
through the paramteriza-

tion map Φi, e.g. D
(i)
E := Φ(D̃

(i)

Ê
). Since Φi(x̂) ∈ B̂(i)

h , the components
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Φ1,i, ..., Φd,i ∈ B̂(i)
h are smooth functions and hence there exist constants

cm, cM such that

cm ≤ |det(Φ
′
i(x̂))| ≤ cM , i = 1, ..., d, for all x̂ ∈ D̂ (3.7)

where Φ
′
i(x̂) denotes the Jacobian matrix ∂(x1,...,xd)

∂(x̂1,...,x̂d)
.

Now, for any û ∈Wm,p(D̂),m ≥ 0, p > 1, we define the function

U(x) = û(Ψi(x)), x ∈ Ωi, (3.8)

where the mapping Ψ is defined in (3.5b). For the analysis presented
below, it is necessary to show the following relation

Cm‖û‖Wm,p(D̂) ≤ ‖U‖Wm,p(Ωi) ≤ CM‖û‖Wm,p(D̂), (3.9)

where the constants Cm, CM depending on

Cm := Cm( max
m0≤m

(‖Dm0Φi‖∞), ‖det(Ψ′i(x̂))‖∞)

and
CM := CM ( max

m0≤m
(‖Dm0Ψi‖∞), ‖det(Φ′i(x̂))‖∞)

correspondingly.

Indeed, for any û ∈ Wm,p(D̂) we can find a sequence {ûj} ⊂ C∞(
¯̂
D)

converging to û in ‖.‖Wm,p(D̂), we then have by applying the chain rule

in (3.8) that

Dx(Ψi(x))−1DUj(x) =Dûj(Ψi(x)). (3.10)

Then for any multi-index m we can get the following formula

DmUj(x) =
∑

m0≤m
Pm,m0(x)Dm0Uj(x), (3.11)

where Pm,m0(x) ∈ B(i)
h is a polynomial of degree less than k and includes

the various derivatives of Ψi(x). Multiplying (3.11) by ϕ(x) ∈ D(Ωi), and
integrating by parts we obtain

(−1)|m|
∫

Ωi

Uj(x)Dmϕ(x) dx =
∑

m0≤m

∫

Ωi

Pm,m0(x)Dm0Uj(x)ϕ(x) dx.

(3.12)
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If we transfer the integral in (3.12) to integrals over D̂ using the change
of variable x = Φi(x̂) we get

(−1)|m|
∫

D̂
ûj(x̂)Dmϕ(Φi(x̂))|det(Φ′i(x̂))| dx̂ =

∑

m0≤m

∫

D̂
Pm,m0(Φi(x̂))Dm0 ûj(x̂)ϕ(Φi(x̂))|det(Φ′i(x̂))| dx̂. (3.13)

But it holds thatDm0 ûj → Dm0 û in ‖.‖Lp(D̂), thus taking the limit j →∞
in (3.13) and transferring the integrals back to Ωi, we can derive (3.12)
with respect to U . We conclude that (3.11) holds in the distributional
sense, and therefore

∫

Ωi

|DmU(x)|p dx ≤ Cp
∫

Ωi

∑

m0≤m

∣∣Pm,m0(x)Dm0U(x)|p dx ≤

Cp max
m0≤m

(
max
x∈Ωi

(Pm,m0(x))
) ∑

m0≤m

∫

Ωi

∣∣Dm0U(x)|p dx ≤

Cp max
m0≤m

(
max
x∈Ωi

(Pm,m0(x))
)

max
x̂∈D̂

(|det(Φ′i(x̂))|
∑

m0≤m

∫

D̂

∣∣Dm0 û(x̂)|p dx̂ ≤

C( max
m0≤m

(‖Dm0Ψi(x)‖∞, ‖det(Φ
′
i(x̂))‖∞)

∑

m0≤m

∣∣Dm0 û(x̂)|p
Wm0,p(D̂)

. (3.14)

The “right inequality” of (3.9) follows immediately by (3.14). The “left
inequality” of (3.9) can be derived by using the reverse change of variable
x̂ = Ψi(x) and following the same arguments as above.

3.1 The numerical scheme

We use the B−Spline spaces B(i)
h defined in (3.6) for approximating the

solution of (2.2) in every sub-domain Ωi. Continuity requirements for
Bh(S(Ω)) are not imposed on the interfaces Fij of the sub-domains, clearly
Bh(S(Ω)) ⊂ L2(Ω) but Bh(S(Ω)) * W 1,2(Ω). Thus, the problem (2.2)
is discretized by discontinuous Galerkin techniques on Fij , [21]. Using

the notation φ
(i)
h := φh|Ωi , we define the average and the jump of φh on

Fij ∈ FI respectively by

{φh} :=
1

2
(φ

(i)
h + φ

(j)
h ), JφhK := φ

(i)
h − φ

(j)
h , (3.15a)
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and for Fi ∈ FB

{φh} := φh, JφhK := φ
(i)
h . (3.15b)

The DGIGA method has as follows: find uh ∈ Bh(S(Ω)) such that

ah(uh, φh) =l(φh) + pD(uD, φh), ∀φh ∈ Bh(S(Ω)), (3.16a)

where

ah(uh, φh) =

N∑

i=1

ai(uh, φh)−
∑

Fij∈F

1

2
si(uh, φh) + pi(uh, φh), (3.16b)

where the linear forms in (3.16b) are as follows, [21],

ai(uh, φh) =

∫

Ωi

α∇uh∇φh dx, (3.16c)

si(uh, φh) =

∫

Fij∈F
{α∇uh} · nFij JφhK ds, (3.16d)

pi(uh, φh) =piI (uh, φh) + piB (uh, φh) = (3.16e)
∫

Fij∈FI

(µα(j)

hj
+
µα(i)

hi

)
JuhKJφhK ds+

∫

Fi∈FB

µα(i)

hi
JuhKJφhK ds,

pD(uD, φh) =

∫

Fi∈FB

µα(i)

hi
uDφh ds, (3.16f)

where the unit normal vector nFij is oriented from Ωi towards the interior
of Ωj and the parameter µ > 0 will be specified later in the error analysis.

For notation convenience in what follows, we will use the same ex-
pression ∫

Fij

(µα(j)

hj
+
µα(i)

hi

)
JuhKJφhK ds,

for both cases, Fij ∈ FI and Fi ∈ FB. In the later case we will assume
that α(j) = 0.

We mention that in [21], apart from the form (3.16) another discrete
formulation has been considered by introducing harmonic averages of the
diffusion coefficients on the interface fluxes. Also, harmonic averages of
the two different grid sizes have been used to penalize the jumps. Here,
we prefer the forms (3.16d), (3.16e) for their simplicity. The possibility of
using other averages for constructing the diffusion terms in front of the
consistency and penalty terms has been analysed in several works, see
e.g. [26], [33].
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Dp

Parent domain

Parametric domain

micro-element

Interface Fij

Physical sub-domains

Ωj

Ωi

Φi
Φj

Fig. 1. The parent element, the parametric domain and two adjacent sub-domains.

4 Auxiliary results

In order to proceed to error analysis, several auxiliary results must be
shown for u ∈ W l,p(S(Ω)) and φh ∈ Bh(S(Ω)). The general frame of
the proofs consists of three steps: (i) the required relations are expressed-
proved on a parent element Dp, see Fig. 1, (ii) the relations are “trans-

formed” to Ê ∈ T
(i)

hi,D̂
using an affine-linear mapping and scaling argu-

ments, (iii) by virtue of the mappings Φi defined in (3.6) and relations
(3.9), we express the results in every Ωi.

Let Dp be the parent element e.g [−xb, xb]d ⊂ Rd, with diameter
Hp, see Fig. 1. Dp is convex simply connected domain, thus for any x ∈
∂Dp, ∃x0 ∈ Dp such that

(x− x0) · n∂Dp > CDp ∼ CHp . (4.1)

Lemma 1. For any u ∈W l,p(Dp), l ≥ 2, p > 1 there is a
C := CHp,d,p such that the following trace inequality holds true

∫

∂Dp

|u(s)|p ds ≤ C
( ∫

Dp

|∇u(x)|p dx+

∫

Dp

|u(x)|p dx
)
. (4.2)
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Proof. For r = (x− x0) we have

∫

Dp

∇|u|p · r dx =
d∑

i=1

∫

Dp

p|u|p−2u ∂u
∂xi

ri dx = p

∫

Dp

|u|p−2u∇u · r dx.

(4.3)

The application of divergence theorem gives

∫

Dp

∇|u|p · r dx =

∫

∂Dp

|u|pr · n∂Dp ds−
∫

Dp

|u|pdiv(r) dx. (4.4)

Hence, by (4.1), (4.3) and (4.4) it follows that

∫

∂Dp

|u|pr · n∂Dp ds = p

∫

Dp

|u|p−2u∇u · r dx +

∫

Dp

|u|pdiv(r) dx

and by (4.1), we get

CHp

∫

∂Dp

|u|p ds ≤ p
∫

Dp

|u|p−2u∇u · r dx+

∫

Dp

|u|pdiv(r) dx.

Applying Hölder and Youngs inequalities, we have∫

∂Dp

|u|p ds ≤ CHp
(
C1,p

( ∫

Dp

|u|p dx+ |∇u|p dx
)

+ Cd

∫

Dp

|u|p dx
)

≤ CHp,d,p
(∫

Dp

|u|p dx+

∫

Dp

|∇u|p dx
)

= CHp,d,p

(
‖u‖pLp(Dp) + ‖∇u‖pLp(Dp)

)
. (4.5)

�

We point out that similar proof has been given in [24] in case of p = 2.

Dp is considered as a reference element of any micro-element Ê ∈ T (i)

hi,D̂

and let the linear affine map to be

φÊ : Dp → Ê ∈ T (i)

hi,D̂
, φÊ(xDp) = BxDp + b, (4.6)

where |det(B)| = |Ê|, see [34].

Using (4.6), we have |u|W l,p(Dp) = h
l− d

p

Ê
|û|W l,p(Ê) and applying the

quasi uniformity of T
(i)

hi,D̂
, we derive by (4.2) that

h
−(d−1)
Ê

∫

e∈∂Ê
|u|p ds ≤ C

(
h
(0− d

p
)p

Ê

∫

Ê
|u|p dx + h

p(1− d
p
)

Ê

∫

Ê
|∇u|p dx

)
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and directly we get

∫

e∈∂Ê
|u|p ds ≤ C

( 1

hi

∫

Ê
|u|p dx+hp−1i

∫

Ê
|∇u|p dx

)
, ∀Ê ∈ T (i)

hi,D̂
. (4.7)

Summing over all micro-elements Ê ∈ T (i)

hi,D̂
, we have

∫

F̂i∈∂D̂
|u|p ds ≤ C

( 1

hi

∫

D̂
|u|p dx+ hp−1i

∫

D̂
|∇u|p dx

)
. (4.8)

Finally, by making use of (3.9), we get the trace inequality expressed on
every sub-domain

∫

Fij∈F
|u|p ds ≤ C

( 1

hi

∫

Ωi

|u|p dx+ hp−1i

∫

Ωi

|∇u|p dx
)
, (4.9)

where the constant C is determined according to the Cm, CM in (3.9).

Lemma 2. (inverse estimates) For all φh ∈ B̂(i)
hi

defined on T
(i)

hi,D̂
, there

is a constant C depended on mesh quasi-uniformity parameters of the
mesh but not on hi, such that

‖∇φh‖pLp(D̂)
≤ C

hpi
‖φh‖pLp(D̂)

(4.10)

Proof. The restriction of φh|Ê is a B−Spline polynomial of the same
order. Considering the same (finite dimensional) space on the parent el-
ement Dp and by the equivalence norms on Dp we have, [34],

‖∇φh‖pLp(Dp) ≤ CDp‖φh‖
p
Lp(Dp)

. (4.11)

Applying scaling arguments and the mesh quasi-uniformity properties of

T
(i)

hi,D̂
, the left and the right hand side of (4.11) can be expressed on every

Ê ∈ T (i)

hi,D̂
as

h
p− d

p
p

i ‖∇φh‖pLp(Ê)
≤ Ch−

d
p
p

i ‖φh‖pLp(Ê)
, (4.12)

summing over all in (4.12) Ê ∈ T (i)

hi,D̂
, we can easily deduce (4.10).

�
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Lemma 3. (trace inequality on finite dimensional space) For all φh ∈
B̂(i)
hi

defined on T
(i)

hi,D̂
and for all F̂i ∈ ∂D̂, there is a constant C depended

on mesh quasi-uniformity parameters of the mesh but not on hi, such that

‖φh‖pLp(F̂i∈∂D̂)
≤ C

hpi
‖φh‖pLp(D̂)

(4.13)

Proof. Applying the same scaling arguments as before and using the local

quasi-uniformity of T
(i)

hi,D̂
, that is for every ê ∈ ∂Ê holds |ê| ∼ hi we can

show the following local trace inequality

‖φh‖pLp(ê∈∂Ê)
≤ Ch−pi ‖φh‖

p

Lp(Ê)
(4.14)

summing over all Ê ∈ T (i)

hi,D̂
that have an edge on F̂i we deduce (4.13).

�

Next a Lemma for the relation among the |φh|W l,p(D̂)
and |φh|Wm,p(D̂)

.

Lemma 4. Let φh ∈ B̂(i)
hi

such that φh ∈W l,p(Ê)∩Wm,q(Ê), ∀Ê ∈ T (i)

hi,D̂
,

where 0 ≤ m ≤ l, 1 ≤ p, q ≤ ∞. Then there is a constant C :=
C(l, p,m, q) depended on mesh quasi-uniformity parameters of the mesh
but not on hi, such that

|φh|W l,p(Ê)
≤ Chm−l−

d
q
+ d
p

i |φh|Wm,q(Ê)
(4.15)

Proof. We mimic the analysis of Chp 4 in [34]. For any φh ∈ B̂(i)
hi
|Dp, we

have that

|φh|W l,p(Dp) ≤ C|φh|Wm,q(Dp), φh ∈ B̂(i)
hi
|Dp . (4.16)

Using the scaling arguments as in proof of (4.7),

h
l− d

p

Ê
|φh|W l,p(Ê) ≤Ch

m− d
q

Ê
|φh|Wm,q(Ê)

and it follows directly

|φh|W l,p(Ê) ≤ Ch
m−l− d

q
+ d
p

i |φh|Wm,q(Ê), φh ∈ B̂(i)
hi
. (4.17)

For the particular case of m = l = 0 in (4.15), we have that

‖φh‖Lp(Ê) ≤ Ch
d( 1
p
− 1
q
)

i ‖φh‖Lq(Ê). (4.18)

�
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4.1 Analysis of the DGIGA discretization

Next, we study the convergence estimates of the method (3.16). We as-

sume for the solution u that u ∈ W l,2
S := W 1,2(Ω) ∩W l,2(S(Ω)), l ≥ 2.

We consider the enlarged space W l,2
h := W l,2

S + Bh(S(Ω)), equipped with
the broken DG-norm

‖u‖2DG =

N∑

i=1

(
α(i)‖∇u(i)‖2L2(Ωi)

+ pi(u
(i), u(i))

)
, u ∈W l,2

h . (4.19)

For the error analysis is necessary to show the continuity and coercivity
properties of the bilinear form ah(., .) of (3.16). Initially, we give a bound
for the consistency terms.

Lemma 5. For (u, φh) ∈W l,2
h × Bh(S(Ω)), there are C1,ε, C2,ε > 0 such

that for every Fij ∈ FI

|si| =
∣∣∣
∫

Fij

{α∇u} · nFij (φ
(i)
h − φ

(j)
h ) ds

∣∣∣ ≤

C1,ε

(
hiα

(i)‖∇u(i)‖2L2(Fij)
+ hjα

(j)‖∇u(j)‖2L2(Fij)

)
+

1

C2,ε

(α(i)

hi
+
α(j)

hj

)
‖φ(i)h − φ

(j)
h ‖2L2(Fij)

. (4.20)
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Proof. Expanding the terms and applying Cauchy-Schwartz inequality yields

|si| ≤ C
∣∣∣
∫

Fij

{α∇u} · nFij (φ
(i)
h − φ

(j)
h ) ds

∣∣∣ ≤

C
(
α(i)‖∇u(i)‖L2(Fij) + α(j)‖∇u(j)‖L2(Fij)

)
‖φ(i)h − φ

(j)
h ‖L2(Fij)

applying Young’s inequality:

α(i)‖∇u(i)‖L2(Fij)‖φ
(i)
h − φ

(j)
h ‖L2(Fij) ≤ C1,εhiα

(i)‖∇u(i)‖2L2(Fij)
+

α(i)

C2,εhi
‖φ(i)h − φ

(j)
h ‖2L2(Fij)

we obtain

|si| ≤ C1,εhiα
(i)‖∇u(i)‖2L2(Fij)

+ C1,εhjα
(j)‖∇u(j)‖2L2(Fij)

+

α(i)

C2,εhi
‖φ(i)h − φ

(j)
h ‖2L2(Fij)

+
α(j)

C2,εhj
‖φ(i)h − φ

(j)
h ‖2L2(Fij)

=

C1,ε

(
hiα

(i)‖∇u(i)‖2L2(Fij)
+ hjα

(j)‖∇u(j)‖2L2(Fij)

)
+

1

C2,ε

(α(i)

hi
+
α(j)

hj

)
‖φ(i)h − φ

(j)
h ‖2L2(Fij)

.

�

Remark 1. In case where Fi ∈ FB, the corresponding bound can be de-

rived by setting in (4.20) α(j) = 0 and φ
(j)
h = 0.

Lemma 6. (Discrete Coercivity) There exist a C > 0 independent of α
and hi, such that

ah(uh, uh) ≥ C‖uh‖2DG, uh ∈ Bh(S(Ω)) (4.21)
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Proof. By (3.16a), we have that

ah(uh, uh) =

N∑

i=1

ai(uh, uh)− si(uh, uh) + pi(uh, uh) =

N∑

i=1

αi‖∇uh‖2L2(Ωi)
−
∑

Fij∈F

1

2

∫

Fij

{α∇uh} · nFij JuhK ds+

∑

Fij∈F
µ
(α(i)

hi
+
α(j)

hj

)
‖JuhK‖2L2(Fij)

. (4.22)

For the second term on the right hand side, Lemma 5 and the trace in-
equality (4.13) expressed on Fij ∈ F yield the bound

−
∑

Fij∈F

1

2

∫

Fij

{α∇uh} · nFij JuhK ds ≥

−C1,ε

N∑

i=1

αi‖∇uh‖2L2(Ωi)
−
∑

Fij∈F

1

C2,ε

(α(i)

hi
+
α(j)

hj

)
‖JuhK‖2L2(Fij)

. (4.23)

Inserting (4.23) into (4.22) and choosing C1,ε <
1
2 and µ > 2

C2,ε
we obtain

(4.21).
�

Lemma 7. (Boundedness) There are C1, C2 > 0 independent of hi such

that for all (u, φh) ∈W l,2
h × Bh(S(Ω))

ah(u, φh) ≤ C1

(
‖u‖2DG+

∑

Fij∈F
α(i)hi‖∇u(i)‖2L2(Fij)

)
+C2‖φh‖2DG. (4.24)

Proof. We have by (3.16a) that

ah(u, φh) =

N∑

i=1

∫

Ωi

α∇u∇φh dx+
∑

Fij∈F

1

2

∫

Fij

{α∇u} · nFij JφhK ds+

∑

Fij∈F

∫

Fij

(µα(j)

hj
+
µα(i)

hi

)
JuKJφhK ds = T1 + T2 + T3. (4.25)
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Applying Cauchy-Schwartz inequality and consequently Young’s inequality
on every term in (4.25) yield the bounds

T1 ≤ C1‖u‖2DG + C2‖φh‖2DG,
for the term T2, owing to the Lemma 5

T2 ≤
∑

Fij∈F

(
C1α

(i)hi‖∇u(i)‖2L2(Fij)
+C2

(µα(j)

hj
+
µα(i)

hi

)
‖JφhK‖2L2(Fij)

)

≤ C1

∑

Fij∈F
α(i)hi‖∇u(i)‖2L2(Fij)

+ C2‖φh‖2DG,

T3 ≤
∑

Fij∈F

(µα(j)

hj
+
µα(i)

hi

)(
C1‖JuK‖2L2(Fij)

+ C2‖JφhK‖2L2(Fij)

)

≤ C1‖u‖2DG + C2‖φh‖2DG.

Substituting the bounds of T1, T2, T3 into (4.25), we can derive (4.24).

�

In Chp 12 in [10], B-Spline intrpolants, say Πh, are defined for u ∈
Lp functions. Next, we consider the same interpolant Πhu and give an
estimate of the interpolation error of Πhu to u ∈W l,2(Ωi).

Lemma 8. Let m, l ≥ 2 be positive integers with 0 ≤ m ≤ l ≤ k + 1 and

let E = Φi(Ê), Ê ∈ T
(i)

hi,D̂
. For u ∈ W l,2(Ωi) there exist an interpolant

Πhu ∈ B(i)
h and a constant C := C(maxl0<l ‖Dl0Φi‖lL∞(E)) such that

∑

E∈T (i)
hi,Ωi

|u−Πhu|2Wm,2(E) ≤ Ch
2(l−m)
i ‖u‖2W l,2(Ωi)

(4.26)

Proof. The proof of (4.26) is included in Lemma 11 (see below) if we set
p = 2. See also [9].

�

Next we give interpolation estimates on the interfaces and in ‖.‖DG-norm.

Lemma 9. There exist constants
Ci := C(maxl0<l ‖Dl0Φi‖L∞(Ωi), ‖u‖W l,2(Ωi)) such that for all Fij ∈ F the
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following estimates are true

hiα
(i)‖(∇u(i) −∇Πhu

(i)) · nFij‖2L2(Fij)
≤ Cih2l−2i , (4.27a)

(α(j)

hj
+
α(i)

hi

)
‖u(i) −Πhu

(i)‖2L2(Fij)
≤ Ci

(
α(i)h2l−2i +

α(j)h2l−1i

hj

)
, (4.27b)

‖u−Πhu‖2DG ≤
N∑

i=1

Ci
(
h2l−2i +

∑

Fij∈F
α(j) hi

hj
h2l−2i

)
. (4.27c)

Proof. For (4.27a): we apply the trace inequality (4.9) for u := u(i) −
Πhu

(i) and consequently using the approximation estimate (4.26) the re-
sult easily follows.
For (4.27b): we make use again of (4.9) and we get

(α(j)

hj
+
α(i)

hi

)
‖u(i) −Πhu

(i)‖2L2(Fij)
≤

Ci
(α(j)

hj
+
α(i)

hi

)( 1

hi
‖u(i) −Πhu

(i)‖2L2(Ωi)
+ hi‖∇u(i) −∇Πhu

(i)‖2L2(Ωi)
≤

Ci
(α(j)

hj
+
α(i)

hi

)
h2l−1i ≤ Ci

(
α(i)h2l−2i +

α(j)h2l−1i

hj

)

Recalling the approximation result (4.26) and using (4.27b) we can
deduce estimate (4.27c).
�
In order to proceed and to give an estimate for the error ‖u− uh‖DG, we
need to show that the weak solution satisfies the form (3.16a).

Lemma 10. (Consistency of the weak solution.) The solution u satisfies
the variational formulation (3.16),

N∑

i=1

(∫

Ωi

α∇u · ∇φh dx−
∑

Fij∈FI

(∫

Fij

{α∇u} · nFij JφhK ds+

(µα(i)

hi
+
µα(j)

hj

) ∫

Fij

JuKJφhK ds
)

+

∑

Fi∈FB

(∫

Fi

α(i)∇u · nFiφh ds+
µα(i)

hi

∫

Fi

uφh ds
)

=

N∑

i=1

∫

Ωi

fφh dx+
∑

Fi∈FB

µα(i)

hi

∫

Fi

uDφh ds. (4.28)
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Proof. We multiply (2.1) by φh ∈ Bh(S(Ω)) and integrating by parts on
each sub-domain Ωi we get

∫

Ωi

α∇u · ∇φh dx−
∫

∂Ωi

α∇u · n∂Ωiφh ds =

∫

Ωi

fφh dx.

Summing over all sub-domains

N∑

i=1

∫

Ωi

α∇u · ∇φh dx−
∑

Fij∈F

∫

Fij

Jα∇uφhK · nFij ds =
N∑

i=1

∫

Ωi

fφh dx.

(4.29)

The regularity assumption u ∈W l,2
S implies that Jα∇uK ·nFij = 0. Making

use of the identity

JabK = a1b1 − a2b2 = {a}JbK + JaK{b},
relation (4.29) can be reformulated as

N∑

i=1

∫

Ωi

α∇u · ∇φh dx−
∑

Fij∈FI

1

2

∫

Fij

{α∇u} · nFij JφhK ds+ (4.30)

∑

Fi∈FB

∫

Fi

α∇u · nFiφh ds =

∫

Ωi

fφh dx.

The continuity of u implies further that

∑

Fij∈FI

(µα(i)

hi
+
µα(j)

hj

)∫

Fij

JuKJφhK ds+
∑

Fi∈FB

µα(i)

hi

∫

Fi

uφh ds =

∑

Fi∈FB

µα(i)

hi

∫

Fi

uDφh ds. (4.31)

Finally, adding the terms of (4.31) and (4.30) we can deduce (4.28).
�

We can now give an error estimate in ‖.‖DG-norm.

Theorem 1. Let u ∈W l,2
S solves (2.2) and let uh ∈ Bh(S(Ω)) solves the

discrete problem (3.16). Then the error u− uh satisfies

‖u− uh‖2DG <
N∑

i=1

Ci

(
h2l−2i +

∑

Fij∈F
α(j) hi

hj
h2l−2i

)
, (4.32)

where Ci := C(maxl0<l ‖Dl0Φi‖lL∞(Ωi)
, ‖u‖W l,2(Ωi)).
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Proof. Let Πhu ∈ Bh(S(Ω)) as in Lemma 8, by subtracting (4.28) from
(3.16a) we get

ah(uh, φh) = ah(u, φh),

and adding −ah(Πhu, φh) on both sides

ah(uh −Πhu, φh) = ah(u−Πhu, φh). (4.33)

Note that uh −Πhu ∈ Bh(S(Ω)). Therefore we may set φh = uh −Πhu
in (4.33), and consequently applying Lemma 6 and Lemma 7 we find

‖uh −Πhu‖2DG ≤ C
(
‖u−Πhu‖2DG +

∑

Fij∈F
α(i)hi‖∇(u(i) −Πhu

(i))‖2L2(Fij)

)

(4.34)

Using the triangle inequality

‖u− uh‖2DG ≤ ‖uh −Πhu‖2DG + ‖u−Πhu‖2DG (4.35)

in (4.34) and consequently applying the estimates of (4.27) we can obtain
(4.32).
�

5 Low-Regularity solutions

In this section, we investigate the convergence of the discrete solution uh
produced by the proposed DGIGA method (3.16), under the assumption
that the weak solution u of the model problem (2.1) has less regular-

ity, that is u ∈ W l,p
S := W 1,2(Ω) ∩W l,p(S(Ω)), l ≥ 2, p ∈ ( 2d

d+2(l−1) , 2].
Problems with low regularity solutions we can be found in several cases,
as for example, when the domains have singular boundary points, points
with changing boundary conditions, see e.g. [35], [36]. We use the en-

larged space W l,p
h = W l,p

S + Bh(S(Ω)) and will show that the DGIGA
method converges in optimal rate with respect to ‖.‖DG norm defined in
(4.19). We develop our analysis inspired by the techniques used in [30],
[19]. A basic tool that we will use is the Sobolev embeddings theorems,
see [32],[31]. Let l = j +m ≥ 2, then for j = 0 or j = 1 it holds that

‖u‖W j,2(Ωi) ≤ C(l, p, 2, Ωi)‖u‖W l,p(Ωi), for p >
2d

d+ 2m
. (5.1)

We start by proving an approximation estimate for interpolants of the
tensor product splines of degree k defined in (3.6).
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Lemma 11. (Interpolation estimates). Let u ∈ W l,p(Ωi) with l ≥ 2, p ∈
(max{1, 2d

d+2(l−1)}, 2] and let E = Φi(Ê), Ê ∈ T (i)

hi,D̂
. Then for 0 ≤ m ≤

l ≤ k + 1, there exist an interpolant Πhu ∈ Bh(S(Ω)) and constants
Ci := Ci

(
maxl0≤l ‖Dl0Φi‖L∞(Ωi)), ‖u‖W l,p(Ωi)

)
, such that

∑

E∈T (i)
hi,Ωi

|u−Πhu|pWm,p(E) ≤ h
p(l−m)
i Ci. (5.2)

Furthermore for the interface terms and the ‖.‖DG norm we have the
estimates

• hβi ‖∇u(i) −∇Πhu
(i)‖pLp(Fij) ≤ CiCd,ph

p(l−1)−1+β
i , (5.3a)

•
(α(j)

hj
+
α(i)

hi

)
‖Ju−ΠhuK‖2L2(Fij)

≤ (5.3b)

Ciα
(j) hi
hj

(
h
δ(p,d)
i ‖u‖p

W l,p(Ωi)

)2
+ Cjα

(i)hj
hi

(
h
δ(p,d)
j ‖u‖W l,p(Ωj)

)2
+

Cj

(
h
δ(p,d)
j ‖u‖W l,p(Ωj)

)2
+ Ci

(
h
δ(p,d)
i ‖u‖W l,p(Ωi)

)2
,

• ‖u−Πhu‖2DG ≤
N∑

i=1

Ci

(
h
δ(p,d)
i ‖u‖W l,p(Ωi)

)2
+ (5.3c)

∑

Fij∈F
Ciα

(j) hi
hj

(
h
δ(p,d)
i ‖u‖W l,p(Ωi)

)2

where δ(p, d) = l + (d2 − d
p − 1).

Proof. We give the proof of (5.2) based on the results of Chap 12 and Chap
13 in [10]. For f ∈ W l,p(D̂), there exist a tensor-product polynomial of

order m, Tmf such that for every Ê ∈ T (i)

hi,D̂
holds, [34],

|f − Tmf |Wm,p(Ê) ≤ Cd,l,mhl−mi |f |
W l,p(D

(i)

Ê
)
. (5.4)
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Because of m ≤ k is Πh(Tmf) = Tmf and it also holds that ‖Πhf‖Lp(Ê) ≤
C‖f‖

Lp(D
(i)

Ê
)
. Using these results, we have that

|u−Πhu|Wm,p(Ê) ≤ |u− Tmu|Wm,p(Ê) + |Πhu− Tmu|Wm,p(Ê)

≤ |u− Tmu|Wm,p(Ê) + |Πh(u− Tmu)|Wm,p(Ê)

≤ C1h
l−m
i |u|

W l,p(D
(i)

Ê
)

+ C2h
−m+ d

p
− d
p

i |Πh(u− Tmu)|Lp(Ê) (by (4.10))

≤ C1h
l−m
i |u|

W l,p(D
(i)

Ê
)

+ C2h
−m
i |u− Tmu|Lp(Ê) (by (5.4))

≤ Chl−mi |u|
W l,p(D

(i)

Ê
)
. (5.5)

Recalling (3.9), the above inequality is expressed on every E ∈ T
(i)
hi,Ωi

.
Then, taking the p− th power and summing over the elements we obtain
the interpolation estimate (5.2).

For the proof of (5.3a): applying (4.9) and using the uniformity of the
mesh we get

hβi ‖∇u(i) −∇Πhu
(i)‖pLp(Fij) ≤ CiCd,ph

β
i (

1

hi
‖∇u(i) −∇Πhu

(i)‖pLp(Ωi)+

hp−1i ‖∇2u(i) −∇2Πhu
(i)‖pLp(Ωi)) ≤

by (5.2) CiCd,ph
p(l−1)−1+β
i . (5.6)

For the proof of (5.3b): we first make use of the trace inequality (4.9)

α(i)

hi
‖u(i) −Πhu

(i)‖2L2(Fij)
≤ CiCd,pα(i)

( 1

h2i

∫

Ωi

|u(i) −Πhu
(i)|2 dx

+

∫

Ωi

|∇(u(i) −Πhu
(i))|2 dx

)
=

CiCd,pα
(i)
( 1

h2i

∑

E∈T (i)
hi,Ωi

∫

E
|u(i) −Πhu

(i)|2 dx+
∑

E∈T (i)
hi,Ωi

∫

E
|∇(u(i) −Πhu

(i))|2 dx
)
.

(5.7)

The Sobolev embedding (5.1) gives

‖u‖L2(Dp) ≤ C(p, 2, Dp)
(
‖u‖pLp(Dp) + |u|p

W 1,p(Dp)

) 1
p . (5.8)
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Using the scaling arguments, see (4.6), and the bounds (3.9) we can derive

the coresponding expression of (5.8) on every E ∈ T (i)
hi,Ωi

,

h
−d
2
i ‖u‖L2(E) ≤ Cih

−d
p

i

(
‖u‖pLp(E) + hpi |u|

p
W 1,p(E)

) 1
p

and a straight forward computation gives

h−2i ‖u‖2L2(E) ≤ Cih
2( d

2
− d
p
−1)

i

(
‖u‖pLp(E) + hpi |u|

p
W 1,p(E)

) 2
p . (5.9)

Proceeding in the same manner, we can obtain

‖u‖2W 1,2(E) ≤ Cih
2( d

2
− d
p
−1)

i

(
‖u‖pLp(E) + hpi |u|

p
W 1,p(E)

+ h2pi |u|
p
W 2,p(E)

) 2
p . (5.10)

Setting in (5.9) and (5.10) u := u(i) −Πhu
(i) and applying the approxi-

mation result (5.2), we can show that

∑

E∈T (i)
hi,Ωi

α(i)
(
h−2i ‖u(i) −Πhu

(i)‖2L2(E) + ‖u(i) −Πhu
(i)‖2W 1,2(E)

)

≤
∑

E∈T (i)
hi,Ωi

(
α(i)Cih

l+( d
2
− d
p
−1)

i ‖u‖
W l,p(D

(i)
E )

)2 ≤ (note that f(x) = (ax + bx)
1
x ↓)

α(i)Ci

( ∑

E∈T (i)
hi,Ωi

(
h
lp+p( d

2
− d
p
−1)

i ‖u‖p
W l,p(D

(i)
E )

)) 2
p ≤ α(i)Ci

(
h
l+( d

2
− d
p
−1)

i ‖u‖W l,p(Ωi)

)2
.

(5.11)

Moreover, (5.11) implies that

α(j)hi
hj

1

hi
‖u(i) −Πhu

(i)‖2L2(Fij)
≤ Ci

α(j)hi
hj

(
h
l+( d

2
− d
p
−1)

i ‖u‖W l,p(Ωi)

)2
, (5.12)

similarly

α(i)hj
hi

1

hj
‖u(j) −Πhu

(j)‖2L2(Fji)
≤ Ci

α(i)hj
hi

(
h
l+( d

2
− d
p
−1)

j ‖u‖W l,p(Ωj)

)2
. (5.13)



24 U. Langer, I. Toulopoulos

Now, returning to the inequality (5.3b) and using (5.11),(5.12) and (5.13),
we find

(α(j)

hj
+
α(i)

hi

)
‖Ju−ΠhuK‖2L2(Fij)

≤

α(j)hi
hj

1

hi
‖u(i) −Πhu

(i)‖2L2(Fij)
+
α(i)hj
hi

1

hj
‖u(j) −Πhu

(j)‖2L2(Fji)

+
α(j)

hj
‖u(j) −Πhu

(j)‖2L2(Fji)
+
α(i)

hi
‖u(i) −Πhu

(i)‖2L2(Fij)

≤ Ci
α(j)hi
hj

(
h
l+( d

2
− d
p
−1)

i ‖u‖W l,p(Ωi)

)2
+Cj

α(i)hj
hi

(
h
l+( d

2
− d
p
−1)

j ‖u‖W l,p(Ωj)

)2

+ Cj

(
h
l+( d

2
− d
p
−1)

j ‖u‖W l,p(Ωj)

)2
+ Ci

(
h
l+( d

2
− d
p
−1)

i ‖u‖W l,p(Ωi)

)2
. (5.14)

For the proof (5.3c), we recall the definition (4.19) for u−Πhu and have

‖u−Πhu‖2DG =

N∑

i=1

(
α(i)‖∇(u(i) −Πhu

(i))‖2L2(Ωi)

+
∑

Fij∈F

(µα(i)

hi
+
µα(j)

hj

)
‖Ju−ΠhuK‖2L2(Fij)

)
. (5.15)

Estimating the first term on the right hand side in (5.15) by (5.11) and
the second term by (5.14), the approximation estimate (5.3c) follows.
�

We need further discrete coercivity, consistency and boundedness. The
discrete coercivity ( Lemma 6) holds true for this low regularity case, too.
Using the same arguments as in Lemma 10, we can prove the consistency
for u. Due to assumed regularity of the solution, the normal interface
fluxe (α∇u)|Ωi · nFij belongs (in general) to Lp(Fij). Thus, we need to
prove the boundedness for ah(., .) by estimating the flux terms (3.16d) in
different way than this in Lemma 7. We work in a similar way as in [26]
and prove the following bound for the interface fluxes.
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Lemma 12. There is a constant C := C(p, 2) such that the following

inequality for (u, φh) ∈W l,p
h × Bh(S(Ω)) holds true

∑

Fij∈F

1

2

∫

Fij

{α∇u} · nFij JφhK ds ≤ (5.16)

C
( ∑

Fij∈F
α(i)h

1+γp,d
i ‖∇u(i)‖pLp(Fij)+α

(j)h
1+γp,d
j ‖∇u(j)‖pLp(Fij)

) 1
p ‖φh‖DG,

where γp,d =
1

2
d(p− 2).

Proof. For the interface edge eij ⊂ Fij Hölder inequality yield

1

2

∫

eij

1

2
|α(i)∇u(i) + α(j)∇u(j)||JφhK| ds ≤

C

∫

eij

(α(i)h
1+γp,d
i )

1
p |∇u(i)| α

(i)
1
q

h

1+γp,d
p

i

|JφhK|+(α(j)h
1+γp,d
j )

1
p |∇u(j)| α

(j)
1
q

h

1+γp,d
p

j

|JφhK| ds

≤ C(α(i)h
1+γp,d
i )

1
p ‖∇u(i)‖Lp(eij)

α(i)
1
q

h

1+γp,d
p

i

‖JφhK‖Lq(eij)

+ C(α(j)h
1+γp,d
j )

1
p ‖∇u(j)‖Lp(eij)

α(j)
1
q

h

1+γp,d
p

j

‖JφhK‖Lq(eij). (5.17)

We employ the inverse inequality (4.18) with p = q > 2, q = 2 and use

the analytical form
1+γp,d
p = 2+d(p−2)

2p to express the jump terms in (5.17)

in the convenient L2 form as follows

α(i)
1
q

h
2+d(p−2)

2p

i

‖JφhK‖Lq(eij) ≤Cinv,p,2α(i)
1
q
h
(d−1)( 1

q
− 1

2
)− 2+d(p−2)

2p

i ‖JφhK‖L2(eij)

≤ Cinv,p,2α(i)
1
q
h
−1
2
i ‖JφhK‖L2(eij). (5.18)
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Inserting the result (5.18) into (5.17) and summing over all eij ∈ Fij we
obtain for q > 2,

1

2

∫

Fij

{α∇u}·nFij JφhK ds ≤ C
∑

eij∈Fij

∫

eij

|α(i)∇u(i)+α(j)∇u(j)||JφhK| ds

≤ C
( ∑

eij∈Fij
α(i)h

1+γp,d
i ‖∇u(i)‖pLp(eij)

) 1
p
( ∑

eij∈Fij
α(i)
( 1

h
1
2
i

‖JφhK‖L2(eij)

)q) 1
q

+C
( ∑

eij∈Fij
α(j)h

1+γp,d
j ‖∇u(j)‖pLp(eij)

) 1
p
( ∑

eij∈Fij
α(j)

( 1

h
1
2
j

‖JφhK‖L2(eij)

)q) 1
q
.

(5.19)

Now, using that the function f(x) = (λαx + λβx)
1
x , λ > 0, x > 2 is

decreasing, we estimate the “q-power terms” in the sum of the right hand
side in (5.19) as follows

( ∑

eij∈Fij
α(j)

( 1

h
1
2
j

‖JφhK‖L2(eij)

)q) 1
q ≤

( ∑

eij∈Fij
α(j)

( 1

h
1
2
j

‖JφhK‖L2(eij)

)2) 1
2

≤
((µα(i)

hi
+
µα(j)

hj

)
‖JφhK‖2L2(Fij)

) 1
2
, (5.20)

and thus applying (5.20) into (5.19) we get

1

2

∫

Fij

{α∇u} · nFij JφhK ds ≤

2C
(
α(i)h

1+γp,d
i ‖∇u(i)‖pLp(Fij) + α(j)h

1+γp,d
j ‖∇u(j)‖pLp(Fij)

) 1
p

((µα(i)

hi
+
µα(j)

hj

)
‖JφhK‖2L2(Fij)

) 1
2
. (5.21)

We sum over all Fij ∈ F in (5.21) and consequently we apply Hölder
inequality

1

2

∑

Fij∈F

∫

Fij

{α∇u(i)}JφhK ds ≤

2C
( ∑

Fij∈F
α(i)h

1+γp,d
i ‖∇u(i)‖pLp(Fij) + α(j)h

1+γp,d
j ‖∇u(j)‖pLp(Fij)

) 1
p

( ∑

Fij∈F

((µα(i)

hi
+
µα(j)

hj

)
‖JφhK‖2L2(Fij)

) q
2
) 1
q
. (5.22)
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Following in much the same arguments as in proof of (5.20), we can
bound the second

∑
Fij

in (5.22) as

( ∑

Fij∈F

((µα(i)

hi
+
µα(j)

hj

)
‖JφhK‖2L2(Fij)

) q
2
) 1
q ≤

( ∑

Fij∈F

(µα(i)

hi
+
µα(j)

hj

)
‖JφhK‖2L2(Fij)

) 1
2 ≤ ‖φh‖DG. (5.23)

Using (5.22) and (5.23), we can easily obtain (5.16).
�

Lemma 13. (boundedness) There is a C := Cp,2 independent of hi such

that ∀(u, φh) ∈W l,p
h × Bh(S(Ω))

ah(u, φh) ≤ C(‖u‖pDG +
∑

Fij∈F
h
1+γp,d
i α(i)‖∇u(i)‖pLp(Fij)+ (5.24)

h
1+γp,d
j α(j)‖∇u(j)‖pLp(Fij)

) 1
p ‖φh‖DG,

Proof. We estimate the terms of ah(u, φh) in (3.16b) separately. Applying
Cauchy-Schwartz for the terms (3.16c) and (3.16e) we have

N∑

i=1

ai(u, φh) ≤ C‖u‖DG‖φh‖DG (5.25a)

N∑

i=1

pi(u, φh) ≤ C‖u‖DG‖φh‖DG. (5.25b)

For the term (3.16d) we use Lemma 12

N∑

i=1

si(u, φh) ≤ C
( ∑

Fij∈F
α(i)h

1+γp,d
i ‖∇u(i)‖pLp(Fij)+

α(j)h
1+γp,d
j ‖∇u(j)‖pLp(Fij)

) 1
p ‖φh‖DG, (5.26)

Combining (5.25) with (5.26) we can derive (5.24).
�

Next, we prove the main convergence result of this section.
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Theorem 2. Let u ∈ W l,p
S , l ≥ 2, p ∈ (max{1, 2d

d+2(l−1)}, 2] be the solu-

tion of (2.2a). Let uh ∈ Bh(S(Ω)) is the DGIGA solution of (3.16a) and
Πhu ∈ Bh(S(Ω)) is the interpolant of Lemma 11. Then there are
Ci := Ci(maxl0≤l ‖Dl0Φi‖L∞(E)), ‖u‖W l,p(Ωi)

)
, such that

‖u− uh‖DG ≤
N∑

i=1

(
Ci

(
h
δ(p,d)
i +

∑

Fij∈F
α(j) hi

hj
h
δ(p,d)
i

)
‖u‖W l,p(Ωi)

)
,

(5.27)

where δ(p, d) = l + (d2 − d
p − 1).

Proof. Since (uh −Πhu) ∈ Bh(S(Ω)) by the discrete coercivity (4.21) we
have

‖uh −Πhu‖2DG ≤ ah(uh −Πhu, uh −Πhu). (5.28)

By orthogonality we have

‖uh −Πhu‖2DG ≤ ah(uh −Πhu, uh −Πhu) =

ah
(
(uh − u) + (u−Πhu), uh −Πhu

)
= ah

(
u−Πhu, uh −Πhu)

≤ C
(
‖u−Πhu‖DG +

( ∑

Fij∈F
h
1+γp,d
i α(i)‖∇u(i) −Πhu

(i)‖pLp(Fij)

+h
1+γp,d
j α(j)‖∇u(i) −Πhu

(j)‖pLp(Fij)
) 1
p
)
‖uh −Πhu‖DG,

where immediately we get

‖uh−Πhu‖DG ≤ ‖u−Πhu‖DG+
( ∑

Fij∈F
h
1+γp,d
i α(i)‖∇u(i)−Πhu

(i)‖pLp(Fij)

+ h
1+γp,d
j α(j)‖∇u(i) −Πhu

(j)‖pLp(Fij)
) 1
p
. (5.29)

Now, using triangle inequality, the approximation estimates (5.3) and the
bound (5.16) in (5.29), we obtain

‖uh − u‖DG ≤ ‖uh −Πhu‖DG + ‖u−Πhu‖DG ≤
N∑

i=1

Cih
δ(p,d)
i ‖u‖W l,p(Ωi) +

∑

Fij∈F
Ci
α(j)hi
hj

h
δ(p,d)
i ‖u‖W l,p(Ωi), (5.30)

which is the required error estimate (5.27).
�
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6 Numerical examples

In this section, we present a series of numerical examples to validate nu-
merically the theoretical results, which were previously shown. We restrict
ourselves for a model problem in Ω = (−12 ,

1
2)d=3, with ΓD = ∂Ω. The

domain Ω is subdivided in four equal sub-domains Ωi, i = 1, ..., 4, where

for simplicity every Ωi is initially partitioned into a mesh T
(i)
hi,Ωi

with
h := hi = hj , i 6= j, i, j = 1, ..., 4. Successive uniform refinements are per-

formed on every T
(i)
hi,Ωi

in order to compute numerically the convergence
rates. We set the diffusion coefficient equal to one.

All the numerical tests have been performed using G+SMO1, which is
a generic object oriented C++ library for IGA computations. In the first
test, the data uD and f in (2.1) are determined so that the exact solution
is given by u(x) = sin(2.5πx) sin(2.5πy) sin(2.5πz) (highly smooth test
case). The first two columns of Table 1 display the convergence rates. As
it was expected, the convergence rates are optimal. In the second case,
the exact solution is u(x) = |x|λ. The parameter λ is chosen such that
u ∈ W l,p=1.4(Ω), [37]. In Table 1 in the last columns, we display the
convergence rates for degree k = 2, k = 3 and l = 2, l = 3. We observe
that, for each of the two different tests, the error in the ‖.‖DG norm
behaves according to the main error estimate given by (5.27).

highly smooth k = 2 k = 3
h
2s

k = 2 k = 3 l = 2 l = 3 l = 2 l = 3

- Convergence rates

s = 0 - - - - - -

s = 1 0.15 2.91 0.62 0.76 0.24 1.64

s = 2 2.34 2.42 0.29 1.10 0.28 0.89

s = 3 2.08 3.14 0.35 1.32 0.47 1.25

s = 4 2.02 3.04 0.35 1.36 0.36 1.37
Table 1. The numerical convergence rates of the DGIGA method.

Remark 2. In a forthcoming paper, we will present graded mesh tech-
niques in DGIGA methods for treating problems with low regularity solu-
tions. We will show, how to construct graded refined mesh in the vicinity
of the singular points of u, in order to get the optimal approximation
order as in the case of having smooth u.

1 G+SMO: http://www.gs.jku.at/gs-gismo.shtml
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7 Conclusions

In this paper, we presented theoretical error estimates of the DGIGA
method applied to a model elliptic problem with discontinuous coeffi-
cients. The problem was discretized according to IGA methodology using
discontinuous B-Spline spaces. Due to global discontinuity of the approxi-
mate solution on the sub-domain interfaces, DG discretizations techniques
were utilized. In the first part, we assumed higher regularity for the exact
solution, that is u ∈W l≥2,2, and we showed optimal error estimates with
respect to ‖.‖DG. In the second part, we assumed low regularity for the

exact solution, that is u ∈ W l≥2,p∈( 2d
d+2(l−1)

,2)
, and applying the Sobolev

embedding theorem we proved optimal convergence rates with respect to
‖.‖DG. The theoretical error estimates were validated by numerical tests.
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