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Abstract6

In this paper, an Interior Penalty Discontinuous Galerkin finite element method
(IPDG) is analyzed for approximating quasilinear parabolic equations. The
equations can be characterized as perturbed parabolic p-Laplacean equations.
The fully discrete scheme is obtained by applying s-stage Diagonally Implicit
Runge-Kutta Methods (s-DIRK) for the time integration. The nonlinear sys-
tems of the algebraic equations appearing in s-DIRK cycles are solved by de-
veloping two low storage Picard iterative processes. A stability bound is shown
for the semi-discrete IPDG solution in the broken ‖.‖DG,p-norm. Continuous in
time a priori error estimates are proved in case of p > 2, when linear approx-
imation space is used. A numerical test is performed in order to compare the
performance of the two Picard iterative processes. Also, the results presented
in the theoretical analysis are confirmed by numerical examples.
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1. Introduction10

In this paper, an Interior Penalty Discontinuous Galerkin method (IPDG)11

is studied for approximating solutions of quasilinear problems in Lp setting,12

which can be recognized as examples of the perturbed p-Laplace problem. The13

problems are described by nonlinear diffusion equations, where the diffusion co-14

efficient has a standard p-exponent form, that is (µ+ |∇u|)p−2, µ > 0, with most15

interesting case here µ = 1, [1]. Very often, these constitute the mathematical16

model in many practical applications, as in aerodynamic, non-Newtonian flows,17

plasticity and glaciology, see e.g. [2], [3].18

Over the last two decades, there has been an increasing interest on devis-19

ing discontinuous Galerkin (DG) methods for the numerical solution of elliptic20

and parabolic problems. This interest comes from the advantages of the local21

approximation spaces without continuity requirements that DG methods offer.22

Finite element methods defined on discontinuous spaces with interior penalties23

Email address: ioannis.toulopoulos@oeaw.ac.at ( Ioannis Toulopoulos)

Preprint submitted to Elsevier November 7, 2014



for linear elliptic problems were first analyzed in [4], [5]. These methods, for24

the construction of the penalty terms on the interfaces, use similar techniques25

as the Nitsche’s treatment of introducing penalty terms for imposing Dirich-26

let boundary conditions. These approaches are generalized by symmetric and27

non-symmetric IPDG methods, see [6], [7],[8], for a comprehensive analysis of28

IPDG methods for linear elliptic problems. Recently, DG methods have been29

proposed and analyzed for applications to nonlinear elliptic problems formu-30

lated in W 1,2(Ω). For example, in [9], DG methods have been analyzed for31

second order elliptic and hyperbolic systems and in [10], DG symmetric/non-32

symmetric methods have been analyzed for non-Fickian diffusion problems. In33

[11], an incomplete IPDG is introduced for a class of second order monotone34

nonlinear elliptic problems and a priori error estimates are given under minimal35

regularity assumptions on the exact solution. We also refer [12], where a hp-DG36

method has been studied for monotone quasilinear elliptic problems. Using the-37

ory of monotone operators, the authors showed the uniqueness the DG solution38

and derive a priori error estimate in a mesh-dependent energy norm. Based on39

the already results for steady problems, IPDG methods have been proposed for40

solving parabolic type problems. We refer, but not limited to, the following. In41

[13], the first analysis of a semi-discrete IPDG method was presented for lin-42

ear problems and in [14], optimal error estimates for a semi-discrete symmetric43

IPDG method have obtained for nonlinear parabolic problems. We also mention44

[15] and [16], where error estimates are discussed for fully discrete IPDG meth-45

ods, and furthermore, we refer [17] where three fully discrete IPDG methods46

are considered and analyzed.47

In contrast to the analysis of IPDG methods for elliptic problems with natu-48

ral formulation in W 1,2(Ω), there are no contributions that are concerned with49

nonlinear problems formulated in W 1,p6=2(Ω), like the problem with p-exponent50

diffusion coefficient that is considered here. Maybe as one exception, we can51

refer the work presented in [18], where IPDG approximate solutions are studied52

for the p-Laplace equation, (µ = 0). It is the purpose of this paper to make a53

first step in this direction.54

We point out that, classical (continuous) finite element methods, for more55

general p-form problems, the so-called (p, δ)-structure problems, have been an-56

alyzed in the literature, see e.g. [19] and [20]. For parabolic (p, δ)-structure57

problems, we refer [21], where optimal convergence rates have been shown, in58

case of using linear finite element in space and implicit Euler scheme in time.59

The IPDG scheme proposed here, see (3.8), has the same form as the IPDG60

scheme in [12], but here the numerical flux is appropriately re-formulated in61

order to be compatible with the p-nature of the problem. As a first task, stability62

bounds are proved in ‖.‖DG,p-norm, for the case of µ = 0. Then, using the63

interpolation estimates presented in [20], a priori error estimates are given for the64

semi-discrete problem for p > 2, assuming conventional regularity for the exact65

solution. The IPDG spatial discretization, generates a nonlinear ODE system66

with respect to the degrees of freedom. We discretize in time this system by67

s-stage Diagonally Implicit Runge-Kutta methods (s-DIRK). Every cycle of the68

Runge-Kutta method includes the solution of nonlinear algebraic systems. Two69
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low computational cost Picard block-iterative methods are proposed for solving70

the nonlinear systems, [22]. The Picard iterative methods are constructed based71

on the local (per element) approximation features of the IPDG method. The two72

different iterative methods are expected to have the same order of convergence73

(first order), but different performance speed, since the second one uses the latest74

available solution (and not the solution of the previous iteration) for updating75

the nonlinear parts of the system.76

The outline of the paper is as follows. It begins by presenting the model77

problem. Then inequalities for vectors a,b ∈ R2 are shown, which are used78

later to derive the continuity-monotonicity properties of the scheme. In Section79

3, the IPDG method is described. Section 4 includes the formulation of the s-80

DIRK method for the time discretization and the description of the two Picard81

methods. In Section 5, a stability bound for the discrete solution of the p-82

Laplace problem is presented. A priori error estimates for p > 2 are shown in83

Section 6. The paper closes with the numerical tests in Section 7.84

2. The model problem85

Let Ω be a bounded domain in R2, with smooth boundary ΓD := ∂Ω. We86

consider the following scalar initial boundary value problem87

ut − divA(∇u) = f in Ω× (0, T ] (2.1a)

u0(x) = u(x, 0) in Ω (2.1b)

u = uD, on ΓD × (0, T ], (2.1c)

where (0, T ] is the time interval, f : Ω × (0, T ] → R, u0 : Ω → R, uD : ΓD ×
(0, T ]→ R are given smooth functions. The operator A(∇u) : R2 → R2 has the
form

A(∇u) = (µ+ |∇u|)p−2∇u, p > 1, µ ≥ 0,

where |.| : R2 → R is the Euclidean measure and a(∇u) = (µ + |∇u|)p−2
88

is the diffusion coefficient. The nonlinear nature of the problem (2.1) comes89

by the appearance of |∇u| in the diffusive coefficient and this poses numerical90

challenges. The IPDG methods presented so far for nonlinear elliptic equations91

are referred to problems where the natural formulation is given in W 1,2(Ω),92

and either a(.) is uniformly bounded, e.g. [23], or a(.) satisfies a monotone93

condition, e.g. [11], [12]. One can not applied the same methodology for the94

problem (2.1) which is formulated in W 1,p(Ω). This fact motivates the need95

of further analysis and of developing numerical fluxes compatible with the p-96

exponent form of the diffusion coefficient. The goal of this paper is to make a97

first step in this direction.98

Assuming that f ∈ C([0, T ];L2(Ω)), u0 ∈W 1,2(Ω)∩W 1,p(Ω), we call u weak
solution of (2.1), if u ∈ L∞(0, T ;W 1,p(Ω)) ∩W 1,2(0, T ;W 1,2(Ω)), u|ΓD

:= uD
satisfies the following formulation for any v ∈W 1,p

0 (Ω)

∀t > 0,

∫
Ω

utv dx+

∫
Ω

A(∇u) · ∇v dx =

∫
Ω

fv dx, (2.2)
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where

Lp(0, T ;V ) ={v : (0, T )→ V :

∫ T

0

‖v(t)‖pV dt <∞}.

The existence-uniqueness of the solution of (2.2) (even with other assumptions
on the data) are ensured by means of the monotone operators theory, see e.g.
[1], [24]. We refer [25], [21], for regularity assumptions on the problem data
for obtaining optimal rate of convergence for finite element solutions. For the
analysis here, we assume the following conventional assumptions

u ∈W 1,2(0, T ;W 1,2(Ω)) ∩ Lp(0, T ;W s≥2,p(Ω)). (2.3)

Through the paper Ci, i = 1, ... will be generic constants with different values99

independent of crucial quantities. The explicit dependence on the problem data100

will be mentioned.101

2.1. Helpful inequalities for vectors102

Working further on the results of Chp I in [24] and [26], we prove special103

algebraic inequalities that are going to be used later. In the proofs, we use the104

function F : R2 → R2
105

F(a) = (µ+ |a|)
p−2
2 a. (2.4)

We introduce the formula

A(b)−A(a) =

∫ 1

0

d

dt
(µ+ |a + t(b− a)|)p−2(a + t(b− a)) dt, (2.5)

and by an easy computation on the right hand of (2.5) we get

A(b)−A(a) =

∫ 1

0

(µ+ |a + t(b− a)|)p−2(b− a) dt+

(p− 2)

∫ 1

0

(µ+ |a + t(b− a)|)p−3 1

2
|a + t(b− a)|−1

2
(
a + t(b− a),b− a

)
(a + t(b− a)) dt. (2.6)

Multiplying (2.6) by b− a, we have

(
A(b)−A(a),b− a

)
= |b− a|2

∫ 1

0

(µ+ |a + t(b− a)|)p−2 dt+

(p− 2)

∫ 1

0

(µ+ |a + t(b− a)|)p−3|a + t(b− a)|−1

(
a + t(b− a),b− a

)2
dt. (2.7)
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The last term on the right hand side of (2.7) is positive and for p ≥ 2 we get

(
A(b)−A(a),b− a

)
≥ |b− a|2

∫ 1

0

(µ+ |a + t(b− a)|)p−2 dt (2.8a)

by applying Cauchy-Schwarz inequalities, we further get∣∣∣A(b)−A(a)| ≥ |b− a|
∫ 1

0

(µ+ |a + t(b− a)|)p−2 dt. (2.8b)

Also, applying Cauchy-Schwarz inequality on the last term on the right hand
side of (2.6), we have∫ 1

0

(µ+ |a + t(b− a)|)p−3|a + t(b− a)|−1|a + t(b− a)|2|b− a|

≤ |b− a|
∫ 1

0

(µ+ |a + t(b− a)|)p−2 dt. (2.9)

Therefore, combining (2.9) and (2.6), we get

|A(b) − A(a)| ≤ (p − 1)|b − a|
∫ 1

0

(µ + |a + t(b − a)|)p−2 dt. (2.10)

Recalling the forms of A and F and setting in (2.10) p := p+2
2 we obtain∣∣∣(µ+ |b|)

p−2
2 b− (µ+ |a|)

p−2
2 a
∣∣∣2 ≤ (p

2

)2|b− a|2
(∫ 1

0

(µ+ |a + t(b− a)|)
p−2
2 dt

)2

and thus, |F(b)− F(a)|2 ≤
(p

2

)2|b− a|2
∫ 1

0

(µ+ |a + t(b− a)|)p−2 dt.

By (2.8a) and (2.8b), we have

|F(b)− F(a)|2 ≤C(p)
(
A(b)−A(a),b− a

)
, (2.12a)

|F(b)− F(a)|2 ≤|A(b)−A(a)|2. (2.12b)

Keeping p > 2 and using that (µ+ |a+ t(b−a)|)2 p−2
2 ≤ 2 max{(µ+ |a|)

p−2
2 , (µ+

|b|)
p−2
2 }(µ+ |a + t(b− a)|)

p−2
2 , we derive by (2.10) that

|A(b)−A(a)| ≤ (p− 1)|b− a|
∫ 1

0

(µ+ |a + t(b− a)|)2 p−2
2 dt

≤ C(p)M(|a|,|b|)

∫ 1

0

|b− a|(µ+ |a + t(b− a)|)
p−2
2 dt

≤ C(p)M(|a|,|b|)|F(b)− F(a)|, (2.13)

where M(|a|,|b|) = 2 max{(µ+ |a|)
p−2
2 , (µ+ |b|)

p−2
2 }.106

5



3. The Numerical Scheme107

3.1. Preliminaries - DG notation108

Let Th = {Ei}NE
i=1 be a regular subdivision of Ω in triangular elements109

(without hanging nodes) with diameter hEi
, where for simplicity we assume110

h := minEi∈Th
hEi

= maxEi∈Th
hEi

. We denote by E = EI
⋃
ED all the111

edges, where EI is the set of the interior edges of Th, that is EI = {e : e =112

∂Ein
⋂
∂Eout, for Ein, Eout ∈ Th} and ED is the set of the Dirichlet boundary113

edges ED = {e : e = ∂Ein
⋂

ΓD, Ein,∈ Th}. For each of e ∈ EI we associate a114

unit normal vector ne. For e ∈ ED, ne is considered to be the outward normal115

to ∂Ω.116

Define the following broken Sobolev spaces for s ≥ 2, p > 1117

W s,p
h (Th) := {v ∈ Lp(Ω) : v|E ∈W s,p(E),∀E ∈ Th}, (3.1)

and the discontinuous finite element space V kh (Th) ⊂W s,p
h (Th)118

V kh (Th) := {v ∈ Lp(Ω) : v|E ∈ Pk(E),∀E ∈ Th}, (3.2)

where Pk(E) is the space of polynomials of degree less than or equal to k.119

Let e ∈ EI , we define the average and the jump of v ∈W s,p
h (Th) on e by

{v} =
1

2
(v|Ein

+ v|Eout
), and [v] = v|Ein

− v|Eout
. (3.3)

In case of e ∈ ED, we define

{v} = v|Ein , and [v] = v|Ein , (3.4)

{v}D =
1

2
(v|Ein + uD), and [v]D = v|Ein − uD.

The space W s,p
h (Th) is equipped with the broken DG norm, [27],[18],

‖φ‖pDG,p =
∑
E∈Th

∫
E

|∇φ|p dx+
∑
e∈EI

σh

∫
e

∣∣∣ [φ]

h

∣∣∣p ds+ (3.5)

∑
e∈ED

σh

∫
e

∣∣∣ [φ]D
h

∣∣∣p ds,
where p > 1 and σ > 0 is a parameter.120

3.2. Auxiliary results121

Next, we summarize some results from the literature, which are going to be122

frequently used.123

lemma 3.1. (Trace inequalities). For vh ∈ V kh (Th), and v ∈ W s,p
h (Th) with124

p > 1 there exist positive constants C1(k, p), C2(k, p), C3(k, p) independent of125

the mesh size, such that126
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(i) ‖h
1
p vh‖pLp(ΓD) ≤ C1

∑
E∈Th

h‖vh‖pLp(∂E)127

(ii) ‖vh‖pLp(∂E) ≤ C2h
−1‖vh‖pLp(E),128

(iii) ‖v‖L2(∂E) ≤ C3h
−1
2 (‖v‖L2(E) + h‖∇v‖L2(E)).129

Proof. The proofs of the above inequalities can be found in [7].130

The Hölder, Young and Poincare’s inequalities: let 1 < p, p′ <∞ such that
1
p + 1

p′ = 1, and ε > 0, then for u ∈ Lp(Ω) and v ∈ Lp′(Ω) we have∫
Ω

|uv| dx ≤ ‖u‖Lp(Ω)‖v‖Lp′ (Ω), (3.6a)

∫
Ω

|uv| dx ≤ ε

p
‖u‖pLp(Ω) +

ε
−p′
p

p′
‖v‖p

′

Lp′ (Ω)
. (3.6b)

The generalized Poincare-Friedrichs inequality for v ∈W 1,2
h (Th), see [28],

‖v‖L2(Ω) ≤ C
( ∑
E∈Th

‖∇v‖2L2(E) +
∑

e∈EI
⋃
ED

1

h
‖[v]‖2L2(e)

) 1
2

. (3.7)

3.3. The IPDG discretezation131

For the simplification of the formulas below, we will often use
∫

Ω
u dx instead132

of
∑
E

∫
E
u dx. Inspired by the IPDG method in [12], we present the IPDG133

numerical scheme for discretizing the problem (2.1). We introduce the semi-134

linear form B : W s,p
h (Th)×W s,p

h (Th)→ R, such that for u, φ ∈W s,p
h (Th)135

B(u, φ) =
∑
E∈T

∫
E

a(∇u)∇u∇φdx−
∑
e∈EI

∫
e

{a(∇u)∇u · ne}[φ] ds

−
∑
e∈EI

∫
e

{a
( [u]

h

)
∇φ · ne}[u] ds+

∑
e∈EI

σ

h

∫
e

a
( [u]

h

)
[u][φ] ds+

−
∑
e∈ED

∫
e

a
( [u]D

h

)
∇φ · ne[u]D ds+

∑
e∈ED

σ

h

∫
e

a
( [u]D

h

)
[u]Dφds

−
∑
e∈ED

∫
e

a(∇u)∇u · neφds, (3.8)

where σ := σ(k, p) is a positive parameter and will be specified in the error136

analysis. Giving an interpretation of the terms that appear in (3.8), we can137

say that, the second integral in (3.8) gives an approximation of the trace of the138

nonlinear flux and ensures the consistency of the method. The third integral,139

“symmetrizes” the flux form of B(., .) which is important for the numerical140

computations. The fourth integral penalizes the jumps on the interfaces and141
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helps for achieving the discrete coercivity of B(., .). The rest terms defined on142

the boundary edges have similar meaning with the formers.143

We also define the linear form144

L(φ) =
∑
E∈Th

∫
E

fφdx. (3.9)

The semi-dicrete problem is formulated as follows:
find uh ∈W 1,2(0, T ;V kh (Th)) such that∫

Ω

∂uh(t)

∂t
φdx+B(uh, φ) =L(φ), ∀φ ∈ V kh (Th) (3.10)

uh(0) =u0,DG,

where u0,DG is the approximation of the initial condition to the V kh (Th) space.145

Due to the assumed regularity (2.3) for the weak solution u (note that the jumps146

[u] = 0 on the interfaces), it is easy to show that u satisfies the variational147

formulation (3.10),148 ∫
Ω

∂u(t)

∂t
φdx+B(u, φ) = L(φ), ∀φ ∈ V kh (Th). (3.11)

For every E ∈ Th, the DG solution of (3.10) is expressed as uh =
∑
i U

E
i (t)Pi(x)

where UEi are the degrees of freedom and Pi(x) ∈ Pk(E) are the local polynomial
basis functions. When this expression is substituted into (3.10), we obtain the
following nonlinear ODE problem of finding the vector U = [.., UEi , ...] such that

M
dU(t)

dt
+ B(U(t)) =L(t), (3.12)

U(0) =uh(0)

where M is the block-diagonal mass matrix and the entries of B and L are149

specified by (3.8) and (3.9) respectively.150

4. Fully discrete formulation151

We discretize (3.12) with respect to time using s-stage Diagonally Implicit
Runge-Kutta methods (s-DIRK), [29]. Hereafter, we denote by ∆t the time step
and with Un the approximation of U(tn) at time tn = n∆t, n = 0, 1, 2, .... If
τi, i = 1, .., s are the quadrature points, bi are the weights and aij , j = 1, ..., i
are the entries of Bucher’s table, the s-DIRK method for the problem (3.12) is
given by

M∆Un,i =−∆t

i∑
j=1

aij

(
B(Un,j)− L(tn,j)

)
, i = 1(1)s (4.1a)

MUn+1 =MUn −∆t

s∑
i=1

bi

(
B(Un,i)− L(tn,i)

)
, (4.1b)
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where tn,i = tn + τi∆t and ∆Un,i = Un,i − Un. The computation of the
intermediate solutions Un,i in (4.1a) includes the solution of a nonlinear system,
which is achieved by a Picard iterative process

for l = 1, ..., lM , compute Un,l by(
M + aii∆tBP (Un,l−1)

)
Un,l =R(Un,Uj), (4.2)

set Un,i =Un,lM ,

where BP (Un,l−1) is the iterative matrix produced by the Picard lineariza-152

tion and R(Un,Uj) := MUn − ∆t
∑i−1
j=1 aij

(
B(Un,j) − L(tn,j)

)
is the resid-153

ual computed using the previous solutions. In the present work, for computa-154

tional efficiency, two low-storage variations of the Picard iterative process (4.2)155

are applied, (i) the element-Jacobi (PEJ) and (ii) the element Gauss-Seidel156

(PEGS). Both iterative approaches are simple applications of the Picard iter-157

ative method presented in [22]. In the element-Jacobi scheme, the full Picard158

matrix BP (Un,l−1) is approximated only by the block diagonal entries, neglect-159

ing in that way the contribution of the off-diagonal matrix blocks, which arise160

through the evaluation of the numerical fluxes on the interfaces. The numerical161

fluxes are computed using the previous solution vector Un,l−1 and are added to162

the right-hand residual R. The diagonal blocks of BP (Un,l−1) represent small163

dense matrices and are associated with each element E ∈ Th. The solution of164

the resulting PEJ system of (4.2) is performed element by element using LU165

factorization method. The convergence of the previous proposed PEJ iterative166

method can be further accelerated by using Gauss-Seidel strategy, giving in this167

way, the second mentioned PEGS iterative method. PEGS method applies the168

same splitting of the matrix BP (Un,l−1), but follows a passing over the inter-169

faces by computing the numerical fluxes using the latest available solution Un,l
170

or Un,l−1 where it is possible. In the numerical tests (see Section 7), the itera-171

tive process of (4.2) stops when ‖Un,l−Un,l−1‖ < tol for a prescribed tolerance172

tol and then we set Un,i := Un,l. We point out that, PEGS method is expected173

to have similar convergence rates per Runge-Kutta cycle as the PEJ method,174

but more improved performance behavior in terms of CPU (in fact the stop-175

ping criterion ‖Un,l −Un,l−1‖ < tol is achieved performing fewer iterations l176

than the PEJ method). Comparison between the two iterative methods will be177

shown in Section 7. Other higher-order iterative procedures (e.g. Newton) can178

be applied for computing the intermediate solutions of (4.1a). In many cases,179

the computation of the Jacobian matrix of B(U(t)) may increase the CPU time180

of the whole ODE solver, see examples in [22], and more advanced numerical181

techniques must be applied, see e.g. [30], [31]. Anyway, for the numerical tests182

presented in Section 7, the previous proposed Picard iterative methods have183

been found to be appropriate for solving (3.12).184
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5. A stability bound in ‖.‖DG,p for the case of µ = 0185

In this section, we give a stability estimate (a priori bound) for the DG186

solution uh in case of µ = 0, (p-Laplace problem) and note that Gronwall’s187

lemma is not used. Stability bounds can be also obtained working in different188

direction using the monotonicity properties of B(., .), which are presented later.189

Here, the stability bound uses the ‖.‖DG,p-norm (3.5).190

lemma 5.1. For the form (3.8) with µ = 0, there are constants κ > 0, CD > 0191

such that192

B(φ, φ) ≥ κ‖φ‖pDG,p −
CD
hp−1

‖uD‖pΓD
, ∀φ ∈ V kh (Th). (5.1)

Proof. Choosing uh = φ in (3.8) we obtain

B(φ, φ) =
∑
E∈Th

∫
E

a(∇φ)∇φ · ∇φdx−
∑
e∈EI

∫
e

{a(∇φ)∇φ · ne}[φ]ds

−
∑
e∈EI

∫
e

{a
( [φ]

h

)
∇φ · ne}[φ]ds+

∑
e∈EI

σ

h

∫
e

a
( [φ]

h

)
[φ][φ]ds

−
∑
e∈ED

∫
e

a
( (φ− uD)

h

)
∇φ · ne(φ− uD)ds

+
∑
e∈ED

σ

h

∫
e

a
( (φ− uD)

h

)
(φ− uD)φds

−
∑
e∈ED

∫
e

a(∇φ)∇φ · neφds =

T1 − T2 − T3 + T4 − T5 + T6 − T7

For the term T1, we have

T1 =
∑
E∈Th

∫
E

a(∇φ)∇φ · ∇φdx =
∑
E∈Th

∫
E

|∇φ|p dx.

For the rest terms, applying inequalities (3.6), Lemma 3.1 and introducing con-
stants Ci,ε := Ci(ε, p, p

′) whit ε > 0, it follows that

T2 ≤
∣∣∣ ∑
e∈EI

∫
e

{a(∇φ)∇φ · ne}[φ] ds
∣∣∣ ≤∑

e∈EI

∫
e

{
∣∣∣a(∇φ)∇φ

∣∣∣}∣∣∣[φ]
∣∣∣ ds ≤

∑
e∈EI

∫
e

h
1
p′ {
∣∣∣∇φ∣∣∣p−1

}

∣∣∣[φ]
∣∣∣

h
1
p′
ds ≤

10



∑
e∈EI

(∫
e

(
h

1
p′ {
∣∣∣∇φ∣∣∣ p

p′ }
)p′

ds
)1/p′(∫

e

(∣∣∣[φ]
∣∣∣

h
1
p′

)p
ds
)1/p

≤

∑
e∈EI

(∫
e

h{
∣∣∣∇φ∣∣∣ p

p′ }p
′
ds
)1/p′(∫

e

h
∣∣∣ [φ]

h

∣∣∣p−2∣∣∣ [φ]

h

∣∣∣2 ds)1/p

≤

∑
e∈EI

(
C2,ε

∫
e

h
∣∣∣∇φ∣∣∣p ds+

h

C2,ε

∫
e

h
∣∣∣ [φ]

h

∣∣∣p−2∣∣∣ [φ]

h

∣∣∣2 ds) ≤
3C2,ε

∑
E∈Th

∫
E

∣∣∣∇φ∣∣∣pdx+
h

C2,ε

∑
e∈EI

∫
e

∣∣∣ [φ]

h

∣∣∣p ds.
For T3, working in the same way as for T2 we have

T3 ≤
∑
e∈EI

∫
e

a
( [φ]

h

)∣∣∣ [φ]

h

∣∣∣h 1
p′+

1
p {
∣∣∣∇φ∣∣∣} ds ≤∑

e∈EI

∫
e

∣∣∣ [φ]

h

∣∣∣ p
p′
h

1
p′ h

1
p {
∣∣∣∇φ∣∣∣} ds ≤

∑
e∈EI

(∫
e

∣∣∣ [φ]

h

∣∣∣ph ds) 1
p′
(∫

e

(
h

1
p {
∣∣∣∇φ∣∣∣})p ds)1/p

≤

∑
e∈EI

( 1

C3,ε

∫
e

∣∣∣ [φ]

h

∣∣∣ph ds+ C3,ε

∫
e

h{
∣∣∣∇φ∣∣∣}p ds) ≤

h

C3,ε

∑
e∈EI

∫
e

∣∣∣ [φ]

h

∣∣∣p ds+ 3C3,ε

∑
E∈Th

∫
E

∣∣∣∇φ∣∣∣p ds.
A straightforward computation for the term T4 gives

T4 =
∑
e∈EI

hσ

∫
e

∣∣∣ [φ]

h

∣∣∣p ds.
For the term T5 applying the same steps as for T3 yields

T5 ≤
h

C5,ε

∑
e∈ED

∫
e

|φ− uD|
h

p

ds+ 3C5,ε

∑
ED∈Th

∫
ED

∣∣∣∇φ∣∣∣p ds,
where ED ∈ Th are the boundary elements: {E ∈ Th : ∂E ∩ ΓD 6= ∅}.
Term T6 can be bounded as follows

T6 =
∑
e∈ED

σh

∫
e

|φ− uD|
h

p−2
(φ− uD)

h

(φ− uD + uD)

h
ds =

∑
e∈ED

σh

∫
e

( |φ− uD|
h

)p
ds−

∑
e∈ED

σh

∫
e

( |φ− uD|
h

)p−2 (φ− uD)(−uD)

h2
ds ≥

∑
e∈ED

σh

∫
e

(∣∣∣φ− uD
h

∣∣∣)p ds− ∑
e∈ED

σh

∫
e

( |φ− uD|
h

)p−1 (−uD)

h
ds ≥

(1− C6,ε)
∑
e∈ED

σh

∫
e

∣∣∣φ− uD
h

∣∣∣p ds− 1

C6,ε

∑
e∈ED

σh

∫
e

|uD|p

hp−1
ds.

11



Similarly, adding uD − uD the term T7 can be bounded

T7 ≤
∑
e∈ED

∫
e

∣∣∣∇φ∣∣∣p−2∣∣∣∇φ∣∣∣∣∣∣(φ− uD + uD)
∣∣∣ ds ≤ C7,ε

∑
ED∈Th

∫
ED

∣∣∣∇φ∣∣∣pdx
+

1

C7, ε

∑
e∈ED

σh

∫
e

∣∣∣φ− uD
h

∣∣∣p +
|uD|p

hp−1
ds.

In the previous inequalities, choosing Ci,ε such that

3C2,ε + 3C3,ε + 3C5,ε + C7,ε ≤
1

2
,

and choosing the parameter σ to satisfy the following relations

σ > 1, (1− C6,ε)σ ≥
1

C5,ε
+

1

C7,ε
, σ >

1

C2,ε
+

1

C3,ε
,

while keeping h ≤ 1, we can find κ > 0 and CD, in order (5.1) to be true.193

Now, choosing φ = uh(t) in (3.10) and using (5.1), we have194

d

2 dt
‖uh‖2L2(Ω) + κ‖uh(t)‖pDG,p ≤ |L(uh(t))|+ CD

hp−1
‖uD‖pΓD

. (5.2)

Applying inequality (3.6) on the right hand side of (5.2), we get195

|L(uh(t))| ≤ 1

C8,ε
‖f(t)‖p

′

Lp′ (Ω)
+ C8,ε‖uh(t)‖pLp(Ω). (5.3)

Based on the discrete embeddings, see [27],196

‖φ‖pLp(Ω) ≤ Cp
(∑

E

∫
E

|∇φ|p +
∑
e∈E

1

hp−1

∫
e

∣∣∣[φ]
∣∣∣p), ∀φ ∈ V kh (Th), (5.4)

we can easily show that ‖uh‖pLp(Ω) ≤ Cp‖uh‖
p
DG,p +

Cp

hp−1 ‖uD‖pΓD
.197

Thus, inserting (5.3) into (5.2) and then applying inequality (5.4), we obtain
for C8,ε = κ

2 that

d

2 dt
‖uh‖2L2(Ω) +

κ

2
‖uh‖pDG,p ≤ 1

Cκ, p
‖f‖p

′

Lp′ (Ω)
+

CD
hp−1

‖uD‖pΓD
. (5.5)

Integrating from 0 to t, we get the following stability bound for uh,

‖uh(t)‖2L2(Ω) + κ

∫ t

0

‖uh(τ)‖pDG,p dτ ≤ ‖u0h‖2L2(Ω)

+ C

∫ t

0

‖f(τ)‖p
′

Lp′ (Ω)
+

CD
hp−1

‖uD(τ)‖pΓD
dτ. (5.6)
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6. Continuous in time a priori error estimates198

Next, we give an error estimate on how close is the IPDG solution uh of
(3.10) to u of (3.11), that is an estimate for

‖u−uh‖2F,DG =
∑
E

‖F(∇u)−F(∇uh)‖2L2(E)+
∑
e∈EI

σh‖F
( [u]

h

)
−F
( [uh]

h

)
‖2L2(e),+

∑
e∈ED

σh‖F
( [u]D

h

)
− F

( [uh]D
h

)
‖2L2(e), (6.1)

where the function F has been defined in (2.4) and the jumps [.] in (3.3) and
(3.4). We mention that similar error formula has been used in [32], where a LDG
method studied for (p, δ)-structure problems. We consider the case where the
solution u has the regularity (2.3), uh ∈ V 1

h (Th) and Iu ∈ V 1
h (Th) is the Scott-

Zhang interpolant of u, [33]. For problem (2.1), we suppose that uD ∈ P1(ED)
and the parameter µ is such that (for example µ = 1)∫ 1

0

(µ+ |a + s(b− a)|)p−2 ds ≥ 1, (6.2)

where in (6.2), a represents u or uh, either their gradients and b takes the role199

of Iu or its gradient. In the error analysis, we will make use of the following200

approximation result, which has been proved in [20].201

lemma 6.1. Let u ∈ W s≥2,p(Ω) with F(∇u) ∈ W 1,2(Ω), and Iu ∈ V 1
h (Th) its

Scott-Zhang interpolant. Then there are constants C1, C2 > 0 independent of h
such that

‖F(∇u)− F(∇Iu)‖2L2(E) ≤C1h
2‖∇F(∇u)‖2L2(SE), ∀E ∈ Th, (6.3)

where SE is a domain made of the neighboring elements of E in Th.202

Corollary 6.2. Under the assumptions of Lemma 6.1 and (2.3) the following203

estimate holds true for t > 0204

‖u− Iu‖2F,DG < Ch2
∑
E∈Th

‖∇F(∇u)‖2L2(E). (6.4)

for C > 0 independent of h.205

Proof. We observe for u and the Scott-Zhang interpolant Iu that [u] = [Iu] = 0206

on every e ∈ E . The estimate (6.4) follows immediately by the definition (6.1)207

and the approximation result (6.3).208

Proposition 6.3. Under the assumptions (6.2), we can obtain the following
estimates

‖u− Iu‖2L2(Ω) ≤ CΩ,p,u,Iu‖u− Iu‖2F,DG, (6.5a)

‖uh − Iu‖2L2(Ω) ≤ C‖uh − Iu‖
2
F,DG. (6.5b)
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Proof. We recall inequality (3.7) for v := u − Iu and consequently we apply
(2.8b) and (2.13) to obtain

‖u− Iu‖2L2(Ω) ≤ CΩ,p,u‖u− Iu‖2A,DG ≤ CΩ,p,u‖u− Iu‖2F,DG.

For the estimate (6.5b), let e ∈ ED, then we have that |uh−Iu|
∣∣
e
≤ |uh−uD|

∣∣
e
+

|uD − Iu|
∣∣
e
. Therefore, using the inequality ‖uh − Iu‖L2(Ω) ≤ ‖uh − Iu‖DG,2

(see (3.7)) and then applying (2.8b) and (2.13) for every term of ‖uh−Iu‖DG,2,
we get

‖uh − Iu‖2L2(Ω) ≤ ‖uh − Iu‖DG,2 ≤ CΩ,p,uh
‖uh − Iu‖2F,DG.

209

lemma 6.4. Under the assumptions of Lemma 6.1, there exist a C > 0 inde-210

pendent of h such that211 ∑
e∈E

h‖F(∇u)− F(∇Iu)‖2L2(e) ≤ Ch
2
∑
E∈Th

‖∇F(∇u)‖2L2(E). (6.6)

Proof. Using v := F(∇u) − F(∇Iu) in inequality (iii) of Lemma 3.1 and sum-
ming over all edges, we have that∑

e∈E
h‖F(∇u)− F(∇Iu)‖2L2(e) ≤ 3C

∑
E∈Th

(‖F(∇u)− F(∇Iu)‖2L2(E)+

h2‖∇(F(∇u)− F(∇Iu))‖2L2(E)) ≤ Ch
2
∑
E∈Th

‖∇F(∇u)‖L2(E).

212

lemma 6.5. Let Iu ∈ V 1
h (Th) be the interpolant of u as in (6.3) and let φ =

uh − Iu. For every edge e ∈ E there are C1,ε, C2,ε > 0 such that

∣∣∣ ∫
e

{a(∇uh)∇uh − a(∇Iu)∇Iu} · ne[φ] ds
∣∣∣ ≤

C1,ε‖F(∇uh)− F(∇Iu)‖2L2(Ein
⋃
Eout) +

h

C2,ε

∥∥∥F( [uh]

h

)
− F

( [Iu]

h

)∥∥∥2

L2(e)
. (6.7)

Proof. Let e = ∂Ein
⋂
∂Eout ( or e ∈ ED). Applying sequentially the inequali-

ties (3.6) and Lemma 3.1 on the left hand side of (6.7), we have∫
e

h
1
2

∣∣∣{a(∇uh)∇uh − a(∇Iu)∇Iu}
∣∣∣ 1

h
1
2

∣∣∣[φ]
∣∣∣ ds ≤(∫

e

h
∣∣∣{a(∇uh)∇uh − a(∇Iu)∇Iu}

∣∣∣2ds) 1
2
(∫

e

1

h

∣∣∣[φ]
∣∣∣2 ds) 1

2 ≤

14



(h
2
‖a(∇uh)∇uh − a(∇Iu)∇Iu‖2L2(ein) +

h

2
‖...‖2L2(eout)

) 1
2
( 1

h
‖[φ]‖L2(e)

) 1
2 ≤

Ctrc

(
‖a(∇uh)∇uh − a(∇Iu)∇Iu‖2L2(Ein) + ‖...‖2L2(Eout)

) 1
2
( 1

h
‖[φ]‖2L2(e)

) 1
2 ≤

C1,ε‖‖a(∇uh)∇uh−a(∇Iu)∇Iu‖2L2(Ein
⋃
Eout)

+
h

C2,ε

∥∥∥ [φ]

h

∥∥∥2

L2(e)
≤

(
by (2.8b),(2.13)

)

C1,ε‖F(∇uh)− F(∇Iu)‖2L2(Ein
⋃
Eout)

+
h

C2,ε

∥∥∥F( [uh]

h

)
− F

( [Iu]

h

)∥∥∥2

L2(e)
,

where for simplicity, we used the notation: L2(ein) := L2(e ⊂ ∂Ein).213

lemma 6.6. Let Iu ∈ V 1
h (Th) be the interpolant as in (6.3) of the solution u

and φ = uh − Iu. For every edge e = ∂Ein
⋂
∂Eout ( or e ∈ ED) there are

C1,ε, C2,ε > 0 such that

∣∣∣ ∫
e

(
a
( [uh]

h

)
[uh]− a

( [Iu]

h

)
[Iu]

)
{∇uh −∇Iu} · ne ds

∣∣∣ ≤
h

C2,ε

∫
e

∣∣∣F( [uh]

h

)
− F

( [Iu]

h

)∣∣∣2 ds+ C1,ε‖F(∇uh)− F(∇Iu)‖2L2(Ein
⋃
Eout). (6.8)

Proof. Following the same steps as in proof of Lemma 6.5, by applying Hölder’s214

inequality, trace inequality, consequently Young’s inequality and (2.8b),(2.13),215

the relation (6.8) can be shown.216

Theorem 6.7. Let u be the solution of (3.11) and let Iu ∈ V 1
h (Th) be its

interpolant as in (6.3). Then for φ = uh − Iu and ε > 0 there exist constants
C1,ε, C2,ε, C3,ε such that the form B of (3.8) satisfies

|B(u, φ)−B(Iu, φ)| ≤ 1

C1,ε
‖u− Iu‖2F,DG + C2,ε‖φ‖2F,DG+ (6.9)

2

C3,ε

∑
e∈E

∫
e

h|F(∇u)− F(∇Iu)|2 ds.
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Proof. After a rearrangement of the terms of B(u, φ)−B(Iu, φ), we have∣∣∣B(u, φ)−B(Iu, φ)
∣∣∣ ≤ ∫

Ω

∣∣∣a(∇u)∇u− a(∇Iu)∇Iu
∣∣∣∣∣∣∇φ∣∣∣ dx+∑

e∈EI

∫
e

{
∣∣∣a(∇u)∇u− a(∇Iu)∇Iu

∣∣∣}∣∣∣[φ]
∣∣∣ ds+

∑
e∈ED

∫
e

∣∣∣a(∇u)∇u− a(∇Iu)∇Iu
∣∣∣∣∣∣φ∣∣∣ ds+

∑
e∈EI

∫
e

∣∣∣a( [u]

h

)
[u]− a

( [Iu]

h

)
[Iu]

∣∣∣{∣∣∣∇φ∣∣∣} ds+
∑
e∈ED

∫
e

∣∣∣a( [u]D
h

)
[u]D − a

( [Iu]D
h

)
[Iu]D

∣∣∣∣∣∣∇φ∣∣∣ ds+
∑
e∈EI

σ

∫
e

(
a
( [u]

h

) [u]

h
− a
( [Iu]

h
)
[Iu]

h

)∣∣∣[φ]
∣∣∣ ds+

∑
e∈ED

σ

∫
e

(
a
( [u]D

h

) [u]D
h
− a
( [Iu]D

h

) [Iu]D
h

)∣∣∣φ∣∣∣ ds =

T1 + T2 + T3 + T4 + T5 + T6 + T7.

The first term T1 can be bounded by applying the Hölder-Young’s inequalities
(3.6) and consequently (2.8b),(2.13), as follows

T1 ≤
( ∑
E∈Th

∫
E

∣∣∣a(∇u)∇u− a(∇Iu)∇Iu
∣∣∣2 dx)1/2( ∑

E∈Th

∫
E

∣∣∣∇φ∣∣∣2 dx)1/2

≤

1

C2,ε

∫
Ω

∣∣∣F(∇u)− F(∇Iu)
∣∣∣2 dx+ C1,ε

∫
Ω

∣∣∣F(∇uh)− F(∇Iu)
∣∣∣2.

The term T2 can be bounded by applying the same steps as in Lemma 6.5,

T2 ≤
∑
e∈EI

∫
e

h
1
2

∣∣∣{a(∇u)∇u− a(∇Iu)∇Iu}
∣∣∣ 1

h
1
2

∣∣∣[φ]
∣∣∣ ds ≤

∑
e∈EI

[( ∫
e

h
∣∣∣{a(∇u)∇u− a(∇Iu)∇Iu}

∣∣∣2ds) 1
2
(∫

e

1

h

∣∣∣[φ]
∣∣∣2 ds) 1

2
]
≤

1

C2,ε

∑
e∈EI

∫
e

h
∣∣∣F(∇u)− F(∇Iu)

∣∣∣2 ds+ C1,εh
∥∥∥F( [uh]

h

)
− F

( [Iu]

h

)∥∥∥2

L2(e)
.

Analogously, for the term T3, we obtain that

T3 ≤
∑
e∈ED

∫
e

h
1
2

∣∣∣a(∇u)∇u− a(∇Iu)∇Iu
∣∣∣ 1

h
1
2

∣∣∣φ∣∣∣ ds ≤
1

C2,ε

∑
e∈ED

∫
e

h
∣∣∣F(∇u)− F(∇Iu)

∣∣∣2 ds+ C1,εh
∥∥∥F( [uh]D

h

)
− F

( [Iu]D
h

)∥∥∥2

L2(e)
.

16



The term T4 can be bounded working in the same way as in Lemma 6.5,

T4 ≤
∑
e∈EI

∫
e

h
1
2

∣∣∣a( [u]

h

) [u]

h
− a
( [Iu]

h

) [Iu]

h

∣∣∣h 1
2 {
∣∣∣∇φ∣∣∣} ds ≤

∑
e∈EI

(∫
e

h
∣∣∣a( [u]

h

) [u]

h
− a
( [Iu]

h

) [Iu]

h

∣∣∣2 ds) 1
2
(∫

e

h{
∣∣∣∇φ∣∣∣}2 ds) 1

2 ≤

1

C2,ε

∑
e∈EI

(∫
e

h
∣∣∣F( [u]

h

)
− F

( [Iu]

h

)∣∣∣2 ds+ 3C1,ε

∑
E∈Th

(∫
E

∣∣∣F(∇uh)− F(∇Iu)
∣∣∣2 dx.

Applying the same steps for T5, we get

T5 ≤
1

C2,ε

∑
e∈ED

(∫
e

h
∣∣∣F( [u]D

h

)
− F

( [Iu]D
h

)∣∣∣2 ds+
3C1,ε

∑
ED∈Th

(∫
ED

∣∣∣F(∇uh)− F(∇Iu)
∣∣∣2 dx.

The last terms T6 and T7 are bounded by applying the same steps as before

T6 ≤ σ
∑
e∈EI

∫
e

∣∣∣a( [u]

h

) [u]

h
− a
( [Iu]

h

) [Iu]

h

∣∣∣h 1
2

∣∣∣ [φ]

h
1
2

∣∣∣ds ≤
σ
∑
e∈EI

(∫
e

h
∣∣∣a( [u]

h

) [u]

h
− a
( [Iu]

h

) [Iu]

h

∣∣∣2) 1
2
(∫

e

1

h

∣∣∣[φ]
∣∣∣ds) 1

2 ≤

1

C2,ε

∑
e∈EI

∫
e

h
∣∣∣F( [u]

h

)
− F

( [Iu]

h

)∣∣∣2 ds+ C1,ε

∑
e∈EI

∫
e

h
∣∣∣F( [uh]

h

)
− F

( [Iu]

h

)∣∣∣2 ds.
T7 ≤

1

C2,ε

∑
e∈ED

∫
e

h
∣∣∣F( [u]D

h

)
− F

( [Iu]D
h

)∣∣∣2 ds+
C1,ε

∑
e∈ED

∫
e

h
∣∣∣F( [uh]D

h

)
− F

( [Iu]D
h

)∣∣∣2 ds.
Choosing appropriate the constants Ci,ε above and by gathering the bounds217

together, we can derive (6.9).218

Theorem 6.8. Let Iu ∈ V 1
h (Th) be the interpolant of the solution u. The form219

B(., .) is monotone with respect to second argument, in the sense that there is a220

κ0 > 0 such that221

B(uh, uh − Iu)−B(Iu, uh − Iu) > κ0‖uh − Iu‖2F,DG. (6.10)
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Proof. Denoting φ = uh − Iu and after rearranging the terms, we obtain that

B(uh, uh − Iu)−B(Iu, uh − Iu) =∑
E∈Th

∫
E

(
a(∇uh)∇uh − a(∇Iu)∇Iu

)
∇φdx−

∑
e∈EI

∫
e

{a(∇uh)∇uh − a(∇Iu)∇Iu}[φ] ds−

∑
e∈ED

∫
e

(
a(∇uh)∇uh − a(∇Iu)∇Iu

)
φds−

∑
e∈EI

∫
e

(
a
( [uh]

h

)
[uh]− a

( [Iu]

h

)
[Iu]

)
{∇φ} ds−

∑
e∈ED

∫
e

(
a
( [uh]D

h

)
[uh]D − a(

[Iu]D
h

)[Iu]D

)
∇φds

+
∑
e∈EI

σ

∫
e

(
a
( [uh]

h

) [uh]

h
− a
( [Iu]

h

) [Iu]

h

)
[φ] ds+

∑
e∈ED

σ

∫
e

(
a
( [uh]D

h

) [uh]D
h
− a
( [Iu]D

h

) [Iu]D
h

)
φds.

Using (2.12a), Lemma 6.5 and Lemma 6.6, we have

B(uh, uh − Iu)−B(Iu, uh − Iu) ≥ Cp
∑
E∈Th

∫
E

|F(∇uh)− F(∇Iu)|2 dx−

C1,ε

∑
E∈Th

‖F(∇uh)− F(∇Iu)‖2L2(E) −
h

C2,ε

∑
e∈EI

‖F
( [uh]

h

)
− F

( [Iu]

h

)
‖2L2(e)−

h

C2,ε

∑
e∈ED

‖F
( [uh]D

h

)
− F

( [Iu)]D
h

)
‖2L2(e) − C1,ε

∑
E∈Th

‖F(∇uh)− F(∇Iu)‖2L2(E)+

σ
∑
e∈EI

h‖F
( [uh]

h

)
− F

( [Iu]

h

)
‖2L2(e) + σ

∑
e∈ED

h‖F
( [uh]D

h

)
− F

( [Iu]D
h

)
‖2L2(e).

Gathering the bounds and choosing appropriately the constants Ci,ε and σ, for222

example 2C1,ε <
Cp

2 and σ − 1
C2,ε

> 1
2 , we can find κ0 such that the relation223

(6.10) to be true.224

Next, we give the estimate for the approximation error uh − u.225

Theorem 6.9. Under the assumptions (2.3) and (6.2), and choosing uh(0) :=

18



Iu0, there exist constants κ0 and C > 0 such that: for t ∈ (0, T ]

‖u(t)− uh(t)‖2L2(Ω) +
κ0

2

∫ t

0

‖u(τ)− uh(τ)‖2F,DG dτ ≤ ‖u(t)− Iu(t)‖2L2(Ω)+

C

∫ t

0

‖∂t
(
u(τ)− Iu(τ)

)
‖2L2(Ω) dτ + Ch2

∫ t

0

‖∇F(∇u(τ))‖L2(Ω) dτ. (6.11)

Proof. We have by variational formulations (3.10) and (3.11) for t > 0 that∫
Ω

∂tuhφdx + B(uh, φ) =

∫
Ω

∂tuφ dx + B(u, φ), ∀φ ∈ V kh (Th). (6.12)

Setting φ = uh − Iu and adding −
∫

Ω
∂tIuφ dx − B(Iu, φ) on both sides of226

(6.12), we get227

∫
Ω

∂t(φ)φdx+B(uh, φ)−B(Iu, φ) =

∫
Ω

∂t(u− Iu)φdx+B(u, φ)−B(Iu, φ).

(6.13)

Now, we use (6.6) in (6.9) and then we use the derived result on the right
hand side of (6.13). Consequently, we make use of (6.10) to the left hand side
of (6.13), we eventually end up with the following relation

1

2

∂

∂t
‖φ‖2L2(Ω) + κ0‖φ‖2F,DG ≤

∫
Ω

∂t(u− Iu)φdx+

1

C1,ε
‖u− Iu‖2F,DG + C2,ε‖φ‖2F,DG + C3,εh

2‖∇F(∇u)‖L2(Ω). (6.14)

Applying (3.6) on the first term of the right hand side of (6.14) and then using
discrete embeddings (6.5b) yields

1

2

∂

∂t
‖φ‖2L2(Ω) + κ0‖φ‖2F,DG ≤

1

4κ0
‖∂t(u− Iu)‖2L2(Ω) +

κ0

4
‖φ‖2F,DG.

1

C1,ε
‖u− Iu‖2F,DG + C2,ε‖φ‖2F,DG + C3,εh

2‖∇F(∇u)‖L2(Ω). (6.15)

Next, using (6.4) and choosing C2,ε = κ0

4 into (6.15), we have

1

2

∂

∂t
‖uh − Iu‖2L2(Ω) +

κ0

2
‖uh − Iu‖2F,DG ≤

1

4κ0
‖∂t(u− Iu)‖2L2(Ω) + Cεh

2‖∇F(∇u)‖L2(Ω). (6.16)

We integrate (6.16) from 0 to t:

‖uh(t)− Iu(t)‖2L2(Ω) + κ0

∫ t

0

‖uh(τ)− Iu(τ)‖2F,DG dτ ≤ ‖u0,h − Iu0‖2L2(Ω)+∫ t

0

( 1

2κ0
‖∂t(u(τ)− Iu(τ))‖2L2(Ω) + Cεh

2‖∇F(∇u(τ))‖L2(Ω)

)
dτ. (6.17)
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Observing that uh(0)− Iu0 = 0 and applying the triangle inequality

‖uh(t)− u(t)‖∗ ≤‖uh(t)− Iu(t)‖∗ + ‖u(t)− Iu(t)‖∗,

in (6.17), we can deduce the estimate (6.11).228

Using further the estimates (6.5a) in (6.11), we prove the following corollary.229

Corollary 6.10. Under the assumptions of Theorem 6.9, there is a C :=230

C(‖∇F(∇u(t))‖2L2(0,T ;L2(Ω)), ‖∇F(∇u(t))‖2L2(Ω)‖∇ut‖
2
L2(0,T ;L2(Ω))) such that231 ∫ t

0

‖u(τ)− uh(τ)‖2F,DG dτ ≤ Ch2, (6.18)

Proof. The assertion follows by the application of the interpolation estimate232

of Lemma 6.1 and the estimate (6.5a) on the terms of the right hand side of233

(6.11).234

7. Numerical examples235

In this section, we present numerical results to illustrate the performance of236

the proposed IPDG method for solving problem (2.1) and to verify the theoreti-237

cal results of the previous section. The numerical examples have been performed238

for p = 2.3, p = 2.5, p = 3, using µ = 1, σ = 2.5 (see (3.8)). The Picard itera-239

tive procedure was stopped until the tolerance value satisfied by tol ≤ 1.E−07.240

The domain is Ω := [−2, 2]× [−2, 2], where ΓD = ∂Ω and the data f, uD of241

(2.1) are specified so that the exact solution is242

u(x, y, t) = B(t) sin(x+ y), (7.1)

where B(t) = 1 + exp(−100t). The initial unstructured mesh Th0
is generated243

by a triangular mesh generator with h0 = 1 and the next finer meshes Thi
are244

obtained by subdividing the triangles to four equal triangles, hi+1 = hi

2 . The245

problem has been solved up to final time T = 0.5 using a second order, 1-stage246

DIRK method, [29]. In Figure 1 left, the Th2 mesh of the domain Ω is presented247

and in Fig. 1 right, we plot the uh solution computed on Th2
mesh for the248

p = 2.3 test case.249

In the first numerical test, the CPU time of the iterative methods PEJ and250

PEGS is compared. In Table 1, the CPU time for the p = 2.3 test case is given.251

As it was expected, for the same value of tol, PEGS performs faster and appears252

to be more efficient than the PEJ iterative method.253

Next, we give examples for the convergence rate of the error,

ehi
=

∫ t

0

‖u(τ)− uhi
(τ)‖2F,DG dτ, (7.2)

where uhi is the IPDG solution and u is the solution (7.1). All the numerical254

tests have been performed using the PEGS method with ∆t < (hi

10

)p
. The255

numerical convergence rates r are computed by the formula r =
ln(ehi

/ehi+1
)

ln(2) .256

The results are shown in Table 2. We can observe that for all p-test cases the257

error (7.2) converges with the rate that has been predicted in the Corollary 6.10.258

20



x

y

­2 ­1 0 1 2
­2

­1

0

1

2

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

­0.1

­0.2

­0.3

­0.4

­0.5

­0.6

­0.7

­0.8

­0.9

Figure 1: Left: The domain Ω with the Th2
mesh. Right: The contours of uh computed for

the p = 2.3 test.

- PEJ PEGS

Thi
CPU for p=2.3

i = 0 21.6263 13.5540
i = 1 73.4690 56.5072
i = 2 195.4758 186.6697
i = 3 712.597 625.4143

Table 1: CPUs for the two Picard it-
erative methods

- p=2.3 p=2.5 p=3

Thi
rates r

i = 0 - - -
i = 1 2.12 2.30 2.02
i = 2 2.10 2.06 2.05
i = 3 2.04 2.02 2.02

Table 2: Convergence rates for the
three p-test cases.

8. Conclusions259

In this work, an IPDG method was presented for approximating the solution260

of a quasilenar parabolic problem formulated in Lp-setting. The resulting non-261

linear ODE system was discretized in time by s-DIRK methods applying two262

low-storage Picard iterative schemes for solving the resulting nonlinear systems.263

A stability bound were shown in the broken ‖.‖DG,p-norm for the IPDG solu-264

tion. Optimal error estimates for the IPDG method were proved in the broken265

‖.‖F,DG-norm for the case of p > 2. The theoretical results were validated by266

numerical tests for several values of p > 2.267
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