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Abstract. In this paper we present local discontinuous Galerkin meth-11

ods for systems with (p, δ)-structure. The unknown gradient and the non-12

linear diffusivity function are introduced as auxiliary variables and the13

original (p, δ) system is decomposed into a first order system. Every equa-14

tion of the produced first order system is discretized in the discontinu-15

ous Galerkin framework, where two different nonlinear viscous numerical16

fluxes are implemented. An a priori bound for a simplified problem is de-17

rived. The ODE system resulting from the LDG discretization is solved by18

Diagonal Implicit Runge-Kutta methods. The non linear system of alge-19

braic equations with unknowns the intermediate solutions of the Runge-20

Kutta cycle, is solved using Newton and Picard iterative methodology.21

The performance of the two non linear solvers is compared on simple test22

problems. Numerical tests concerning problems with exact solutions are23

performed in order to validate the theoretical spatial accuracy of the pro-24

posed method. Further, more realistic numerical examples are solved in25

domains with non-smooth boundary to test the efficiency of the method.26

Key words: Local discontinuous Galerkin methods, (p, δ)-structure sys-27

tem of equations, (p, δ)-structure penalty jump terms, Newton-Picard it-28

erative methods, numerical solutions in domains with non-smooth bound-29

ary.30

1 Introduction31

In this paper we present some computational issues of approximating solutions32

of systems with (p, δ)-structure. This type of equations appear as a mathemat-33

ical model describing several physical problems such as non-Newtonian flows,34

plasticity and glaciology [30], [39]. The most common p-type problem of the35

present general (p, δ) model is the p-Laplace problem, for which δ = 0. There36

are several contributions analyzing the discretization of p-Laplace equations, e.g.37

[38] using finite differences, [27], [33] using mixed finite element-volume meth-38

ods. The first error analysis for the approximation of the p-Laplace solutions39
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by finite element methods has been presented in [29], and Ciarlet in [15], chp.40

5, presented error estimates for the case of p ≥ 2, by treating the p− Laplace41

operator in a general class of monotone operators. Barrett and Liu in several42

papers, e.g. [3], [4], [5], introduce a so-called quasi norm for the error between43

the exact and the approximate solution and proved inproved error estimates.44

In [21], interpolation operators in Orlicz-Sobolev spaces were studied and were45

utilized in finite element methods for approximating solutions of (p, δ)-structure46

problems. Linear convergence rate of the method has been shown in case of using47

linear base polynomials.48

During the last two decades, there is an intense effort towards devising local49

DG methods (LDG) for linear and non-linear elliptic problems. The main feature50

of LDG methods is the introduction of the gradient (flux) of the solution, say51

L = ∇u, and the nonlinear diffusion term A = Ã(L)L, as new variables and52

to rewrite the original problem as a first order system, (a technique similar to53

the mixed finite element methods, however LDG methods are different in the54

discretization procedure). The resulting system is then solved in DG framework,55

where the variables L, A, u are approximated using the same order local spaces.56

LDG methods were firstly proposed in [16] for convection - diffusion systems,57

based on the numerical approach applied in [6] for the discretization of the vis-58

cous fluxes of compressible Navier-Stokes equations. We can say, that this was59

the starting point of a systematic study of LDG methods for linear elliptic prob-60

lems. Indicatively we refer to the following papers, [14] where the first a priori61

analysis was presented, [13] where the performance of several LDG methods for62

a model problem is shown, and for a detailed review [2], where LDG methods are63

presented as a particular choice of DG methods. Recently, LDG methods have64

been proposed and analyzed for applications to nonlinear elliptic problems. In65

[10], [9], [8] a theoretical study of LDG methods is presented for problems with66

mixed boundary conditions, under the assumption that the diffusion operator67

is monotone and has p = 2-structure. Moreover, Santillana and Dawson studied68

in [42] the applicability of LDG methods for nonlinear diffusion shallow water69

equations.70

The objective of this study, is to present s to present a complete framework71

for the discretization of (p, δ)-structure systems using LDG methods. We gener-72

alize the nonlinear penalty jump terms of the numerical flux proposed in [7] for73

the case of δ = 0 to δ ≥ 0 (see (11b)), so that to be compatible with the (p, δ)-74

structure of the problem. Furthermore, we apply new penalty jump terms (see75

(13)) which, instead of the jump of uh, use the trace of Lh in order to compute76

the “diffusivity” on the inter-element boundaries. Comparisons of the numerical77

results computed by (11b) and the new numerical flux (13) are shown in the last78

section of the paper. The problem is discretized in time using Diagonal Implicit79

Runge-Kutta methods. Initially, the nonlinear algebraic system with unknowns80

the intermediate solutions of one Runge-Kutta cycle is solved using a Newton81

method combined with matrix-free GMRES linear iterative solver. Despite the82

fact that this nonlinear iterative solution approach achieved fast convergence in83

many test problems, the performance speed of the method appeared to be de-84
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pendent on the values of the problem parameters. In particular, when we solve85

the problem on fine meshes, the CPU time of p < 2 test cases is significantly86

increased in comparison to the CPU time of p ≥ 2 test cases. This has moti-87

vated us to develop and apply a Picard type method which is computationally88

less expensive and non parameter dependent, in the sense that the convergence89

speed performance is similar for all p test cases. In order to increase the converge90

speed of the Picard method, a new idea of applying nested Jacobi type itera-91

tions is utilized. Comparisons concerning the performance of the two different92

nonlinear iterative processes are shown in the numerical examples. We point out93

that, many real fluids are covered by the range of values for p considered in the94

numerical experiments, [35]. Moreover, the (p, δ)-structure ensures that many95

popular models in the engineering literature are contained in our investigation.96

The outline of the paper is as follows. We begin by presenting the model97

problem in Section 2. We continue in the third Section, with the definition of98

LDG spaces, the numerical fluxes and finally the semi-discrete analogue of the99

problem. In the last paragraph a stability bound is given for a scalar model100

problem. In Section 4, we present the time marching scheme based on Diagonal101

implicit Runge-Kutta methods. A detailed description of the implementation of102

the Newton and the Picard non linear iterative processes is also included. Last,103

in Section 5, we present the experimental error convergence rates for different104

test problems. For first order polynomial space we confirm the theoretical results105

of the error analysis presented in [20], [13], [10], [9]. Also, we give comparisons106

for the two nonlinear iterative solvers. In the last part of the Section, we present107

numerical tests in domains with corner singular boundary points aimed to in-108

vestigate the efficiency of the LDG method on realistic diffusive problems.109

2 (p, δ)-Structure system: The model problem110

Let Ω be a bounded domain in R
d, d = 2, 3 with polygonal (polyhedral) Lips-

chitz boundary ∂Ω which is decomposed into ∂Ω = ΓN

⋃
ΓD with ΓN

⋂
ΓD =

Ø, |ΓD| 6= Ø and let (0, T ] be a time interval. We consider the following system

ut − divA(∇u) = f , in Ω × (0, T ] (1a)

u(., 0) = u0, in Ω, (1b)

u = uD on ΓD × (0, T ], (1c)

A(∇u) · n = aN on ΓN × (0, T ], (1d)

where

A(∇u) = Ã(∇u)∇u = (δ + |∇u|)p−2∇u. (2)

Here f : Ω×(0, T ] → R,uD : ΓD×(0, T ] → R, aN : ΓN×(0, T ] → R,u0 : Ω → R111

are given appropriately smooth functions, u = (u1, ..., udu
)⊤ is the unknown112

vector where through this paper we consider the case of d = du, ∇u is the tensor113

gradient of u, δ ≥ 0 is a parameter and Ã : Rd×d → R
+ is the diffusivity function114

given by Ã(∇u) = (δ + |∇u|)p−2. Our motivation for developing LDG methods115
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for the model problem (1), arises from our interest to develop efficient methods116

for non-Newtonian incompressible fluids modeled by p−power low systems, [37],117

[35]. For δ = 0 and p < 2, in case of |∇u| → 0, model (1) leads to a singular118

system. For non-Newtonian fluids this possesses an infinite zero shear limit,119

while for δ > 0 the zero shear limit is finite. Thus choosing a relative small120

value for the parameter δ in (2), we approximate the solution of the singular121

model problem. Results concerning existence and regularity of the solution of122

(1) and the interpretation of the time derivative can be found in [36], [17], [11].123

A detailed discussion about these results is out of the context of the present124

work. The main goal here is to show how the problem (1) can be discretized by125

the LDG method.126

In order to obtain the LDG formulation, we introduce auxiliary variables
L = ∇u and A = Ã(L)L and we rewrite the system (1) as a first order system

L = ∇u, in Ω × (0, T ], (3a)

A = Ã(L)L, in Ω × (0, T ], (3b)

ut − div(A) = f , in Ω × (0, T ]. (3c)

In that way, problem (1) is reformulated as (3) and consequently we have to127

approximate L,A,u in an appropriate way.128

Remark 1. We note that the operator A falls in the general class of (p, δ)-
structure operators, [22], [19], this means that there exist p ∈ (1,∞), δ ∈ [0,∞)
and constants C0, C1 such that

d∑

j,l=1

d∑

i,k=1

∂klAij(P)QijQkl ≥C0(δ + |P|)p−2|Q|2, (4a)

|∂klAij(P)| ≤C1(δ + |P|)p−2, (4b)

are satisfied for all P, Q ∈ Rd×d with P 6= 0 and all i, k, j, l = 1, ..., d.129

3 The LDG method130

3.1 Preliminaries - DG notation131

For u,v ∈ R
d and A := (Aij),T := (Tij) ∈ R

d×d we use standard notation,132

u ⊗ v = uivj , ∈ R
d×d, A : T =

∑d
i,j=1 AijTij , u · (Av) =

∑d
i,j=1 uiAijvj =133

A : (u⊗ v).134

Let Th = {Ei}
NE

i=1 be a regular subdivision of Ω in triangular (or tetrahedral)135

elements with diameter hEi
and h = maxEi∈Th

hEi
. We denote the collection of136

the edges (or faces) of the elements by Eh = {e}Ne

i=1. We group the edges into137

three sets. The set EI of the interior edges, EI := {e : e ∈ Eh − ∂Ω}. For e ∈ EI138

there are two adjacent elements E1, E2 that share e. The set of the Dirichlet139

boundary edges ED := {e ∈ Eh : e ∩ ΓD 6= Ø} and the set of the Neumann140

boundary edges EN := {e ∈ Eh : e ∩ ΓN 6= Ø}.141
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We denote by P
k, k ∈ N0, the space of scalar olynomials of degree less than

or equal to k and by p′ the conjugate exponent 1
p +

1
p′

= 1. On Th, we define the
discontinuous finite element spaces

(V k
h )d : = {vh ∈ (Lp(Ω))d : vh|E ∈ (Pk(E))d, ∀E ∈ Th}, (5)

(Y k
h )d×d : = {Lh ∈ (Lp(Ω))d×d : Lh|E ∈ (Pk(E))d×d, ∀E ∈ Th}, (6)

(Xk
h)

d×d : = {Ah ∈ (Lp′

(Ω))d×d : Ah|E ∈ (Pk(E))d×d, ∀E ∈ Th}. (7)

Interface jumps and averages: For a function v ∈ (V k
h )d we do not impose

any continuity requirements on the interfaces of the elements. Thus, for two
elements E1, E2 which share a common edge e = ∂E1

⋂
∂E2, we assume the

outward normal vector ne,12 to be oriented from E1 towards the interior of E2

and conversely ne,21 from E2 towards the interior of E1. We define the average
and the jump respectively of v on e by

{v} :=
1

2
(v|E1 + v|E2), Jv ⊗ nK := v|E1 ⊗ ne,12 + v|E2 ⊗ ne,21, (8)

{A} :=
1

2
(A|E1 +A|E2), JAnK := A|E1ne,12 +A|E2ne,21. (9)

3.2 The LDG discretization142

We multiply each equation in (3) by a test functions (Xh,Yh, zh) ∈ ((Xk
h)

d×d×
(Y k

h )d×d×(V k
h )

d) respectively, integrate over one element E ∈ Th and use partial
integration to obtain the discrete formulation: we look for the LDG approxima-
tions Lh ∈ (Y k

h )d×d, Ah ∈ (Xk
h)

d×d, uh ∈ (V k
h )d of (L, A,u) of (3) such that

for E ∈ Th and t ∈ (0, T ] the following equations are satisfied
∫

E

Lh : Xh dx = −

∫

E

uh · divXh dx+

∫

∂E

ûh · (Xhn) ds, (10a)

∫

E

Ah : Yh dx =

∫

E

Ã(Lh)Lh : Yh dx, (10b)

∫

E

uht · zh dx =−

∫

E

Ah : ∇zh dx+

∫

∂E

Âh : (zh ⊗ n) ds+

∫

E

f · zh dx, (10c)

where the fluxes (̂.) on ∂E in (10) are the numerical fluxes, which must be defined
suitably in order to ensure stability and convergence of the method (e.g. see [25],
and [34] for comprehensive analysis of the numerical fluxes for a linear elliptic
model). As in [20], we choose

ûh
e
:=





uh, on e ∈ EN
uD, on e ∈ ED
{uh}, on e ∈ EI

(11a)

Âh

e
:=





aN , on e ∈ EN
Ah − γÃ( Juh⊗nK

h ) Juh⊗nK
h , on e ∈ ED

{Ah} − γÃ( Juh⊗nK
h ) Juh⊗nK

h , on e ∈ EI ,

(11b)
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where γ > 0 is a constant (which will be specified in the numerical examples)
and for e ∈ ED the jump is defined as Juh ⊗ nK = (uh − uD)⊗ n. The term

γÃ(
Juh ⊗ nK

h
)
Juh ⊗ nK

h
, (12)

is called penalty jump term, and complies with the (p, δ)-structure of A, see (2).143

Here, with the numerical flux (11b), we have generalized the numerical flux from144

[7], which was proposed for the case δ = 0 to the general case of δ ≥ 0.145

Another type of numerical flux: In addition, to the numerical flux defined
in (11b) we propose a new numerical flux

Âe
h,L :=





aN , on e ∈ EN
Ah − γÃ(Lh)

Juh⊗nK
h , on e ∈ ED

{Ah} − γ{Ã(Lh)}
Juh⊗nK

h , on e ∈ EI ,

(13)

where γ > 0 is a constant and the diffusivity function Ã on the edges depends146

on Lh. The flux (13) increases the performance of the computational procedure.147

This will be explained in the numerical tests, where we perform comparisons148

between the results computed by the numerical fluxes (11b) and (13). Here is149

the first time where the numerical fluxes (11b), (13) are applied in LDG methods150

for solving problems with (p, δ)-structure. Notice that for the linear case p = 2151

the two different penalty jump terms are the same.152

3.3 Stability bounds for the scalar case153

In the scalar case, where u : Ω × (0, T ) → R, the model problem (1) with δ = 0
(for δ ≥ 0 we refer to [20] for steady problems) has the form

ut − div
(
ã(∇u)∇u

)
= f in Ω × (0, T ], (14a)

u0(x) = u(x, 0) in Ω, (14b)
(
ã(∇u)∇u

)
· n = aN on ΓN × (0, T ], (14c)

u = uD, on ΓD × (0, T ], (14d)

where ã(v) = |v|p−2, v ∈ R
d. Following the same procedure as in the previ-

ous section we can easily obtain the coresponding LDG formulation (10) for
the problem (14). Next, using the expression (11) for the numerical fluxes and
summing up over all E ∈ Th, we obtain after some simple manipulations, see
details in [2], the discrete variational formulation: find the LDG approximations
(lh, ah, uh) ∈ ((Y k

h )d×d×(Xk
h)

d×d×(V k
h )d) such that the following discrete equa-



LDG method for (p, δ)-structure problems 7

tions are satisfied∫

Ω

lh · xh dx =

∫

Ω

∇uh · xh dx−

∫

EI

JuhnK · {xh} ds

−

∫

ED

uhxh · n ds+

∫

ED

uDxh · n ds, (15a)

∫

Ω

ah · yh dx =

∫

Ω

ã(lh)lh · yh dx, (15b)

∫

Ω

uhtzh dx +

∫

Ω

ah · ∇zh dx

=

∫

EI

{ah} · JzhnK ds−

∫

EI

γã
( JuhnK

h

) JuhnK

h
· JzhnK ds

+

∫

ED

ah · nzh ds−

∫

ED

γã
(JuhnK

h

)JuhnK

h
· zhn ds

+

∫

EN

aNzh ds+

∫

Ω

fzh dx, (15c)

for xh ∈ (Xk
h)

d,yh ∈ (Y k
h )d, zh ∈ V k

h . Next, we derive an a priori bound for the
LDG scheme (15) in a special case, namely we assume ΓN = Ø and uD = 0
in problem (14). Choosing in (15) zh = uh, xh = ah, yh = lh and adding all
equations, we obtain after some manipulations

∫

Ω

uhtuh dx+

∫

Ω

ã(lh)|lh|
2 dx+ γ

∫

EI

ã(
JuhnK

h
)
JuhnK2

h
ds

+ γ

∫

ED

ã(
JuhnK

h
)
JuhnK2

h
ds =

∫

Ω

fuh dx.

(16)

By virtue of the form of ã and using that ã( JuhnK
h ) JuhnK2

h = 1
hp−1 |JuhnK|p on

e ∈ EI ∪ ED, we have that
∫

Ω

uhtuh dx+
γ

hp−1

∫

EI∪ED

|JuhnK|p ds+

∫

Ω

|lh|
p dx =

∫

Ω

fuh dx. (17)

Next, applying Cauchy-Schwartz inequality on the right-hand side of (17) and
using that uhtuh = 1

2
∂
∂t (uh(t))

2 we have that

1

2

d

dt
‖uh(t)‖

2
L2(Ω) + ‖lh‖

p
Lp(Ω) +

γ

hp−1
‖JuhnK‖pLp(EI∪ED)

≤
1

2
‖f‖2L2(Ω) +

1

2
‖uh‖

2
L2(Ω). (18)

Integrating from 0 to t yields

‖uh(t)‖
2
L2(Ω) + 2

∫ t

0

‖lh(τ)‖
p
Lp(Ω) +

γ

hp−1
‖Juh(τ)nK‖pLp(EI∪ED) dτ

≤

∫ t

0

‖f(τ)‖2L2(Ω) + ‖uh(τ)‖
2
L2(Ω) dτ + ‖uh(0)‖

2
L2(Ω). (19)
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Applying Gronwall’s inequality in (19) we can obtain the following a priori bound
for the LDG solutions of (15),

‖uh(t)‖
2
L2(Ω) + 2

∫ t

0

‖lh(τ)‖
p
Lp(Ω) +

γ

hp−1
‖Juh(τ)nK‖pLp(EI∪ED) dτ

≤ et
(∫ t

0

‖f(τ)‖2L2(Ω) dτ + ‖uh(0)‖
2
L2(Ω)

)
. (20)

4 Time marching scheme154

We denote by S(t) = [L(t),A(t),U(t)]⊤ the vector with the global degrees of
freedom of the expressions of (Lh,Ah,uh) in ((Xk

h)
d×d × (Y k

h )d×d × (V k
h )d). By

the discrete formulation (10), we obtain the following nonlinear ODE system,



0
0

M
dU(t)
dt


 =



R1(t,S(t))
R2(t,S(t))
R3(t,S(t))


 , (21)

whereM is the mass matrix of uh, and the components ofR1,R2,R3 are derived155

from the variational formulation (10). We discretize the system (21) by applying156

s-stage Diagonal Implicit Runge-Kutta methods (sDIRK) [40], [12]. In sDIRK157

methods the coefficient matrix [aij ] ∈ R
s×s of Butcher’s table is lower triangular158

with equal diagonal elements, offering a significant computational advantage,159

since for every time step s decoupled ODEs systems must be solved.160

If τ1, ..., τs are the quadrature points and b1, ..., bs are their weights, supposing
that we have computed the solution Sn at time step tn, then the solution Sn+1

at time step tn+1 = tn +∆t, is computed by the following formula

0 =R1(t
n+1,Sn+1), (22a)

0 =R2(t
n+1,Sn+1), (22b)

Un+1 =Un +∆t

s∑

i=1

biM
−1R3(t

n,i,Sn,i), (22c)

where Sn,i are intermediate solutions at tn,i = tn + τi∆t, given by

0 =R1(t
n,i,Sn,i), (23a)

0 =R2(t
n,i,Sn,i), (23b)

Un,i =Un +∆t

i∑

j=1

aijM
−1R3(t

n,j ,Sn,i). (23c)

The computation of the intermediate solutions, requires the solution of the non-161

linear system (in the general case of p 6= 2), which is achieved by an iterative162

process. Next, we develop and apply two well known iterative processes, the New-163

ton method (the most widespread second order iterative method) and the Picard164

method (first order convergence rate), see details in [26].165
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Newton iterative process. The Newton method for the system (23) takes the
form 


∂R1

∂S
∂R2

∂S

M −∆taii
∂R3

∂S


∆Sn,i,k+1 =




R1,S

R2,S

∆tR3,S


 , k = 0, 1, 2, ... (24a)

∆Sn,i,k+1 =Sn,i,k+1 − Sn,i,k, (24b)

where
∂Rj

∂S , Rj,S , j = 1, 2, 3 are the associated Jacobian matrices and the result-166

ing residual vectors, which are calculated at Sn,i,k. In the materialization of (24),167

the Jacobian matrices are not computed explicitly but are replaced by numerical168

approximations (matrix-free implementation). Consequently a Krylov subspace169

projection method for non-symmetric systems (GMRES) is applied, see [41], in170

order to approximate the solution of the derived linear system. Further details,171

for implementing sDIRK methods for nonlinear equations are presented in [18].172

In the numerical computations, (k + 1) order sDIRK method is applied.173

We mention, that several multigrid or preconditioned techniques have been pro-174

posed in the literature for solving nonlinear systems similar to (24) produced by175

the discretization of p-type problems as (1), [32]. In our numerical examples we176

do not use any particular of these techniques.177

The computational effort of the whole method depends strongly on the num-178

ber of iterations of the Newton process, due to the fact that in every iteration179

k the Jacobian matrices in (24) must be computed. Also, it is important for the180

efficiency of the iterative process, the solution of the linear system (23) to be ob-181

tained in few GMRES iterations. It is known that, in many nonlinear problems,182

the condition number of the resulting Jacobian matrices is very large and as a183

result the convergence speed of the iterative solver is very slow (or even the itera-184

tive solver can fail), [26]. During the performance of the numerical examples, we185

saw that the performance speed of the iterative process (Newton and GMRES)186

is affected by the value of γ and p. Specifically, we saw that choosing γ > 2 for187

the p < 2 test cases, the CPU time is increased at a higher rate compared to the188

p ≥ 2 test cases. For this reason, we develop and apply a Picard type method,189

which is less costly (but still first order), and more stable in the sense that the190

performance speed is not strongly affected by the parameter γ and is similar for191

all p test cases.192

Picard method. The Picard iteration scheme for (23) is expressed as following

A(Sn,i,k)Sn,i,k+1 = F, k = 0, 1, 2, ... (25a)

The coefficient matrix A in block-form can be written as



M̃ 0 B

Ã(Ln,i,k) M̃ 0
0 ∆taiiB

⊤ C(Ln,i,k)


Sn,i,k+1 =



F1

0
F3


 , (25b)
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where M̃ is the mass matrix of Lh, the matrices B, Ã(Ln,i−1) are defined by the
discrete variational formulation (10), the components F1,F2 are derived by the
formula (23), and C(Ln,i,k) = M −∆taiiÃ({Ln,i,k}).
The convergence of the iteration scheme (25) can further speed up when a block-

Jacobi approach is utilized. In this approach the whole structure of the system
(25) is retained, but the iterative matrix A(Sn,i,k) is split into a block diagonal
matrix D(Sn,i,k), which is related to the volume integrals of (10), and into off-
block diagonal O(Sn,i,k), which arises by the computation of the numerical fluxes
on the interfaces. The matrix O(Sn,i,k) is transferred to the right hand side of
(25a) and a Jacobi interior iterative process with D as iterative matrix is applied

to obtain an intermediate solution Sn,i,k+ 1
2 . In the next Picard iterative step

we use the solution Sn,i,k+ 1
2 for updating the matrix A in (25a). The iterative

process (25a) including the inner Jacobi iterations can be written as

A(Sn,i,k+ 1
2 )Sn,i,k+1 = F, k = 0, 1, 2, ..., (26a)

where the solution Sn,i,k+ 1
2 is obtained by

D(Sn,i,k
j )Sn,i,k

j+1 = F−O(Sn,i,k
j )Sn,i,k

j , j = 0, 1, 2, ..., JM . (26b)

We set Sn,i,k+ 1
2 := Sn,i,k

j=JM
. (26c)

The advantage of this approach is the following: the matrix D is block diagonal
where every block, say DE , is associated with an element E ∈ Th. The first
and last row of DE are formed by linear terms. The second row of DE includes
nonlinear entries which are formed by the integral terms of (10b). Having found

the solution Sn,i,k
j (by the previous Jacobi iteration step), the nonlinear entries

of DE are updated easily by applying simple integration rules. Thus, the linear
system (26b) with unknowns Sn,i,k

j+1 , can be solved block by block using a LU
(stored) factorization procedure. Therefore, after the last Jacobi iteration, we

can update the entries of the coefficient matrix (26a) by the solution Sn,i,k+ 1
2

which is “closer” to Sn,i,k+1. In fact Sn,i,k+ 1
2 is “closer to ” Sn,i,k+1 than the

solution that we obtain in the case where we apply explicit time stepping from
tn to tn+1. More precisely, in this case the expression (26b) takes the form of an
explicit treatment of (21) (or (25b)), that is

ML,A,USn,i,k
j+1 = F− Õ(Sn,i,k

j ), j = 0, 1, 2, ..., JM , (27)

where ML,A,U is the block-diagonal mass matrix of L,A,U and Õ(Sn,i,k
j ) in-193

cludes all the rest flux terms appear in (21). The interior method (27) inherits194

the small size of ∆t that we have to apply for solving the original problem (21)195

by an explicit method. Thus the intermediate solution Sn,i,k+ 1
2 obtained by (27),196

does not differ much by the initial starting solution Sn,i,k, (specially for small197

number JM ), and as a result we do not have a remarkable improvement in the198
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performance of the original Picard method (25). In order to have more clear pic-199

ture of this, we make comparisons in the numerical examples, see also comments200

in the next paragraph Implementation remarks.201

We point out that, the nested approach (26b) is expected to have similar con-202

vergence rate per Runge-Kutta cycle as the original scheme (25a) but improved203

performance in terms of CPU time. This is shown in the numerical examples.204

Henceforth, we will call the iterative scheme (26) as Jacobi-Picard and denote205

as Jc-Picard, the iterative scheme with the explicit nested method (27) Explicit206

Jacobi-Picard and denote ExplJc-Picard.207

4.1 Impementation remarks208

In practice, the iteration processes are stopped when ‖∆Sn,i,k+1‖l2 ≤ ǫ for a209

prescribed tolerance ǫ, and we set Sn,i := Sn,i,k+1 at the last iteration. We set210

ǫ = 1.E − 06.211

In both Picard’s iteration schemes we increased the efficiency of the iterative212

linear solver by applying a preconditioned GMRES iterative solver. The use of a213

preconditioned GMRES solver was not possible in the previous implementation214

of the matrix-free Newton method.215

The codes materialized for all iterative processes have the ability of adjusting216

(increasing or decreasing) the size of ∆t at the next time step, according to a217

criterion which is derived by using the number of the nonlinear iterations and218

the number of the iterations of the linear solver (GMRES) of the current time219

step. The solution of ODE problem (21) starts by using an initial ∆t0 = (hi

16 )
k+1

220

and an initial guess given either by the initial conditions of (1) or by previous221

time steps solutions.222

The code which materializes (27) keeps fixed time step ∆tExplicit = ∆t
200 .223

Both Jc-Picard and ExplJc-Picard iterative schemes utilize JM = 2 inner Jacobi224

iterations.225

5 Numerical tests226

In this section we present several numerical results in order to illustrate the227

performance of the proposed LDG method to problem (1) with (p, δ)-structure.228

In the first paragraph, we consider the problem (1) with known exact solutions229

for verifying experimentally the spatial convergence rate of the method. Then, we230

study the efficiency (convergence characteristics) of the two different nonlinear231

iterative processes. In the last paragraph, we focus on the applicability of the232

method for solving realistic flow problems on domains with non-convex corners.233

5.1 Convergence studies234

All the numerical examples presented here have been performed using the New-
ton nonlinear iterative method. The domain is Ω := [−2, 2] × [−2, 2]. We set
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ΓD = ∂Ω and the data f ,uD of (1) are specified by the given exact solution. Ev-
ery test problem has been solved up to final time T = 0.25, the error is computed
at the final time step and is given by the expression, [20],

‖.‖LDG :=
(
‖F(L)− F(Lh)‖

2
L2(Ω) + ‖F∗(A) − F∗(Ah)‖

2
L2(Ω) (28)

+ γh‖F(h−1J(uh − u)⊗ nK)‖2L2(EI

⋃
ED)

) 1
2

,

where F(A) = (δ + |A|)
p−2
2 A and F∗(A) = (δp−1 + |A|)

p′−2
2 A with 1

p + 1
p′

= 1.235

We use k = 2 and k = 1 for the local polynomial spaces. For every test-problem236

the values of the parameters are given in Table 1.237

Smooth problem. In this test the exact solution is

u(x, t) =

{
u(x, t) = B(t) sin(x),

v(x, t) = B(t) cos(y),
(29)

where B(t) = 1 + exp(−100t), and x = (x, y). The initial unstructured mesh238

Th0 is generated by a triangular mesh generator with h0 = 1 and the next finer239

meshes Thi
are obtained by subdividing the triangles to four equal triangles,240

hi+1 = hi

2 . The numerical convergence rates r are computed by the ratio r =241

ln(ehi
/ehi+1

)

ln(2) , where ehi
is the error (28) computed on the mesh Thi

. In Fig. 1 we242

plot the exact solutions (left column) side by side with the corresponding LDG243

solutions (right column) computed using k = 2, p = 2.5 and the numerical flux244

(11b). The rates r are presented in Fig. 1(e) and in Fig. 1(f). We observe that245

the rates are the expected according to the regularity of u and are similar to the246

corresponding convergence rates that have been presented in [13], [14], [10] for247

p = 2-structure linear-nonlinear elliptic problems.248

Natural regularity problem. In the following numerical experiments (test1,
test2, test3) we asses the convergence rate of the proposed method in case where
the solution of (1) has poor regularity. We consider a solution u of (1) with a
point singularity at the origin given by

u(x, t) =

{
u(x, t) = B(t)|x|a(p)y,

v(x, t) = B(t)|x|a(p)(−x),
(30)

where the exponent a(p) will be specified in the test cases. An easy computa-249

tion shows that |∇u| behaves like |x|a(p) and F(∇u) behaves like |x|
a(p)p

2 . The250

numerical flux (11b) has been used.251

Numerical test 1. In this example, we set a(p) = 0.01 and the regularity252

of F(∇u) is close to W
1,2(Ω). Due to the reduced regularity of the exact253

solution, we expect the convergence rates r for the k = 2 solution to be254
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reduced in comparison with the results of Fig. 1(e). Indeed, in Fig. 2(a) we255

plot the error versus grid size in the case k = 2 and we can see that all error256

rates r are less than two even in the linear case p = 2. In the case k = 1,257

Fig. 2(b), all error rates are optimal r = 1 with respect to the regularity of258

the exact solution.259

Numerical test 2. In this example, we increased the regularity of the exact260

solution (30), by setting a(p) = 2
p + 0.01, which means F(∇u) ∈ W

2,2(Ω).261

The rates are presented in Fig. 2(c) and for p 6= 2 are suboptimal (less than262

2) and only for the linear case p = 2, the rate r tends to 2, since we have263

∇u ∈ W
2,2(Ω).264

Numerical test 3. In order to see the influence of the parameter δ (see (2)) to265

the accuracy of the LDG method, we performed the numerical test 2, setting266

δ = 0 and δ = 1. The corresponding convergence rates are plotted in Fig.267

2(d) and in Fig. 2(e). Although the rates in Fig. 2(d) and Fig. 2(e) are slightly268

increased in comparison with the rates in Fig. 2(c), the overall behavior is269

the same. Thus, the numerical convergence rate of the LDG method, that270

we found in this example, are compatible with the regularity properties of271

the solution and are not strongly affected by the change of the perturbation272

parameter δ.273

Numerical test 4. In Section 3, we proved that the proposed LDG method274

is stable for any γ > 0. In order to see numerically the influence of γ, we275

performed again the last test setting γ = 1, see Table 1. The rates are276

presented in Fig. 2(f) and appear to be the same with the rates presented277

in Fig. 2(e), as it was expected. A comparison of the CPU time for the two278

different choices of γ (but the same δ = 1) is given in Table 2. In general,279

for the p ≥ 2 tests cases, the CPU times are very closed, but for p = 1.5280

the CPU time increases when the value of γ is increased. This explains our281

initial choice (see first lines Table 1) to perform the p = 1.5 tests using small282

value for the parameter γ.283

Numerical flux comparisons. Here we investigate the effect of the penalty
jump terms of the numerical fluxes (11b), (13) to the convergence rate of the
error

‖F(L)− F(Lh)‖L2(Ω). (31)

The parameter values are given in Table 1.284

test (i) We solved the problem (1) with the exact solution (29) applying k = 2285

polynomial space. Fig. 3(a) and Fig. 3(b) present the error (31) versus the286

grid size. As we can observe the error of both fluxes (11b) and (13) converges287

with (the expected) rate r = 2.288

test (ii) We solved the problem (1) with exact solution (30) in the case of289

a(p) = 0.01 (F(∇u) ∈ W
1,2(Ω)) using k = 1 for the polynomial space.290

Fig. 3(c) and Fig. 3(d) show the convergence rates of the error (31). In both291

graphs, we can see that the rates r are similar and remain close to the optimal292
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Numerical example Parameter values Figure-Table

Smooth problem
p 1.5 2 2.5

γ 0.2 2 2
δ=0.001 Fig. 1

Natural regularity,
Numerical test 1
Numerical test 2

p 1.5 2 2.5

γ 0.2 2 2
δ=0.001 Fig. 2(a)(b)(c)

Natural regularity,
Numerical test 3

p 1.5 2 2.5

γ 0.2 2 2
δ=0,δ=1 Fig. 2(d)(e)

Natural regularity,
Numerical test 4

p 1.5 2 2.5

γ 1 1 1
δ=1 Fig. 2(f), Table 2

Numerical fluxes,
test(i),test(ii),
test (iii)

Flux (11b) Flux (13)

- δ = 0.001 δ = 0.001

p 1.5 2.5 1.5 2.5

γ 0.2 2 0.5 2

Fig. 3, Table 3

Numerical fluxes,
test(iv)

Flux (13), δ = 1

p 1.5 2.5

γ 1 1

Table 3

Table 1. Numerical examples with the parameter values the graphs and Tables.

p =1.5 p =2 p =2.5

Thi
γ = 0.2 γ = 1 γ = 2 γ = 1 γ = 2 γ = 1

- CPU time, δ = 1

i = 0 1.76 0.92 0.81 0.71 1.93 1.96

i = 1 8.79 15.35 12.47 12.30 16. 15.25

i = 2 46.20 72.08 43.75 45.38 71.11 89.71

i = 3 334.24 528.9 360.12 347.88 559.08 702.89

i = 4 4531.8 5928.25 3693.2 3605.34 6192.34 6751.8
Table 2. CPUs for the two different choices of γ

rate r = 1, as the mesh is progressively subdivided. The error magnitude of293

flux (11b) is greater than the error magnitude of (13).294

test (iii) For the problem (1) with exact solution (29), we present the CPU295

times for every mesh in the first four columns of Table 3. As we can see, for296

the p = 2.5 test cases the CPU time is almost the same for both numerical297

fluxes. For the test case with p = 1.5, the CPU time of the flux (13) is298

less than the CPU time of flux (11b), specially for the finer meshes. This299

shows that for the p = 1.5 test cases, the flux (13) produces a faster iterative300

method than the flux (11b).301

test (iv) The last two columns of Table 3 show the CPU times of the solution302

of the problem (30) utilizing the flux (13) and using γ = 1 and δ = 1. A303

comparison with the coresponding results in Table 2 shows that the CPU304

time of p = 1.5 test is lees for the flux (13), but the CPU times for the test305
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p = 2.5 are very closed. Thus, the CPU times of the numerical fluxes have306

similar behavior as in the test (iii).

Problem (29) Problem (30)

p =1.5 p =2.5 p =1.5 p =2.5

Thi
Flux (11b) Flux (13) Flux (11b) Flux (13) Flux (13) δ = 1, γ = 1

- CPU time

i = 0 2.18 1.9 2.2 2.186 2.01 2.06

i = 1 14.78 14.63 16.48 16.82 9.0 11.11

i = 2 150.026 120.446 162.6 141.24 68.07 99.67

i = 3 1504 1098.4 604.2 576.588 548.58 790.7

i = 4 16040.4 11091.1 4995.44 4854.34 4885.01 6540.3
Table 3. CPUs for the two different numerical fluxes

307

5.2 Picard Performance308

In this paragraph, we present results related to the performance of the Picard309

non-linear iterative process and make comparisons with the results of the New-310

ton iterative method. Both Picard and Newton methods are utilized for the LDG311

method with numerical flux (13). We do not present convergence rate graphs,312

since the rates have been found to be similar with the rates presented in the313

previous paragraph.314

We solved the problem (1) with exact solution (29), using k = 1 for the local315

space and γ = 2 for all p test cases, see first line in Table 1. Table 4 shows316

the CPU time of the Picard iterative methods for every Thi
. The CPU times317

of ExplJc-Picard and Picard methods are quite close. It seems that, the imple-318

mentation of the interior method (27) for updating the nonlinear entries of the319

Picard matrix does not remarkably improve the performance of the whole itera-320

tive method. Conversely, the CPU time values decrease quite when the Jc-Picard321

method is applied. The decrease is higher for the fine meshes. In general, the322

CPU time values of the same Picard method for the two different p test cases323

are close. We can not see the same relation of the Newton CPU time values,324

which are presented in Table 3 and Table 2. Further, we observe that the in-325

creasing rate of the Picard CPU time for both p cases is almost 9.80 and the326

corresponding rate of the Jc-Picard is around 9.55 (even for the fine meshes),327

this shows a stable behavior for the method. On the other hand the results of328

the Newton method in Table 3 show that the CPU time of p = 1.5 test case is329

increasing with rate about 11.12, but the increasing rate for the p = 2.5 case is330

about 9.4, hence the performance of the Newton iterative method varies with331

the choice of p. A comparison of the convergence behavior of the methods with332

respect to the total number of the iterations is presented in the first lines of333

Table 5. The Newton methods appear to have better computational efficiency,334
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due to the lower number of total iterations needed for the full solution of the335

problem. The iterations of the Jc-Picard are reduced enough in comparison to336

the iterations of Picard method, (specially for the fine meshes), showing the ef-337

fectiveness of this method over the last method. The last line of Table 5 shows338

the minimum-maximum number of the GMRES iterations during the solution339

of the problem on the last three meshes. The numbers confirm, the comments340

in Section 5 (paragraph Newton iterative process), that for p = 1.5 case, the341

resulting Jacobian matrix of the Newton method has higher condition number342

than the Jacobian matrix of p = 2.5 case. On the other hand, the results indicate343

that the condition numbers of the produced Picard matrices are less sensitive to344

the choice of the p, since the GMRES solver has similar behavior for the two p345

test cases.346

For the numerical examples that we present here, we point out that for the347

Newton method, we used a matrix-free implementation code (the Jacobian ma-348

trix is not explicitly stored), [18], [23], achieving better overall performance than349

the applied Picard methods, where the matrices are stored. This fact and the350

quadratic (expected) convergence rate of Newton approach, help this iterative351

method to be appeared more efficient than the two Picard methods, even though,352

as we observed in the last line of Table 5, the Newton method applies more GM-353

RES iterations.354

Picard ExplJc-Picard Jc-Picard

Thi
p =1.5 p =2.5 p =1.5 p =2.5 p=1.5 p=2.5

- CPU time

i = 0 6.48 6.17 6.93 6.24 4.78 4.26

i = 1 58 55.36 58.05 55.2 38.36 36.4

i = 2 534.3 527.2 518.85 545.8 420.5 412.5

i = 3 5207.3 5087.6 5058.3 4756.07 4065.6 3966

i = 4 51361.4 49780 48628.9 44936 38462 37880
Table 4. CPUs for the Picard nonlinear iterative processes.

5.3 Realistic problems in non-smooth domains355

In this paragraph, we test the proposed LDG method on two more realistic356

flow problems where the boundary of the computational domain has non-convex357

corners. We know by the theory of linear elliptic problems,[31], that the solution358

has less regularity (u ∈ W l=1+ε<2,2) around the corner points and the numerical359

method may lose its optimal accuracy. A numerical treatment in order to recover360

the accuracy of the method is the use of locally graded mesh refinement technique.361

This technique has been extensively studied for finite element methods for linear362
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Fig. 1. Convergence studies, smooth problem. First and second line: the contours of
the exact solutions (29) side by side with the contours of the LDG solutions in case of
P
2(E) and p = 2.5. Last line: (e) rates r for P

2(E), (b) rates r for P
1(E).
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Fig. 2. Convergence studies, natural regularity problem, (a) test 1: rates r for P
2(E)

and F(∇u) ∈ W
1,2(Ω), (b) test 1: rates r for P

1(E) and F(∇u) ∈ W
1,2(Ω), (c) test

2: rates r using P
2(E) and F(∇u) ∈ W

2,2(Ω), (d) test 3: rates r for P
2(E), δ = 0 and

F(∇u) ∈ W
2,2(Ω). (e) test 3: rates r for P

2(E), δ = 1 and F(∇u) ∈ W
2,2(Ω). (f) test

4: rates r for P
2(E), δ = 1, γ = 1 and F(∇u) ∈ W

2,2(Ω).
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Fig. 3. Numerical flux comparison. (a) test(i) exact solution (29): rates r for P
2(E),

(b) test(i) exact solution (29): rates r for P
2(E), (c) test(ii) exact solution (30): rates

r for P
1(E), and F(∇u) ∈ W

1,2(Ω), (d) test(ii) exact solution (30): rates r for P
1(E),

and F(∇u) ∈ W
1,2(Ω).
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Picard Jc-Picard Newton

Thi
p =1.5 p =2.5 p=1.5 p=2.5 p=1.5 p=2.5

- total number of iterations

i = 0 135 117 125 90 100 80

i = 1 330 262 295 245 263 201

i = 2 1406 1120 1183 1012 654 537

i = 3 10055 7675 6545 5165 2202 1806

i = 4 50412 46020 35770 26697 6640 5500

- GMRES iterations

Min-Max 5-17 3-15 5-17 3-15 14-35 11-24
Table 5. First lines: Total number of iterations for the nonlinear iterative processes.
Last line: Min-Max iterations of the GMRES solver.

elliptic problems, see for example [24], [1], [28]. The refinement is determined363

by studying the singular behavior of the solution around the corners; and the364

finite element method, applied on the resulting graded refined mesh, has optimal365

convergence rate properties.366

Next, for the solution of the first problem, we just use a quite fine uniform367

mesh and k = 2 for the local polynomial space. For the numerical solution of the368

second problem, we construct a graded mesh.369

Problem 1 The computational domain Ω = Ω1 − Ω2 where Ω1 = [−2, 2] ×370

[−2, 2], Ω2 = [−1, 1] × [−1, 1], with its triangulation is presented in Fig. 4(a).371

The corners of the interior square Ω2 = [−1, 1] × [−1, 1] constitute the severe372

singularities of the computational domain and make this problem challenging.373

Our particular interest here is, to study if there is any effect of the singular374

boundary points to the symmetric structure of the solution. This means that375

the flow field produced by the LDG method in the upper channel must be the376

same as this of the lower channel.377

On the boundary of the interior square as on boundary parts {−2 ≤ x ≤378

2, y = ±2}, {x = −2,−2 ≤ y ≤ −1}, {x = −2, 1 ≤ y ≤ 2} (denoted in Fig. 4(a)379

by Γ0), Dirichlet boundary conditions (u(x, y, t), v(x, y, t)) = (0, 0) are imposed.380

On the part Γud = {x = −2,−1 ≤ y ≤ 1} we set (u(x, y, t), v(x, y, t)) = (1, 0),381

and on the Neumann part ΓN = {x = 2,−2 ≤ y ≤ 2} we set aN = 0, see Eq.382

(1d). The problem has been solved up to final time T = 50 using the numerical383

flux (11b). The values of the parameters are as in first line in Table 1. In Figs.384

4(b)(c)(d) we plot the contour lines of the uh LDG solution for p = 2.5, p = 2, p =385

1.5 respectively. The contour lines show the symmetric flow field as we expected.386

Next we examine the profiles of uh on the upper and lower channel. In Figs.387

4(e)(f)(g) we plot the profiles of uh computed on the points of the upper line,388

Lup = {x = 0, 1 ≤ y
up
i ≤ 2, where yupi = y

up
i−1+h, i = 1, ...} and on the points of389

the lower line Llw = {x = 0,−2 ≤ ylwi ≤ −1, where ylwi = ylwi−1 + h, i = 1, ...}.390

Note that in this graph, for plotting reasons, we have set ylwi := −ylwi . The two391

profiles coincide for the three p test cases, as was expected for a symmetric flow392
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field. In Fig. 4(h), we plot the uh profiles computed on points of the Lup line. All393

profiles are parabolic, depend on p, with the maximum value on the center point394

M = (0, 1.5) of the axial direction. In comparison with the linear case p = 2, the395

profile becomes flatter with increasing the diffusivity (p = 1.5) and conversely396

becomes sharper reducing the diffusivity (p = 2.5), similar with the results that397

have been found for p-Navier Stokes systems in [35].398

Problem 2 We consider the problem (1) in the computational domain Ω of399

Fig. 5(a) with f = 0, where the boundary conditions are as follows: on ΓD,1400

we set periodic Dirichlet conditions (u, v) = (cos(2πt) + 2, 0), on ΓD,0 Dirichlet401

conditions, (u, v) = (0, 0) and on ΓN Newman conditions aN = 0, (see (1d)).402

The domain has three singular corners Cs, s = 1, 2, 3. The initial mesh Th is403

graded in the following way. For every Cs, we consider a region RC,s = {x ∈404

Ω : |x − Cs| ≤ 0.5}. In every RC,s we construct N ring-type layers Li = {x ∈405

Ω : ri−1 < |x− Cs| < ri, i = 1, ..., N} with ri = 0.5( i
N )

1
µ , where the parameter406

µ ∈ (0, 1] is controlling the grading and we use 1
N to be of order h. The layers407

Li are further partitioned to (approximately) equal side triangles of hE∈Li
≈408

ri−ri−1, see Fig. 5(a) for an illustration of the layers Li and the resulting corner409

mesh for N = 3, µ = 0.4. Such refinements (with the same grading parameters)410

were applied in [43] for the numerical solution of steady linear elliptic problems411

(p = 2).412

The problem has been solved up to final time T = 10 using the numerical flux413

(11b) and k = 1 for the local polynomial space. For making comparisons, the414

problem has been solved numerically on a sequence of Thi
, i = 0, ..., 3 non graded415

meshes, too. Since there is no known exact solution, we check the numerical416

results using a reference solution, Ur, which has been obtained on a fine graded417

mesh and k = 3 for local polynomial space. The uh fields computed on the418

graded Thi=1 mesh at final time step are presented in Figs. 5(b)(c)(d). All the419

fields are symmetric with slow diffusion phenomena for p = 1.5 and more intense420

for p = 2.5. The diffusivity function for this test case is of the form Ã(∇u(x, t)) =421

(δ+|∇u(x, t)|)p−2, one can expect that the uh(., t) will strongly vary with respect422

to t. For every time step tn we compute the values of uh(P, t
n), where the mesh423

point P = (0.368, 0) is located in the vicinity of the middle corner. In Figs.424

5(e)(f)(g) the values of uh and Ur for every p test case are plotted versus the425

time. It can be seen good agreement between the two solutions, both values uh426

and Ur have the same periodic evolution. The amplitude of the obtained p = 2.5427

solution is higher compared to the amplitude of p = 1.5 solution.428

In Fig. 5(h) we display the convergence rates of the error for the graded (µ = 0.4)429

meshes and in Fig. 5(i) the rates for uniform meshes (µ = 1). The experimental430

results show that for the graded mesh the numerical solutions can approximate431

quite well the singular behavior of the solution, since the rates r of every p432

case approach the optimal convergence rate r = 1, (see the numerical examples433

in paragraph 6.1). On the other hand the convergence rates measured on non434

graded meshes are modulated by the poor regularity behavior of the solution.435
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Here, we have to mention that the convergence rates of p = 2 test presented in436

Fig. 5(i) are slightly higher than the rates which have been found in [43].437

6 Conclusions438

We have presented a LDG scheme for discretizing (p, δ)-structure systems. The439

proposed scheme utilizes two different nonlinear jump terms in the viscous nu-440

merical flux, which exhibit the (p, δ)-structure of the diffusion term. We have441

proven an a-priori bound for a simplified scalar problem. For the time integra-442

tion Diagonal Implicit Runge-Kutta methods have been utilized. We have con-443

sidered Newton and Picard iterative processes for solving the resulting nonlinear444

algebraic systems. The developing of further local-interior Jacobi type iterations,445

accelerated the overall performance of the Picard method. The main advantage446

of the last method is that it uses a better solution to update the nonlinear en-447

tries of the main iterative matrix. The performance of the iterative processes448

was compared on several test cases. The Picard methods are less affected by the449

change of the parameter values than the Newton method. We have discussed450

in detail through the numerical examples the convergence rates of the proposed451

LDG method and the rates were found to be optimal with respect to the reg-452

ularity of the exact solution. More realistic problems have been considered in453

domains with non-smooth boundary in order to investigate the performance of454

the method. The problems were solved on graded meshes and the experimental455

convergence rates for all p cases, found to be similar with the rates of the finite456

element methods applied on similar linear problems.457
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Fig. 4. Corner singularity problem. (a) the computational domain with the uniform
triangulation, (b) uh field for p = 2.5, (c) uh field for p = 2, (d) uh field for p = 1.5. (e)
point value comparison of uh on Lup, Llw lines, for p = 2.5, (f) point value comparison
of uh on Lup, Llw lines, for p = 2, (g) point value comparison of uh on Lup, Llw lines,
for p = 1.5 (h) comparison of uh profiles computed on Lup for the three values of p.
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Fig. 5. Time dependent corner singularity problem: (a) The computational domain
with the graded mesh regions near the corner singularities, (b) uh flow field for p = 1.5,
(c) uh flow field for p = 2, (d) uh flow field for p = 2.5, (e) comparisons between
uh(P, t

n) and Ur(P, t
n) point values for p = 1.5, (f) comparisons between uh(P, t
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and Ur(P, t

n) point values for p = 2, (g) comparisons between uh(P, t
n) and Ur(P, t

n)
point values for p = 2.5, (h) experimental convergence rates using graded meshes, (i)
experimental convergence rates using uniform meshes.
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