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Abstract

In this paper, we present a method for the numerical minimization
of the Mumford–Shah functional that is based on the idea of topological
asymptotic expansions. The basic idea is to cover the expected edge
set with balls of radius ε > 0 and use the number of balls, multiplied
with 2ε, as an estimate for the length of the edge set. We introduce a
functional based on this idea and prove that it converges in the sense
of Γ-limits to the Mumford–Shah functional. Moreover, we show that
ideas from topological asymptotic analysis can be used for determining
where to position the balls covering the edge set. The results of the
proposed method are presented by means of two numerical examples and
compared with the results of the classical approximation due to Ambrosio
and Tortorelli.

Keywords: Topological asymptotic expansion; Γ-convergence; Mumford-Shah
functional; image segmentation.

AMS Classification: 35R35, 65K10, 49M25.

1 Introduction

Let Ω be a Lipschitz bounded open domain in R2. We assume that a possibly
noisy image on Ω is given, represented by a real-valued, bounded function f on
Ω, whose values f(x), x ∈ Ω, correspond to the intensity of f at the pixel x.
In order to segment, and denoise at the same time, the image f , Mumford and
Shah [37] introduced a variational model, which is based on the assumptions
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that the different “objects” in the image give rise to homogeneous regions that
are separated by the objects’ projected silhouettes. Moreover, these silhouettes
in general correspond to discontinuities in the image f . By this reasoning, they
proposed to minimize the functional

F (u,K) =
1

2

∫
Ω

(u− f)2 dx+
α

2

∫
Ω\K
|∇u|2 dx+ βH1(K) , (1.1)

taking as variables the function u ∈ L2(Ω), the denoised image, and the compact
set K ⊂ Ω, the set of edges or silhouettes. Here, the value F (u,K) is set to +∞
if the restriction of the weak derivative ∇u of u to Ω\K is not square-integrable.
Here, H1(K) denotes the one-dimensional Hausdorff measure of the set K; in
the case K is a regular (rectifiable) one-dimensional set, this is precisely its
length. The parameters α and β that appear in (1.1) are positive constants
determining the weight that is put on the regularity of the denoised image u
and the length of the edge set K.

In order to show the existence of minimizers of the Mumford–Shah func-
tional, a weak formulation depending only on one variable has been introduced
by De Giorgi et al. [27]. In their model, the set K is replaced by the jump
set Su of the function u ∈ SBV (Ω), the space of special function of bounded
variation on Ω. Still, this reformulation of the functional provides no method
for the actual numerical computation of minimizers. Thus, various approxi-
mations of the functional F have been proposed, most of them based on the
concept of Γ-convergence. Ambrosio and Tortorelli [3] proposed a variational
model in which they replace the set Su by a continuous function v with values
close to 0 near Su, and values close to 1 away from Su. For other approxima-
tions of the Mumford–Shah functional in the sense of Γ-convergence, we refer
to Braides et al. [14], where the authors propose approximations by a family of
non-local functionals. Approximations by finite-difference schemes, inspired by
the original discrete model of Blake and Zisserman [10], have been considered
by Chambolle [17, 18], and by finite-elements schemes by Chambolle and Dal
Maso [19] or recently by Aubert et al. [6]. In the work by Koepfler et al. [33] and
Dal Maso et al. [26], region growing and merging methods have been proposed.
For detailed analysis of the Mumford–Shah model, we refer reader to the book
by Morel and Solimini [36]. We also refer to the books [7, 40, 41], where some
of the above mentioned results are shortly discussed.

In the following, we will show how the problem of minimizing the Mumford–
Shah functional F can be approached using ideas of topological asymptotic
analysis. In its original formulation (see, e.g., Soko lowski et al. [42], Garreau et
al. [30], Feijóo et al. [29]), this theory investigates a variation of a given objective
functional depending on some domain in Rn with respect to the subtraction of
a small ball from this domain. This variation is a scalar function, called the
topological gradient or the topological derivative, and its largest negative values
indicate positions, where it is good to remove a small ball. In [5], Amstutz pro-
posed to modify the definition of topological gradient and provide the variation
of a given functional with respect to change of certain material properties, and
not a domain topology. The topological derivative of an objective functional
has also been considered by Giusti et al. [32] in the case of nonlinear elasticity.
Recently, topological asymptotic analysis has been also applied by Auroux et
al. [8, 9] and by Muszkieta [38] to various problems in image processing.
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In order to apply the theory of topological asymptotic expansions, it is nec-
essary that the functional to be minimized depends solely on the set K. This
can be achieved in the case of the Mumford–Shah functional by noting that
the minimizing pair (u0,K0) is uniquely determined by either of the compo-
nents u0 and K0: The set K0 coincides with the jump set Su0 of the function
u0. Conversely, u0 can be computed from K0 by solving the partial differential
equation

u− α∆u = f in Ω ,

∂u

∂n
= 0 in ∂(Ω \K0) .

(1.2)

Now consider the functional

J(K) = F
(
u(K),K

)
,

where u(K) denotes the solution of (1.2) with K0 replaced by K. Then the pair
(u(K0),K0) minimizes the functional F , if and only if J(K0) ≤ J(K) for all
K ⊂ Ω.

The idea is now to use a gradient descent like approach to the minimization
of the functional J . Starting from an initial guess K of the edge set (for instance
K = ∅), one adds to K those points, whose inclusion would lead to a near to
maximal decrease of the cost functional J . More precisely, one adjoins to the
set K small balls of radius ε > 0 centered at the points x ∈ Ω \K and tries to
compute an asymptotic expansion of the form

J
(
K ∪Bε(x)

)
− J(K) = c(ε)GK(x) + o

(
c(ε)

)
for some functions c : R>0 → R>0 and GK : Ω \K → R. Those x ∈ Ω \K for
which GK attains the largest negative values are then added to the set K. This
process is iterated, until the function GK becomes non-negative everywhere.

In the case of the Mumford–Shah functional, this procedure cannot applied
directly, because the functional is infinite whenever K contains a set of positive
Lebesgue measure. We therefore propose to use a different, though related,
functional for the computation of the asymptotic expansion, which is based
on an approximation of the one-dimensional Hausdorff measure: The number
of balls of radius ε > 0 that are required to cover a set K, multiplied with 2ε,
provides a good estimate ofH1(K) for ε small enough and K sufficiently regular.
In the following, we introduce this approximating functional Jε,κ. However,
because we later prove the Γ-convergence of this functional to F , it is necessary
to let Jε,κ depend on two functions, the function u and a piecewise constant
edge indicator function v:

For each finite set Y ⊂ R2 and each 0 < κ < 1 we define the function
vY,κ : Ω→ R by

vY,κ(x) :=

{
κ if x ∈

⋃
y∈Y Bε(y) ,

1 else.

For every v ∈ L2(Ω) we define

mε,κ(v) := inf
{
H0(Y ) : Y ⊂ R2, v = vY,κ

}
.

Here we set mε,κ(v) := +∞, if v 6= vY,κ for any Y ⊂ R2. Note that, for a given
function v, there might exist different sets Y ⊂ R2 such that v = vY,κ.
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Finally, we introduce the family of functionals Jε,κ : L2(Ω)×L2(Ω)→ [0,+∞],
defined by

Jε,κ(u, v) :=
1

2

∫
Ω

(u− f)2 dx+
α

2

∫
Ω

v|∇u|2 dx+ 2βεmε,κ(v) (1.3)

if u ∈ H1(Ω), and Jε(u, v) := +∞ otherwise.

In Section 2, we derive an approximation of the functional Jε,κ that allows
us to compute an approximation of the minimizer using the idea of topological
asymptotic expansions. We show that

Jε,κ(u, vY ∪{y},κ)− Jε,κ(u, vY,κ) ≈ −ε2πα
1− κ
1 + κ

|∇u(y)|2 + 2εβ .

(cf. Theorem 2.1).

In Section 3, we show that the functional Jε,κ is indeed an approximation of
the Mumford–Shah functional in the sense of Γ-convergence. More precisely, if
we choose κ = κ(ε) in such a way that κ(ε) = o(ε) as ε→ 0, then

F = Γ- lim
ε→0

Jε,κ(ε) .

In particular, this implies that the minimizers of Jε,κ(ε) converge to a minimizer
of F as ε tends to zero. The adopted proof is based on the methods used
for proving the Γ-convergence of the Ambrosio–Tortorelli approximation of F
(see [3, 11]). Finally, in Section 4, we propose an algorithm to minimize the
functional Jε,κ. We compare numerical results obtained with this algorithm
with results obtained by minimization of the Ambrosio and Tortorelli model [3].

The present paper therefore provides both an approximation of the Mumford–
Shah functional and a concrete numerical method for its approximate min-
imization. We note that numerical methods based on topological analysis
have recently been applied to image procedding problems like edge detection
(see [8, 9, 38]). The cited papers, however, do not note the connection to the
existing variational methods, which, as this paper shows, is very close indeed.

2 Topological Asymptotic Analysis

In this section, we derive the topological asymptotic expansion of the func-
tional Jε,κ defined in (1.3). This expansion will form the basis of our numerical
approach.

We assume that the function f ∈ H1(Ω) is given and define the functional
G : L2(Ω)× L2(Ω)→ [0,+∞] by

G(ũ, ṽ) :=
1

2

∫
Ω

(ũ− f)2 dx+
α

2

∫
Ω

ṽ|∇ũ|2 dx

if ũ ∈ H1(Ω) and ‖ṽ‖∞ <∞, and G(ũ, ṽ) := +∞ otherwise.

Now assume that K is an open subset of Ω and 0 < κ < 1 satisfying ακ < 1.
We define the function v : Ω→ R by

v(x) =

{
κ if x ∈ K,
1 else.
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Using standard methods of variational calculus one can show that the map-
ping ũ 7→ G(ũ, v) attains a unique minimizer in H1(Ω), which we denote by
u.

The main result of this section is stated in the following theorem:

Theorem 2.1 Let K ⊂ Ω. For ŷ ∈ Ω \ K̄ and ε > 0 define the functions

v(ŷ,ε)(x) :=

{
κ if x ∈ K ∪Bε(ŷ),

1 else,

and
u(ŷ,ε) := arg min

ũ∈H1(Ω)

G(ũ, v(ŷ,ε)) .

Then for all compact subsets L ⊂ Ω \ K̄ we have

sup
ŷ∈L

∣∣∣G(u(ŷ,ε), v(ŷ,ε))−G(u, v) + αε2π
1− κ
1 + κ

|∇u(ŷ)|2
∣∣∣ = O(ε5/2) .

Remark 2.1 We note that a very similar result has been derived in [5]. The
setting there, however, is slightly different (it amounts more or less to the case
K = ∅). In addition, our result not only provides the asymptotics of the differ-
ence G(u(ŷ,ε), v(ŷ,ε))−G(u, v) but also the asymptotic size of the error term.

For the remaining part of this section we assume that the compact set L ⊂
Ω \ K̄ is fixed. Moreover we define

δ :=
1

3
dist(L, ∂Ω ∪ K̄) =

1

3
min

{
|x− y| : x ∈ L, y ∈ ∂Ω ∪ K̄

}
.

In addition, we consider the set

L̂ := L+ B̄δ(0) :=
{
x+ y : x ∈ L, |y| ≤ δ

}
.

Before we give the proof of the Theorem 2.1, we need to introduce some
auxiliary results. First, we recall that the assumptions that u and u(ŷ,ε) are
minimizers of G(·, v) and G(·, v(ŷ,ε)), respectively, imply that∫

Ω

(u(ŷ,ε) − f)ϕ+ αv(ŷ,ε)〈∇u(ŷ,ε),∇ϕ〉 dx = 0 ,∫
Ω

(u− f)ϕ+ αv〈∇u,∇ϕ〉 dx = 0 ,

(2.1)

for all ϕ ∈ H1(Ω).

We first we need a regularity result for the function u.

Lemma 2.1 The function u satisfies

u ∈ C1,λ
loc (Ω \ K̄)

for all λ ∈ (0, 1). Moreover, there exists a constant C1 only depending on L, K
and λ such that

‖∇u‖L∞(L̂) ≤ C1‖f‖H1(Ω) .
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Proof. Because by assumption f ∈ H1(Ω) and the function v is constant
on Ω \ K, it follows from standard theorems on the regularity of solutions of
elliptic equations that u ∈ H3

loc(Ω \ K̄) (see [31, Thm. 8.10]). Moreover, there

exists a constant c1 only depending on L̂ (and therefore on L and K) such that
‖u‖H3(L̂) ≤ c1‖f‖H1(Ω). Then, the Sobolev embedding theorem [1, Thm. 5.4]

implies that u ∈ C1,λ
loc (Ω \ K̄) for all λ ∈ (0, 1), and consequently,

‖∇u‖L∞(L̂) ≤ ‖u‖L∞(L̂) + ‖∇u‖L∞(L̂) ≤ c2‖u‖H3(L̂) ≤ c1c2‖f‖H1(Ω)

with the constant c2 depending on L̂ and λ. �

As a second step, we need H1-norm and L2-norm estimates of the difference
u(ŷ,ε) − u. First we show that the H1-norm of the difference u(ŷ,ε) − u on the
whole domain Ω is of order ε.

Lemma 2.2 There exists a constant C2 > 0 only depending on L, κ, Ω, and
K such that for all ε > 0 with ε < δ and ŷ ∈ L the estimate

‖u(ŷ,ε) − u‖H1(Ω) ≤ C2‖f‖H1(Ω)ε

holds.

Proof. Computing the difference between the two equations in (2.1) and
using the definition of v(ŷ,ε), we obtain that∫

Ω

(u(ŷ,ε) − u)ϕdx+ α

∫
Ω

v(ŷ,ε)〈∇(u(ŷ,ε) − u),∇ϕ〉 dx

= α(1− κ)

∫
Bε(ŷ)

〈∇u,∇ϕ〉 dx

for all ϕ ∈ H1(Ω). In particular, it follows with ϕ = u(ŷ,ε) − u that

ακ‖u(ŷ,ε) − u‖2H1(Ω) ≤ α(1− κ)

∫
Bε(ŷ)

〈∇u,∇(u(ŷ,ε) − u)〉 dx

≤ α(1− κ)‖∇u‖L2(Bε(ŷ))‖u(ŷ,ε) − u‖H1(Ω) .

Moreover Lemma 2.1 implies that

‖∇u‖L2(Bε(ŷ)) ≤ ‖∇u‖L∞(Bε(ŷ))

√
πε ≤ ‖∇u‖L∞(L̂)

√
πε ≤ C1

√
π‖f‖H1(Ω)ε .

(2.2)
Setting C2 := (1− κ)

√
πC1/κ, the assertion follows. �

Lemma 2.3 There exists a constant C3 only depending on L, κ, Ω, K, and
‖f‖H1(Ω) such that

‖u(ŷ,ε) − u‖L2(Ω) ≤ C3ε
3/2

for every ŷ ∈ L and 0 < ε < δ.
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Proof. Let g ∈ H1(Ω) satisfy ‖g‖H1(Ω) ≤ 1 and assume that w(ŷ,ε) and w are
the unique solutions to the equations (2.1) but with given g instead of f , that
is ∫

Ω

(w(ŷ,ε) − g)ϕ+ αv(ŷ,ε)〈∇w(ŷ,ε),∇ϕ〉 dx = 0 ,∫
Ω

(w − g)ϕ+ αv〈∇w,∇ϕ〉 dx = 0 ,

(2.3)

for all ϕ ∈ H1(Ω).

Taking ϕ = w(ŷ,ε) and ϕ = w in the first and the second equation in (2.1),
respectively, and next subtracting these equations from the corresponding equa-
tions in (2.3) with ϕ = u(ŷ,ε) and ϕ = u, we obtain∫

Ω

w(ŷ,ε) f dx−
∫

Ω

u(ŷ,ε) g dx = 0 ,∫
Ω

w f dx−
∫

Ω

u g dx = 0 .

In particular, ∫
Ω

(u(ŷ,ε) − u) g dx =

∫
Ω

(w(ŷ,ε) − w) f dx .

Next, we note that∫
Ω

(u(ŷ,ε) − u) g dx =
1

2

(∫
Ω

(u(ŷ,ε) − u) g dx+

∫
Ω

(w(ŷ,ε) − w) f dx

)
=

1

2

∫
Ω

(
(u(ŷ,ε) + w(ŷ,ε))− (u+ w)

)
(f + g) dx

− 1

2

∫
Ω

(u(ŷ,ε) − u) f dx− 1

2

∫
Ω

(w(ŷ,ε) − w) g dx . (2.4)

Computing the difference of the two equations in (2.1) with ϕ = u and
ϕ = u(ŷ,ε), respectively, we obtain∫

Ω

(u(ŷ,ε) − u) f dx = α

(∫
Ω

v〈∇u,∇u(ŷ,ε)〉 dx−
∫

Ω

v(ŷ,ε)〈∇u,∇u(ŷ,ε)〉 dx
)

= α(1− κ)

∫
Bε(ŷ)

〈∇u,∇u(ŷ,ε)〉 dx

= α(1− κ)

(∫
Bε(ŷ)

〈∇u,∇(u(ŷ,ε) − u)〉 dx+

∫
Bε(ŷ)

|∇u|2 dx

)
.

Application of the Cauchy-Schwarz inequality to the above formula, and next,
the estimate (2.2) and Lemma 2.2 yields the inequality∣∣∣ ∫

Ω

(u(ŷ,ε) − u) f dx
∣∣∣

≤ α(1− κ)
(
‖∇u‖L2(Bε(ŷ))‖u(ŷ,ε) − u‖H1(Ω) + ‖∇u‖2L2(Bε(ŷ))

)
≤ α(1− κ)

(√
πC1C2 + πC2

1

)
‖f‖2H1(Ω)ε

2 .

(2.5)
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In a similar manner, using the assumption that ‖g‖H1(Ω) = 1, we can show that∣∣∣ ∫
Ω

(w(ŷ,ε) − w)g dx
∣∣∣ ≤ α(1− κ)

(√
πC1C2 + πC2

1

)
ε2 , (2.6)

and∣∣∣ ∫
Ω

(
(u(ŷ,ε) + w(ŷ,ε))− (u+ w)

)
(f + g) dx

∣∣∣
≤ α(1− κ)

(√
πC1C2 + πC2

1

)
2(‖f‖2H1(Ω) + 1)ε2 . (2.7)

Finally, combining (2.5), (2.6) and (2.7) with (2.4), we obtain∣∣∣ ∫
Ω

(u(ŷ,ε) − u)g dx
∣∣∣

≤ 3α(1− κ)

2

(√
πC1C2 + πC2

1

)
(‖f‖2H1(Ω) + 1)ε2 .

Therefore, we have

‖u(ŷ,ε) − u‖H−1(Ω) := sup
{∣∣∣∫

Ω

(u(ŷ,ε) − u)g dx
∣∣∣ : g ∈ H1(Ω), ‖g‖H1(Ω) ≤ 1

}
≤ c(‖f‖2H1(Ω) + 1)ε2 (2.8)

with c = 3α(1 − κ)
(√
πC1C2 + πC2

1

)
/2. Now, estimates from the theory of

Hilbert scales (see [34, Thm. 9.4]), Lemma 2.2, and (2.8) imply that

‖u(ŷ,ε) − u‖2L2(Ω) ≤ ‖u
(ŷ,ε) − u‖H−1(Ω)‖u(ŷ,ε) − u‖H1(Ω)

≤ c(‖f‖2H1(Ω) + 1)ε2 C2‖f‖H1(Ω)ε .

Therefore, the desired estimate holds with C3 =
√
c(‖f‖2H1(Ω) + 1)C2‖f‖H1(Ω).

�

In the next step, we need to derive an estimate for the function u(ŷ,ε) on the
boundary ∂Bε(ŷ). To do this, we follow Vogelius et al. [44], where such estimate
has been derived for the solution of the homogeneous Helmholtz equation with
Dirichlet boundary conditions.

We first introduce the Green function corresponding to the equation u −
α∆u = f on Ω \ K̄ with Neumann boundary conditions. That is, the function
N(·, y) solves the problem

N(x, y)− α∆xN(x, y) = δy(x) x ∈ Ω \ K̄ ,

∂N

∂n
(x, y) = 0 x ∈ ∂(Ω \ K̄) ,

for y ∈ Ω. We note that N(·, y) can be written as the sum of the fundamental
solution corresponding to the equation u − α∆u = δy, denoted by Γ(·, y), and
a corrector function h(·, y), which is chosen in such a way that the normal
derivative of N(·, y) vanishes on the boundary ∂(Ω \ K̄). The function Γ(·, y) is
given by

Γ(x, y) =
1

2π
K0

(
1√
α
|x− y|

)
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for all x, y ∈ R2, such that x 6= y. Here K0 denotes the modified Bessel function
of the second kind (see, e.g., [39, p. 490]). Furthermore, the function K0 has an
asymptotic expansion of the form

K0(z) = − ln z + ln 2− γ +O(z2|ln z|)

for z → 0, where γ denotes the Euler-Mascheroni constant (see, e.g., [43,
Ch. 51]). Therefore, we conclude that Γ(·, y) can be approximated as

Γ(x, y) =
1

2π

(
− ln(|x− y|) +

1

2
lnα+ ln 2− γ

)
+O(|x− y|2|ln|x− y||) , (2.9)

when |x − y| → 0. Moreover, we observe that Γ(·, y) has the same singular
behavior as the fundamental solution of the Laplace equation

Φ(x, y) = − 1

2π
ln(|x− y|)

defined for all x, y ∈ R2, such that x 6= y. We need the approximation (2.9)
in order to be able to apply standard methods of potential theory to derive an
estimation for the function u(ŷ,ε) on ∂Bε(ŷ). Such way of proceeding is common
when dealing with problems of this kind (see, e.g., Colton and Kress [21, 22]).

Lemma 2.4 There exists a constant C4 only depending on L, K, and Ω, such
that for every point ŷ ∈ L, 0 < ε < δ, and y ∈ Ω satisfying ε < |y − ŷ| < 2ε the
estimate

‖N(·, y)‖L2(Bε) ≤ C4ε|ln ε|
holds.

Proof. Since by elliptic regularity h ∈ C∞(Ω \K,Ω \ K̄) and

dist(ŷ,Ω \K) ≥ 3δ > 3ε ,

we have
‖h(·, y)‖L2(Bε(ŷ)) ≤

√
π‖h(·, y)‖L∞(Ω\K̄)ε ≤

√
πc1ε

with c1 > 0 only depending on L, K, and Ω. The estimate ‖Φ(·, y)‖L2(Bε(ŷ)) ≤
c2ε|ln ε| for some c2 only depending on ε and for all y satisfying ε < |y − ŷ| <
2ε can be easily derived in the polar coordinate system. Therefore, from the
Minkowski inequality and (2.9) we get that

‖N(·, y)‖L2(Bε(ŷ)) ≤ ‖h(·, y)‖L2(Bε(ŷ)) + ‖Γ(·, y)‖L2(Bε(ŷ))

≤
√
πc1ε+ c2ε|ln ε| ≤ C4ε|ln ε|

with C4 chosen slightly larger than c2. �

Lemma 2.5 There exists a constant C5 only depending on L, K, Ω κ, α, and f ,
such that for every point ŷ ∈ L, 0 < ε < δ, and y ∈ Ω satisfying ε < |y− ŷ| < 2ε
the estimate∣∣∣u(ŷ,ε)(y)− u(y)− α(1− κ)

∫
∂Bε(ŷ)

u(ŷ,ε)(x)
∂N

∂n
(x, y) ds(x)

∣∣∣ ≤ C5ε
3/2 (2.10)

holds.
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Proof. Using standard calculations (see, e.g., [28, p. 33]) and approxima-
tion (2.9), we can derive the integral representation formulas for the functions
u and u(ŷ,ε)

u(y) = −α
∫
∂K

N(x, y)
∂u

∂n

+

(x) ds(x) +

∫
Ω\K̄

N(x, y) f(x) dx

for y ∈ Ω \ K̄, and

u(ŷ,ε)(y) = α

∫
∂Bε(ŷ)

(
u(ŷ,ε)(x)

∂N

∂n
(x, y)−N(x, y)

∂u(ŷ,ε)+

∂n
(x)

)
ds(x)

− α
∫
∂K

N(x, y)
∂u(ŷ,ε)+

∂n
(x) ds(x) +

∫
Ω\(K̄∪B̄ε(ŷ))

N(x, y) f(x) dx

for y ∈ Ω \ (K̄ ∪ B̄ε(ŷ)). Computing the difference of two above formulas we
obtain

u(ŷ,ε)(y)− u(y) =

α

∫
∂Bε(ŷ)

(
u(ŷ,ε)(x)

∂N

∂n
(x, y)−N(x, y)

∂u(ŷ,ε)+

∂n
(x)

)
ds(x)

− α
∫
∂K

N(x, y)
∂

∂n

(
u(ŷ,ε)+

(x)− u+(x)
)
ds(x)

−
∫
Bε(ŷ)

N(x, y) f(x) dx

(2.11)

for y ∈ Ω \ (K̄ ∪ B̄ε(ŷ)).

Using the transmission condition that u(ŷ,ε) satisfies on ∂Bε(ŷ), the Green
formula, and that

N(x, y)− α∆N(x, y) = 0 (2.12)

for x ∈ Bε(ŷ) and y ∈ Ω \ (K̄ ∪ B̄ε(ŷ)), we have∫
∂Bε(ŷ)

N(x, y)
∂u(ŷ,ε)+

∂n
(x) ds(x) = κ

∫
∂Bε(ŷ)

N(x, y)
∂u(ŷ,ε)−

∂n
(x) ds(x)

= κ

∫
Bε(ŷ)

N(x, y) ∆u(ŷ,ε)(x) dx+ κ

∫
Bε(ŷ)

〈
∇N(x, y),∇u(ŷ,ε)(x)

〉
dx

=
1− κ
α

∫
Bε(ŷ)

N(x, y)u(ŷ,ε)(x) dx− 1

α

∫
Bε(ŷ)

N(x, y)f(x) dx

+ κ

∫
∂Bε(ŷ)

u(ŷ,ε)(x)
∂N

∂n
(x, y) ds(x) .

(2.13)

Using similar arguments as above and applying the Cauchy-Schwarz inequality,
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we obtain

−
∫
∂K

N(x, y)
∂

∂n

(
u(ŷ,ε)+

(x)− u+(x)
)
ds(x)

= −κ
∫
∂K

N(x, y)
∂

∂n

(
u(ŷ,ε)−(x)− u−(x)

)
ds(x)

= (1− κ)

∫
K

(
u(ŷ,ε)(x)− u(x)

)
N(x, y) dx

≤ (1− κ)‖u(ŷ,ε) − u‖L2(K)‖N(·, y)‖L2(K) .

(2.14)

Because dist(y,K) ≥ dist(ŷ, K) − 2ε > δ, there exists some c > 0 such that
‖N(·, y)‖L2(K) < c. Application of Lemma 2.3 therefore yields

‖u(ŷ,ε) − u‖L2(K)‖N(·, y)‖L2(K) ≤ c‖u(ŷ,ε) − u‖L2(Ω) ≤ C3c ε
3/2 . (2.15)

Taking into account (2.13), (2.14), and (2.15) in (2.11), we obtain

u(ŷ,ε)(y)− u(y) =α(1− κ)

∫
∂Bε(ŷ)

u(ŷ,ε)(x)
∂N

∂n
(x, y) ds(x)

− (1− κ)

∫
Bε(ŷ)

u(ŷ,ε)(x)N(x, y) dx

+ (1− α)

∫
Bε(ŷ)

f(x)N(x, y) dx+O(ε3/2) ,

the last term being bounded by α(1 − κ)C3c ε
3/2. To estimate the remaining

integrals, we note that

‖u(ŷ,ε)‖L2(Bε(ŷ)) ≤
√
π‖f‖L∞(Ω) ε . (2.16)

Next, using the Cauchy–Schwarz inequality and Lemma 2.4 we get∫
Bε(ŷ)

u(ŷ,ε)(x)N(x, y) dx ≤ ‖u(ŷ,ε)‖L2(Bε(ŷ))‖N(·, y)‖L2(Bε(ŷ))

≤
√
π‖f‖L∞(Ω)C4 ε

2|ln ε| .

In a similar way, we show that∫
Bε(ŷ)

f(x)N(x, y) dx ≤ ‖f‖L2(Bε(ŷ))‖N(·, y)‖L2(Bε(ŷ))

≤
√
π‖f‖L∞(Ω)C4 ε

2|ln ε| .

Therefore, we obtain the desired estimate with C5 slightly larger than α(1 −
κ)C3c. �

Lemma 2.6 There exists a constant C6 only depending on L, K, κ, α, and f ,
such that for every point ŷ ∈ L, 0 < ε < δ, and y ∈ Ω satisfying ε < |y− ŷ| < 2ε
the estimate∣∣∣ ∫

∂Bε(ŷ)

u(ŷ,ε)(x)
∂N

∂n
(x, y) ds(x)−

∫
∂Bε(ŷ)

u(ŷ,ε)(x)
∂Φ

∂n
(x, y) ds(x)

∣∣∣ ≤ C6ε
2|ln ε|

holds.
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Proof. Denote H(x, y) := h(x, y) + Γ(x, y) − Φ(x, y). Then N(x, y) =
Φ(x, y) +H(x, y) and, using (2.12), we obtain

N(x, y) = α∆H(x, y) . (2.17)

Application of the Green formula, (2.17), and the Cauchy-Schwarz inequality
yield∣∣∣∫

∂Bε(ŷ)

u(ŷ,ε)(x)
∂H

∂n
(x, y) ds(x)

∣∣∣
=
∣∣∣∫
Bε(ŷ)

u(ŷ,ε)(x)∆H(x, y) dx+

∫
Bε(ŷ)

〈
∇u(ŷ,ε)(x),∇H(x, y)

〉
dx
∣∣∣

=
∣∣∣ 1
α

∫
Bε(ŷ)

u(ŷ,ε)(x)N(x, y) dx+

∫
Bε(ŷ)

〈
∇u(ŷ,ε)(x),∇H(x, y)

〉
dx
∣∣∣

≤ 1

α
‖u(ŷ,ε)‖L2(Bε(ŷ))‖N(·, y)‖L2(Bε(ŷ))

+ ‖∇(u(ŷ,ε) − u)‖L2(Bε(ŷ)) ‖∇H(·, y)‖L2(Bε(ŷ))

+ ‖∇u‖L2(Bε(ŷ)) ‖∇H(·, y)‖L2(Bε(ŷ)) .

Using (2.16) and Lemmas 2.2 and 2.4, it follows that

∣∣∣∫
∂Bε(ŷ)

u(ŷ,ε)(x)
∂H

∂n
(x, y) ds(x)

∣∣∣
≤ C4

√
π

α
‖f‖L∞(Ω)ε

2|ln ε|+ (C2 + C1

√
π)‖f‖H1(Ω)‖∇H(·, y)‖L2(Bε(ŷ))ε .

(2.18)

Using the explicit form of Γ(·, y) and Φ(x, y), and next the Taylor expansion of
the function K0 (see [43, Ch. 51]), we can show that

|∇Γ(x, y)−∇Φ(x, y)| ≤ c ε|ln ε|

for some c > 0 only depending on δ and all x ∈ Bε(ŷ) and y satisfying ε <
|y − ŷ| < 2ε. Thus

‖∇H(·, y)‖L2(Bε(ŷ)) ≤ (cε|ln ε|+ ‖h‖L∞(Bε(ŷ)))
√
πε .

Thus we obtain the required estimate from (2.18) by choosing C6 slightly larger
than C4

√
π‖f‖L∞(Ω)/α. �

From Lemma 2.5 and Lemma 2.6 and using the jump formula for the double
layer potential (see e.g. Kress [35, p. 68]), we have∣∣∣1

2
α(1 + κ)u(ŷ,ε)(y)− u(y)

−α(1− κ)

∫
∂Bε(ŷ)

u(ŷ,ε)(x)
∂Φ

∂n
(x, y) ds(x)

∣∣∣ ≤ C7 ε
3/2

(2.19)

for y ∈ ∂Bε(ŷ), with C7 > C5.
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Now we introduce the auxiliary vector valued function φ : R2 → R× R that
solves the problem

∆φ(x) = 0 x ∈ R2 \ B̄(0) or x ∈ B(0) ,

φ+(x) = φ−(x) x ∈ ∂B(0) ,

∂φ+

∂n
(x)− κ∂φ

−

∂n
(x) = −κn(x) x ∈ ∂B(0) ,

lim
|x|→∞

φ(x) = 0 .

(2.20)

Here B(0) denotes the unit ball in R2 of a center in 0 and n is the unit normal
vector exterior to the boundary ∂B(0). The existence and uniqueness of a
solution to the problem (2.20) can be proved using single layer potentials with
suitably chosen densities. For details, see Ammari and Kang [4] or Cedio-Fengya
et al. [15].

Solving the problem (2.20) using standard methods of potential theory, we
obtain the explicit form of φ, which reads

φ(x) =
κ

κ+ 1
x and φ(x) =

κ

κ+ 1

x

|x|2
(2.21)

for all x ∈ B(0) and x ∈ R2 \ B̄(0), respectively.

The result on asymptotic expansion of the function u(ŷ,ε) on the boundary
∂Bε(ŷ) is stated in the following Lemma:

Lemma 2.7 For every point ŷ ∈ L, 0 < ε < δ, and y ∈ ∂Bε(ŷ) the estimate∣∣∣∣∣u(ŷ,ε)(y)− u(y)− ε
(

1

κ
− 1

)
〈φ(y/ε),∇u(ŷ)〉

∣∣∣∣∣ ≤ C7ε
3/2

holds, where the constant C7 is as in (2.19).

Proof. The proof of this lemma can be proved starting from the formula (2.19)
in the same way as in Vogelius and Volkov [44, Prop. 3]. �

Using all the above results, we can now prove Theorem 2.1.

2.1 Proof of Theorem 2.1

Using (2.1) with ϕ = u(ŷ,ε) and ϕ = u, we obtain that

G(u(ŷ,ε), v(ŷ,ε))−G(u, v) = −1

2

∫
Ω

f(u(ŷ,ε) − u) dx . (2.22)

Again using (2.1), it follows that

− 1

2

∫
Ω

f(u(ŷ,ε) − u) dx

=
1

2

∫
Ω

v(ŷ,ε)〈∇u,∇u(ŷ,ε)〉 dx− 1

2

∫
Ω

v〈∇u,∇u(ŷ,ε)〉 dx

= −1

2
α(1− κ)

∫
Bε(ŷ)

〈∇u,∇u(ŷ,ε)〉 dx .
(2.23)
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Next, we apply Green’s formula to u ∈ H1(Ω) and use the fact that u solves
the equation u− f = α∆u on Bε(ŷ) to obtain that

α

∫
Bε(ŷ)

〈∇u,∇u(ŷ,ε)〉 dx

= α

∫
Bε(ŷ)

〈∇(u(ŷ,ε) − u),∇u〉 dx+ α

∫
Bε(ŷ)

|∇u|2 dx

=

∫
Bε(ŷ)

(u(ŷ,ε) − u)(f − u) dx+ α

∫
∂Bε(ŷ)

(u(ŷ,ε) − u)
∂u

∂n
ds

+ α

∫
Bε(ŷ)

|∇u|2 dx .

To estimate the first integral on the right hand side of above equation, we use
the Cauchy-Schwarz inequality and Lemma 2.3 and obtain∣∣∣ ∫

Bε(ŷ)

(u(ŷ,ε) − u)(u− f) dx
∣∣∣ ≤ ‖u− f‖L2(Bε(ŷ))‖u(ŷ,ε) − u‖L2(Bε(ŷ))

≤ 2‖f‖L∞(Ω)

√
πC3ε

5/2 .

(2.24)

Lemma 2.1 implies that ∇u is Hölder continious on every compact subset of
Ω \ K̄ with the exponent λ = 1/2. Thus there exists some constant c such that

sup
x∈Bε(ŷ)

|∇u(x)−∇u(ŷ)|
|x− ŷ|1/2

≤ c (2.25)

for all ŷ ∈ L and 0 < ε < dist(L,Ω \ K̄)/2. In particular, we have the estimate∣∣∣∫
Bε(ŷ)

|∇u|2 dx− ε2π|∇u(ŷ)|2
∣∣∣

=
∣∣∣∫
Bε(ŷ)

〈∇u−∇u(ŷ),∇u+∇u(ŷ)〉 dx
∣∣∣

≤ c ε1/2

∫
Bε(ŷ)

|∇u+∇u(ŷ)| dx

≤ 2 c πC1‖f‖H1(Ω)ε
5/2 .

(2.26)

The change of variable x = ŷ + εx̃, application of Lemma 2.7 and the property
(2.25) yield∫

∂Bε(ŷ)

(
u(ŷ,ε)(x)− u(x)

)∂u
∂n

(x) ds(x)

= ε

∫
∂B(0)

(
u(ŷ,ε)(ŷ + εx̃)− u(ŷ + εx̃)

)∂u
∂n

(ŷ + εx̃) ds(x̃)

= ε2

(
1

κ
− 1

)
∇u(ŷ)T

∫
∂B(0)

φ(x̃)
∂u

∂n
(ŷ + εx̃) ds(x̃) +O(ε5/2)

= ε2

(
1

κ
− 1

)
∇u(ŷ)T

(∫
∂B(0)

φ(x̃)n(x̃)T ds(x̃)

)
∇u(ŷ) +O(ε5/2) ,

(2.27)

14



where T denotes the vector transpose. Combining the estimates (2.24), (2.26)
and (2.27) with (2.22) and (2.23), we obtain

G(u(ŷ,ε), v(ŷ,ε))−G(u, v)

= −ε2 1

2
α(1− κ)

(
1

κ
− 1

)
∇u(ŷ)T

(∫
∂B(0)

φ(x̃)n(x̃)T ds(x̃)

)
∇u(ŷ)

− ε2 1

2
α(1− κ)π |∇u(ŷ)|2 +O(ε5/2) .

(2.28)

Inserting the explicit formula for the function φ, given in (2.21), to the
asymptotic expansion (2.28), we get

G(u(ŷ,ε), v(ŷ,ε))−G(u, v) = −ε2πα
1− κ
1 + κ

|∇u(ŷ)|2 +O(ε5/2) ,

which ends the proof of Theorem 2.1.

3 The Γ-convergence of Jε,κ(ε) to F

In this section we give a detailed proof that the sequence of functionals Jε,κ
converges to the Mumford–Shah functional in the sense of Γ-convergence, if the
parameter κ, depending on ε, tends sufficiently fast to zero as ε→ 0.

We note that the Γ-convergence of a similar family of functionals has been
shown in [13]. As in this paper, the authors approximate the edge set of u by
some set Kε, the measure of which tends to 0 as ε→ 0. The length of the edge
set, however, is approximated by half of the length of the boundary of this set
Kε. Instead, we approximate the length of the edge set by counting the number
of balls covering Kε, which, apparently, is easier to compute. On the other hand,
the results in [13] apply to more general settings and, in particular, also hold
in higher dimensions, where our approach fails. Also, in the one-dimensional
setting, the functionals treated in [13] and the functional Jε of this paper are
almost the same, which allows us to use some of the results from [13] in our
proofs.

Let us first recall the definition of the Γ-limit:

Definition 3.1 Let X be a topological space and Jj : X → [0,+∞] a sequence
of functionals on X. Denote moreover, for x ∈ X, by N (x) the set of all open
neighborhoods of x. Then the Γ-lower limit and the Γ-upper limit of Jj are the
functionals defined as

(Γ- lim inf
j

Jj)(u) := sup
U∈N (u)

lim inf
j

inf
v∈U

Jj(v) ,

(Γ- lim sup
j

Jj)(u) := sup
U∈N (u)

lim sup
j

inf
v∈U

Jj(v) .

If the Γ-upper and lower limits coincide, we define the Γ-limit by

(Γ- lim
j
Jj)(u) = (Γ- lim sup

j
Jj)(u) = (Γ- lim inf

j
Jj)(u) .
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In metric spaces, the Γ-limit of a sequence of functionals can be characterized
by means of the following result:

Lemma 3.1 Let X be a metric space and Jj : X → [0,+∞] a sequence of

functionals on X. Let moreover J : X → [0,+∞] and let X̂ be a dense subset
of {u ∈ X : J(u) < ∞}. Assume moreover that for every u ∈ X there exists a
sequence uj → u with uj ∈ X̂ such that J(uj)→ J(u). Then J = Γ- limj Jj, if
the following conditions hold:

1. For every u ∈ X and every sequence uj → u with uj ∈ X we have

J(u) ≤ lim inf
j

Jj(uj) . (3.1)

2. For every u ∈ X̂ and every δ > 0 there exists a sequence uj → u with

uj ∈ X̂ for all j such that

J(u) ≥ lim sup
j

Jj(uj)− δ . (3.2)

Proof. The result follows by combining the standard metric characterization
of the Γ-limit (see, e.g., [25, Prop. 8.1]) with a diagonal sequence argument. �

Define

F (u, v) :=
1

2

∫
Ω

(u− f)2 dx+
α

2

∫
Ω\Su
|∇u|2 dx+ βH1(Su) . (3.3)

The main result of this section is the following theorem:

Theorem 3.1 Let F and Jε,κ be as in (3.3) and (1.3), respectively. Assume
moreover that κ(ε) = o(ε) as ε → 0. Then we have for every sequence εj → 0
that

F = Γ- lim
j
Jεj ,κ(εj) .

We now prove Theorem 3.1 using the methods introduced by Ambrosio and
Tortorelli [2], as presented in the notes by Chambolle [16] and the books by
Braides [11, 12]. The proof is split into three parts. In the first part, we
will prove the lower bound, inequality (3.1), in the one-dimensional case. In
the second part, we will extend this result to dimension 2 using the slicing
method (see, e.g., [11, 12]). In the last part, we will prove the upper bound,
inequality (3.2).

3.1 The Lower Bound for n = 1

Let the set Ω ⊂ R be open and bounded, and f ∈ L∞(Ω). We define the
one-dimensional Mumford–Shah functional F̃ : L2(Ω)× L2(Ω)→ [0,+∞] as

F̃ (u, v) =
1

2

∫
Ω

(u− f)2 dx+
α

2

∫
Ω\Su

(u′)2 dx+ βH0(Su)

16



if u′ is square integrable outside the jump set Su of u and v ≡ 1; otherwise
F̃ (u, v) = +∞.

Because of technicalities of the proof of the two-dimensional case that result
from the restriction of the approximating functionals Jε,κ to lines, it is necessary
to use a slightly different definition in the one-dimensional case; instead of only
covering the edge set with balls of radius ε, we also allow covers with smaller
balls. For each finite set Y = {yi : 1 ≤ i ≤ m} of points in R we denote by
Mε,κ(Y,Ω) the set of all functions v : Ω → R for which there exists a sequence
{δi}mi=1 of positive numbers smaller than, or equal to, ε, such that for all x ∈ Ω
we have

v(x) =

{
κ if x ∈

⋃m
i=1Bδi(yi),

1 else.

Furthermore we denote by

m̃ε,κ(v,Ω) := inf
{
H0(Y ) : Y ⊂ R, v ∈Mε,κ(Y,Ω)

}
. (3.4)

As in the two-dimensional case, we define m̃ε,κ(v,Ω) := +∞ if v 6∈ Mε,κ(Y,Ω)
for any Y ⊂ R2.

Finally, we define the functional J̃ε,κ : L2(Ω)× L2(Ω)→ [0,+∞] as

J̃ε,κ(u, v) :=
1

2

∫
Ω

(u− f)2 dx+
α

2

∫
Ω

v(u′)2 dx+ βm̃ε,κ(v,Ω)

if u ∈ H1(Ω) and v ∈ Mε,κ(Y,Ω), otherwise J̃ε,κ(u, v) := +∞. For proving the
inequality

F̃ (u, v) ≤ lim inf
j→∞

J̃εj ,κ(εj)(uj , vj) .

for all sequences (u, v) ∈ L2(Ω) × L2(Ω) converging to (u, v) ∈ L2(Ω) × L2(Ω)
and εj → 0, we can basically rely on the results and techniques from [13,
Proposition 3], where the same result has been shown in an only slightly different
setting. We therefore omit the proof.

3.2 The Lower Bound for n = 2

The second part of the proof of Theorem 3.1 is concerned with showing (3.1)
for Ω ⊂ R2. The proof applies the slicing method following Braides [11, 12]. To
that end it is necessary to introduce some notational preliminaries:

We denote for every direction ξ ∈ S1 := {x ∈ R2 : |x| = 1} by Πξ := {y ∈
R2 : 〈y, ξ〉 = 0} the hyperplane passing through 0 that is orthogonal to ξ. If
A ⊂ Ω is open, we denote by Aξ,y := {t ∈ R : y + tξ ∈ A} ⊂ R the one-
dimensional slice of A indexed by y ∈ Πξ. Finally, for all w defined on Ω, we
define the one-dimensional function wξ,y(t) = w(y + tξ) as the restriction of w
to Ωξ,y.

Next we define for every open set A ⊂ Ω a localized functional Jε,κ(u, v,A).
To that end, we first localize the functional mε,κ. We define

mε,κ(v,A) := inf
{
H0(Y ) : Y ⊂ R2, v|A = vY,κ|A

}
.
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Then we define

Jε,κ(u, v,A) :=
1

2

∫
A

(u− f)2 + αv|∇u|2 dx+ 2εβmε,κ(v,A) .

Moreover, we define for each ξ ∈ S1 the directional functional

Jξε,κ(u, v,A) :=
1

2

∫
A

(u− f)2 + αv〈ξ,∇u〉2 dx+ 2εβmε,κ(v,A) .

Finally, we consider for each ξ ∈ S1, y ∈ Πξ, and I ⊂ Ωξ,y open the one-
dimensional functionals

F ξ,y(û, I) =
1

2

∫
I\Sû

(û− fξ,y)2 + (û′)2 dx+ βH0(Sû)

and

Jξ,yε,κ (û, v̂, I) =
1

2

∫
I

(û− fξ,y)2 + αv̂(û′)2 dx+ βm̃ε,κ(v̂, I) ,

where m̃ε,κ is as defined in (3.4).

We claim that for every u, v ∈ L2(Ω), ε > 0, 0 < κ < 1, A ⊂ Ω open, and
ξ ∈ S1 the inequalities

Jε,κ(u, v,A) ≥ Jξε,κ(u, v,A) ≥
∫

Πξ

Jξ,yε,κ (uξ,y, vξ,y, Aξ,y) dH1(y) (3.5)

hold. Indeed, the first inequality is a direct consequence of the definition of
the involved functionals. For the second inequality, note first that, by Fubini’s
theorem,∫
A

(u− f)2 + αv〈ξ,∇u〉2 dx =

∫
Πξ

∫
Aξ,y

(uξ,y − fξ,y)2 + αvξ,y(uξ,y)′2 dt dH1(y) .

Thus it remains to show that

2εmε,κ(v,A) ≥
∫

Πξ

m̃ε,κ(vξ,y, Aξ,y) dH1(y) (3.6)

whenever v ∈ L2(A). In case mε,κ(v,A) = +∞, this inequality trivially holds.
Else, there exists a set Y = {y1, . . . , ym} ⊂ R2 with m = mε,κ(v,A) such that

v(x) =

{
κε if x ∈

⋃m
i=1Bε(yi) ,

1 else.

Then

2εm =

m∑
i=1

H1
(
{y ∈ Πξ : Bε(yi) ∩ (y + Rξ) 6= ∅}

)
≥

m∑
i=1

H1
(
{y ∈ Πξ : Bε(yi) ∩ (y + Rξ) ∩A 6= ∅}

)
=

∫
Πξ

H0
(
{i : Bε(yi) ∩ (y + Rξ) ∩A 6= ∅}

)
dH1(y) .
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Moreover the definition of m̃ε,κ(vξ,y, Aξ,y) implies that

H0
(
{i : Bε(yi) ∩Aξ,y 6= ∅}

)
≥ m̃ε,κ(vξ,y, Aξ,y)

for all y and ξ. This shows (3.6), which in turn implies (3.5).

Now let (u, v) ∈ L2(Ω) × L2(Ω), and assume that εj → 0, uj → u, and
vj → v. As in the one-dimensional case we have to show that

F (u, v) ≤ lim inf
j→∞

Jεj ,κ(εj)(uj , vj) .

Again, we assume without loss of generality that the sequence Jεj ,κ(εj)(uj , vj)
converges to some finite number c < +∞; the claim being trivial if c = +∞.
In particular, this implies that v = 1 almost everywhere. Now (3.5), Fatou’s
Lemma, and the Γ-convergence result for the one-dimensional case imply that,
for each open set A ⊂ Ω and each direction ξ ∈ S1, we have

lim inf
j→∞

Jεj ,κ(εj)(uj , vj , A)

≥ lim inf
j→∞

∫
Πξ

Jξ,yεj ,κ(εj)
(uξ,yj , vξ,yj , Aξ,y) dH1(y)

≥
∫

Πξ

lim inf
j→∞

Jξ,yεj ,κ(εj)
(uξ,yj , vξ,yj , Aξ,y) dH1(y)

≥
∫

Πξ

F ξ,y(uξ,y, Aξ,y) dH1(y)

=
1

2

∫
A\Su

(u− f)2 + α〈ξ,∇u〉2 dx

+ β

∫
Πξ

H0(Suξ,y ∩Aξ,y) dH1(y)

=
1

2

∫
A\Su

(u− f)2 + α〈ξ,∇u〉2 dx+ β

∫
Su∩A
|〈ξ, νu〉| dH1(x) .

Now let (ξi)i∈N ⊂ S1 be a dense subset. Then [11, p. 191] implies that

lim inf
j→∞

Jεj ,κ(εj)(uj , vj) ≥
1

2

∫
Ω\Su

(f − u)2 + α sup
i
〈ξi,∇u〉2 dx

+

∫
Su

sup
i
|〈ξi, νu〉| dHn−1(y)

= F (u) .

3.3 The Upper Bound

We now prove inequality (3.2). To that end, we consider the setW(Ω) consisting
of all functions u ∈ SBV (Ω) for which the following hold:

1. H1(Su \ Su) = 0.

2. The set Su is the union of a finite number of almost disjoint line segments
contained in Ω.
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3. u|Ω\S̄u ∈W
1,∞(Ω \ Su).

Obviously, this set is dense in SBV (Ω) with respect to the L2-topology. More-
over, it has been shown in [23, 24] that, for every u ∈ SBV (Ω), there exists
a sequence uj → u with uj ∈ W(Ω) for every j such that F (uj) → F (u).
Using Lemma 3.1, for proving (3.2), we therefore have to find for every u ∈
W(Ω), δ > 0, and εj → 0 sequences uj → 0, vj → 1 as j → ∞, such that
lim supj→∞ Jεj ,κ(εj)(uj , vj) ≤ F (u) + δ.

Let therefore u ∈ W(Ω) be fixed. By definition of W(Ω), there exist k ∈ N
and ai, bi ∈ Ω, 1 ≤ i ≤ k, such that Su =

⋃k
i=1[ai, bi]. Moreover,

H1(Su) = H1(Su) =

k∑
i=1

‖bi − ai‖ .

Now define for ε > 0 and 0 < c < 1

K(ε, c) :=
{
x ∈ Ω : dist(x, Su) < cε

}
.

Let moreover µ(ε, c) ∈ N and x
(ε,c)
l ∈ Ω, 1 ≤ l ≤ µ(ε, c), be such that

K(ε, c) ⊂
µ(ε,c)⋃
l=1

Bε(x
(ε,c)
l ) .

Now note that, if we place the centers of the balls on a line segment [ai, bi],
then they cover the whole set

{
x ∈ Ω : dist(x, [ai, bi]) < cε

}
provided that the

distance between two adjacent centers is at most 2ε
√

1− c2. Thus it follows that

one can cover each set
{
x ∈ Ω : dist(x, [ai, bi]) < cε

}
with at most ‖bi−ai‖

2ε
√

1−c2 + 1

balls of radius ε. Consequently, we can choose the centers xl in such a way that

µ(ε, c) ≤ k +

k∑
i=1

‖bi − ai‖
2ε
√

1− c2
= k +

H1(Su)

2ε
√

1− c2
.

Let now

v(ε,c)(x) :=

{
κ(ε) if x ∈

⋃µ(ε,c)
l=1 Bε(x

(ε,c)
l ) ,

1 else.

Then, for every c we have v(ε,c) → 1 as ε→ 0. Moreover,

mε,κ(ε)(v
(ε,c),Ω) ≤ µ(ε, c) .

Define now

u(ε,c)(x) := u(x) min

(
dist(x, Su)

cε
, 1

)
.

Then u(ε,c)(x) = u(x) for x 6∈ K(ε, c) and u(ε,c) → u as ε → 0. Denoting
d(x) = dist(x, Su), we have for almost every x ∈ K(ε, c)

∇u(ε,c)(x) = ∇u(x)
d(x)

cε
+ u(x)

∇d(x)

cε
.
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Thus the triangle inequality and the fact that |∇d(x)| = 1 almost everywhere
imply that

|∇u(ε,c)(x)| ≤ |∇u(x)|d(x)

cε
+ |u(x)| |∇d(x)|

cε
≤ |∇u(x)|+ ‖u‖∞

cε

for almost every x ∈ K(ε, c). Therefore, for almost every x ∈ K(ε, c),

|∇u(ε,c)(x)|2 ≤ 2‖∇u‖2∞ + 2
‖u‖2∞
c2ε2

. (3.7)

Now consider each term of the functional Jε,κ(ε) separately. We have∫
Ω

(u(ε,c) − f)2dx =

∫
Ω\K(ε,c)

(u− f)2dx+

∫
K(ε,c)

(u(ε,c) − f)2dx

→ε→0

∫
Ω

(u− f)2dx .

From (3.7) we get∫
Ω

v(ε,c)|∇u(ε,c)|2dx ≤
∫

Ω\K(ε,c)

|∇u|2dx+

∫
K(ε,c)

κ(ε)|∇u(ε,c)|2dx

≤
∫

Ω\K(ε,c)

|∇u|2dx+ 2κ(ε)‖∇u‖2∞L2(K(ε, c)) +
2κ(ε)‖u‖2∞L2(K(ε, c))

c2ε2
.

Because κ(ε) = o(ε) as ε→ 0 and

L2(K(ε, c)) ≤ L2(K(ε, 1)) ≤ 2εH1(Su) + kπε2 = O(ε) as ε→ 0 ,

it follows that

lim sup
ε→0

∫
Ω

v(ε,c)|∇u(ε,c)|2dx ≤
∫

Ω\Su
|∇u|2 dx .

Finally, the construction of v(ε,c) implies that

2εmε,κ(ε)(v
(ε,c),Ω) ≤ 2kε+

H1(Su)√
1− c2

.

Let now εj → 0 as j → ∞ and define uj := u(εj ,c), vj := v(εj ,c). Then it
follows that

lim sup
j→∞

Jεj ,κ(εj)(uj , vj) ≤
1

2

∫
Ω

(u−f)2 dx+
α

2

∫
Ω\Su
|∇u|2 dx+

β√
1− c2

H1(Su) .

Since 0 < c < 1 was arbitrary and H1(Su) < ∞, we obtain (3.2) with δ =
(1− 1/

√
1− c2)H1(Su), which concludes the proof of Theorem 3.1.

4 Numerical Implementation

4.1 Proposed Algorithm

Based on Theorem 2.1, we propose the following algorithm for the approximate
minimization of the functional Jε,κ for fixed ε > 0 and κ > 0.
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Algorithm 4.1 Let f ∈ L∞(Ω), α, β > 0, ε > 0, and 0 < κ < 1 be given.

Set k = 0 and K0 := ∅.

1. Define

vk(x) :=

{
κ if x ∈ Kk ,

1 if x ∈ Ω \Kk .

2. Define
uk := arg min

u
G(u, vk) .

3. Find y ∈ Ω \Kk such that |∇uk(y)| is maximal.

4. If
α

2
π

1− κ
1 + κ

|∇uk(y)|2 < β

ε
, (4.1)

stop.

Else set Kk+1 := Kk ∪Bε(y), increase k by one and go to step 1.

Steps 3 and 4 of the algorithm use the results of Theorem 2.1. This theorem
states that adding in the k-th step a point y to the edge indicator will approx-
imately result in a decrease of the functional G by approximately ε2απ(1 +
κ)|∇uk(y)|2/(1 − κ). Thus, we will obtain the steepest descent, if we add a
point y, where |∇uk(y)| is maximal. At the same time the adding of another
ball leads to an increase of the term mε,κ by 2βε. In total, the value of Jε,κ
will increase if (4.1) holds, else Jε,κ will decrease and therefore it makes sense
to include the point y into the edge set.

Remark 4.1 In order to increase the performance of the algorithm, it makes
sense to add not just one ball in each iteration, but rather several ones. Also
in this case a similar approximation as Theorem 2.1 holds, and thus the same
criterion for adding new points can be applied. This strategy has been used in
the numerical examples below.

4.2 Numerical Results

We now compare the results obtained with Algorithm 4.1 with results obtained
using the approximation introduced by Ambrosio and Tortorelli [3]. This latter
method consists in minimizing the functional

Iε(u, v) :=
1

2

∫
Ω

(u− f)2 dx+
α

2

∫
Ω

v2|∇u|2 dx+
1

2

∫
Ω

(
ε|∇u|2 +

1

4ε
(v− 1)2

)
dx .

(4.2)
Again, the function v serves as an edge indicator in the sense that the points
where v is close to zero are an approximation of the edge set K of the solution
of the Mumford–Shah functional. In contrast to the approximation by means
of the functional Jε,κ, however, where the edge set is given as the points where
the function v is equal to κ, in case of the functional (4.2) one has to threshold
v in order to obtain a precisely defined edge set.
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The minimization of Iε has been carried out by alternately solving the cor-
responding Euler–Lagrange equations with respect to u and v. For the dis-
cretization, we have used a finite element approach with piecewise bilinear basis
functions on the pixel grid. The same discretization has been used for the
computation of uk in the second step of Algorithm 4.1.

Figures 1 and 2 show a comparison of the results of the Ambrosio–Tortorelli
approximation and Algorithm 4.1. The edge indicators are in both cases com-
parable, though our algorithm in general classifies more points as edges. The
main difference between the results is that the Ambrosio–Tortorelli approxima-
tion leads to a diffuse edge indicator, while our method produces well defined
edges. As a consequence, also the smoothed images tend to be less blurred;
compare, for instance, the various light reflections in Figure 2.

5 Conclusion

The results of this paper provide a theoretical connection between the Mumford–
Shah functional and techniques from topological asymptotic analysis that have
recently been applied to imaging problems like edge detection. We have shown
that the Mumford–Shah functional can be approximated, in the sense of Γ-
limits, by a family of set functions that count the number of balls that are
necessary to cover the edge set of an image. The placement of these balls can
then be determined by an asymptotic expansion of this set function with respect
to the radii of the balls.

Apart from providing yet another method for image smoothing and segmen-
tation, our results indicate that all the proposed algorithms using topological
asymptotic analysis are somehow related to a classical variational method by
means of Γ-convergence. For the method based on the function Jε,κ defined
in (1.3), the relation has been proven explicitly, but similar relations are ex-
pected to hold for other methods. For instance, the algorithm proposed in [9]
for image segmentation should rightly be regarded as an implementation of the
Chan–Vese model [20] without making use of level set methods.
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[42] J. Soko lowski and A. Żochowski. On topological derivative in shape opti-
mization. SIAM J. Control Optimiz, 37(4):1251–1272, 1999.

[43] J. Spanier. An Atlas of Functions. Taylor & Francis, 1987.

[44] M. S. Vogelius and D. Volkov. Asymptotic formulas for perturbations in
the electromagnetic fields due to the presence of inhomogeneities of small
diameter. Math. Model. Numer. Anal., 34(4):723–748, 2000.

28


	Introduction
	Topological Asymptotic Analysis
	Proof of Theorem 2.1

	The -convergence of J,() to F
	The Lower Bound for n=1
	The Lower Bound for n = 2
	The Upper Bound

	Numerical Implementation
	Proposed Algorithm
	Numerical Results

	Conclusion

