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Abstract. In this paper we do a systematic investigation of continuous
methods for pixel, line pixel and line dejittering. The basis for these in-
vestigations are the discrete line dejittering algorithm of Nikolova and
the partial differential equation of Lenzen et al for pixel dejittering. To
put these two different worlds in perspective we find infinite dimensional
optimization algorithms linking to the finite dimensional optimization
problems and formal flows associated with the infinite dimensional opti-
mization problems. Two different kinds of optimization problems will be
considered: Dejittering algorithms for determining the displacement and
displacement error correction formulations, which correct the jittered
image, without estimating the jitter. As a by-product we find novel vari-
ational methods for displacement error regularization and unify them
into one family. The second novelty is a comprehensive comparison of
the different models for different types of jitter, in terms of efficiency of
reconstruction and numerical complexity.
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1 Introduction

A frequent task in image processing is dejittering, which is the process of as-
signing pixel positions to image data recorded with pixel displacements. Jitter
is a type of distortions which arises frequently in signal processing, when the
distance (time) between sampling points vary rendering signal errors. A specific
form of jitter is line jitter that consists of horizontal shifts of each row (line) of an
image. The shift is the same for the entire row. This may typically happen when
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digitizing analog noisy video frames and there are line registration problems due
to bad synchronization pulses. The effect is that the image lines are (randomly)
shifted with respect to their original location, so vertical lines become jagged
resulting in a disturbing visual effect since all shapes become jagged. One may
also have line pixel jitter where pixels in a row are shifted differently. Finally
there is pixel jitter where one also experiences vertical shifts.

The main goal of this paper is to establish relations between discrete and
continuous models for dejittering. In particular we consider line, line pixel, and
pixel jitter. In the literature these problems have been considered in an infinite
dimensional continuous and in a finite dimensional discrete setting, resulting in
different problem formulations and analysis. To link these approaches and put
the theory on solid grounds (based on an infinite dimensional - discretization
free - theory) we require to link the approaches.

Presently there exists two kind of algorithms for dejittering which we catalog
as follows:

– Dejittering algorithms find the displacements by an optimization routine
first and then restore the image by composing the jittered image with the
displacement.

– Displacement correction algorithms compute the image directly without cal-
culating the displacement function first.

The algorithms will be implemented for different purposes: For dejittering we
assume a deterministic jitter, while in the later we assume a random perturba-
tion.

Starting point of this paper are publications in different worlds, which deal
with dejittering: The discrete optimization formulation of Nikolova [13,14] and
Lenzen et al [8,9], which deals with displacement correction. We are generalizing
Nikolova’s algorithm to the infinite dimensional setting and then establish a
relation to displacement correction and systems of partial differential equations.

As a consequence we can discuss advantages and shortcuts of the different
methods and discretization dependence.

The outline of this paper is as follows: In Section 2 we make the basic prob-
lem formulation for three types of jittering. Then we explain line dejittering and
recall the standard formulation in the field from Nikolova [14] in Section 3. After
deriving a continuous variant, we put this algorithm in perspective with displace-
ment error regularization [3,8,9,15,16]. We explain the different philosophies but
show the close relation of these areas in the general setting of line pixel dejitter-
ing; cf. Section 4. Moreover, we review continuous algorithms for pixel dejittering
in Section 5. In Section 6 we formulate partial differential equations, which con-
stitute the flows according to the continuous optimization energies. Finally we
present numerical results in Section 7. The paper ends with a conclusion, where
we outline the novelties of this work.

2 Basic Notation and Problem Formulation

In this paper we use the following notations:
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– u can either denote a discrete (digital) gray valued image, in which case it
is represented as a matrix u ∈ Rm×n, where m is number of columns, and n
is number of rows, or

– u denotes a function u : Ω → R on the unit-square Ω = [0, 1]2. For a
continuous image u : Ω → R, one way to have the digitized image pixels is

uij =
1

hxhy

∫ i/m

(i−1)/m

∫ j/n

(j−1)/n
u(x, y) d(x, y) .

Here, the pixel size is hx × hy, with hx = 1
m and hy = 1

n .
– ηij and η : Ω → R denote noise. In the discrete setting the lines are hori-

zontally numbered from bottom to top.

Let uδ denote either a discrete, jittered image - then it is a matrix in Rm×n, or
a continuous, jittered image, then it is function uδ : Ω → R. Assuming that u
denotes the original image without jittering, we consider the following discrete
and continuous problem formulations:

Line jitter:

uδ(i, j) = u(i+ dj , j) + ηij , uδ(x, y) = u(x+ d(y), y) + η(x, y) , (1)

respectively, where dj ∈ Z denotes the discrete jitter of the j-th line, and
d : [0, 1]→ R denotes the jitter function of the y-th component.

Line pixel jitter:

uδ(i, j) = u(i+ di,j , j) + ηij , uδ(x, y) = u((x+ d(x, y), y) + η(x, y) , (2)

respectively, where di,j ∈ Z denotes the discrete jitter of the i− th pixel in
the j-th line, and d : Ω → R denotes the jitter function of the point (x, y)
in x-direction.

Pixel jitter:

uδ(i, j) = u((i, j)+di,j)+ηij , uδ(x, y) = u((x, y)+d(x, y))+η(x, y) , (3)

respectively, where di,j ∈ Z2 denotes the discrete jitter of the (i, j)−th pixel,
and d : Ω → R

2 denotes the jitter vector field at the point (x, y).

For those jittered pixels which run out of the domain of the original image u, we
define their intensity values as 0.

In the literature, many dejittering algorithms are particularly designed for
line jittering, referring to (1), see for instance [6,7,13,14,18]. In these algorithms,
the jittering error is considered deterministic, and a probably noisy input im-
age has to be smoothed in an additional step, either before or after dejittering.
The problems of line pixel jitter (2) and pixel jitter (3) have been discussed for
instance in [8,9], where a displacement error correction model has been consid-
ered. In this context, it is commonly assumed that noise is significant and jitter is
stochastic, and the methods are supposed to dejitter and denoise simultaneously.



4 Guozhi Dong, Aniello Raffaele Patrone, Otmar Scherzer, Ozan Öktem

3 Line Dejittering

In this section we investigate algorithms for line dejittering. After reviewing
algorithms from the literature, we will formulate line pixel and pixel dejittering
below.

As we have mentioned in the introduction, there are two different kinds
of algorithms for dejittering in the literature. The prime example of the first
type approach is Nikolova’s algorithm [13,14], which is outlined below. A-priori
Nikolova’s approach is formulated in a discrete setting. We provide a continuous
formulation below, which allows us to put it in perspective with the second
approach, and thus in turn to partial differential equation models in the spirit
of [8,9].

3.1 Nikolova’s Algorithm for Discrete Line Dejittering

Nikolova [13,14] proposed an efficient algorithm for discrete line dejittering.
This algorithm is based on energy minimization and determines in an iterative
way, from bottom to top, for each horizontal image line discrete integer values
dj , j ∈ {1, 2, · · · , n}, which indicate the horizontal displacement of the j-th line,
respectively.

The algorithm involves setting values of an exponential parameter p, which
Nikolova chooses as p = 1 or p = 0.5, p = 0.5 is better suited for discontinuous
images, while p = 1 is better suited for smooth images. Moreover, it is assumed
that the jitter is bounded, such that there is a parameter σ constraining the
maximal line jitter (a typical values is σ = 6 pixels):

|dj | ≤ σ , ∀j = 2, . . . , n .

1. The algorithms is initialized by setting j := 2, d1 := 0, û(i, 1) := uδ(i, 1) and
selecting the parameter σ∗ ≥ σ. The minimizer d̂2 of the functional

J2(d2) :=

m−σ∗∑
i=σ∗+1

∣∣uδ(i− d2, 2)− uδ(i, 1)
∣∣p (4)

is used to define û(i, 2) := uδ(i− d̂2, 2).
2. For j = 3, . . . , n determine d̂j as the minimizer of the functional

Jj(dj) :=

m−σ∗∑
i=σ∗+1

∣∣uδ(i− dj , j)− 2û(i, j − 1) + û(i, j − 2)
∣∣p , (5)

and define û(i, j) = uδ(i− d̂j , j).

3.2 A Continuous Optimization Problem for Line Dejittering

We here formulate a continuous variant of Nikolova’s algorithm, which also es-
tablishes the relation to existing variational methods and partial differential
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equations for dejittering. Let uδ : Ω → R be the line jittered variant of u, so
uδ satisfies (1). In order to recover u and d, we minimize (6) for each ŷ ∈ [0, 1]
separately, where ŷ indicates the continuum position of the line in the image,

Jc(d)(ŷ) := lim
τ→0+

1

2τ

∫ min{ŷ+τ,1}

max{ŷ−τ,0}

∫ 1−σ∗

σ∗

∣∣∂kyuδ(x− d(y), y)
∣∣p d(x, y) , (6)

subject to
‖d‖L∞([0,1]) ≤ σ. (7)

The parameter σ∗ is chosen to satisfy σ ≤ σ∗. With this choice the integrand

in the integral
∫ 1−σ∗
σ∗

∣∣∂kyuδ(x− d(y), y)
∣∣p dx is evaluated only for arguments of

uδ in the interior of the image domain [0, 1] × [0, 1]. This correspond to the
discrete sum

∑m−σ∗
i=σ∗+1 in the Nikolova algorithm. The term ∂kyu

δ denotes the

k-th derivative of uδ with respect to the second component. Since

uδ(i− dj , j)− 2û(i, j − 1) + û(i, j − 2)

h2y
≈ ∂2yuδ(ihx − d((j − 1)hy), (j − 1)hy) ,

we propose the following simplified variant of (6) and (7), namely to minimize

J (k)(d) :=
1

p

∫
Ω

∣∣∂kyuδ(x− d(y), y)
∣∣p d(x, y) (8)

subject to
‖d‖L2([0,1]) ≤ σ̂. (9)

The main difference to minimizing Jc is that we consider integration over all of
Ω. To make this well-defined, we propose to extend uδ symmetric across left and
right, and top and bottom images boundaries, respectively. Another difference
is that we consider an a joint approach, which optimizes globally over all pixels,
instead of separately for each line. Moreover, from a modelling point of view
taking the second derivative (k = 2) of uδ in the functional Jc is not mandatory,
for instance, we may take as well the derivative (k = 1) or another integer order.
In practice, minimizing the functional with second order derivatives performs
better than using first order derivatives in a noise free environment. For the
other parameter p in (8), in the discrete setting, Nikolova has suggested to use
either 0.5 or 1, however, we would propose to choose either p = 1 or p = 2, in
order to keep the convexity of the functional in our continuous model, where
p = 1 works better with the discontinuities.

4 Line Pixel Dejittering

In this section we review line pixel dejittering and displacement regularization:
We find that within the continuous setting, formally, the optimization approach
for line dejittering from last section can be similarly generalized to the case of line
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pixel dejittering. However, the formal difference is that for line pixel dejittering
d : Ω → R is a bounded random field over the whole two dimensional domain Ω,
while for line jitter d : [0, 1] → R. Thus, we propose to optimize the functional
which is only slightly changed from (8)

J (k)
2 (d) :=

1

p

∫
Ω

∣∣∂kyuδ(x− d(x, y), y)
∣∣p d(x, y) (10)

subject to ‖d‖L2(Ω) ≤ σ̂.
Because we assume small displacements d, we also consider approximating

the term ∂kyu
δ(x− d(x, y), y) by its linearisation:

∂kyu
δ(x− d(x, y), y) ≈ ∂kyuδ(x, y)− d(x, y)∂x∂

k
yu

δ(x, y) .

Replacing the nonlinear term by its linearization, we arrive at the constrained
optimization problem, which is to minimize

J (k)
2 (d) :=

1

p

∫
Ω

∣∣∂kyuδ(x, y)− d(x, y)∂x∂
k
yu

δ(x, y)
∣∣p d(x, y) , k = 1, 2 (11)

subject to (9).

For 1 < p ≤ 2, J (k)
2 is strictly convex, and for three-times continuously

differentiable uδ also weakly lower semi-continuous. Then, the constrained opti-
mization problem is equivalent to the method of Tikhonov-regularization with
parameter choice by Morozov’s discrepancy principle, consisting in calculation
of

d(α) := arg mind

{
J (k)
2 (d) +

α

2
‖d‖2L2(Ω)

}
, (12)

where α is chosen to satisfy ‖d(α)‖L2(Ω) = σ̂. For further background on the
relation between Tikhonov regularization and constrained optimization problems
see for instance [1,4,5,10,11,17,19,20]. For p ≤ 1 the relation is not obvious, but
we ignore this difficulty.

We stress the fact that the minimizer of (12) with p = 2 can be explicitly
calculated: We have

d(α) =
∂kyu

δ∂x∂
k
yu

δ

α+ (∂x∂kyu
δ)2

. (13)

This explicit linearised method provides insufficient results (cf. Figure 1).

Fig. 1. Left to right: ground truth, line jittered image, displacement, recovered image
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4.1 Displacement Error Correction for Line Pixel Dejittering

In the following we outline an approach for dejittering, which does not recover
the jitter but the dejittered image directly. We use a first order approximation
of the data by assuming that the jitter is only a small disturbance:

uδ(x, y) ≈ u(x+ d(x, y), y) ≈ u(x, y) + ∂xu(x, y)d(x, y) . (14)

Considering the approximation as an identity we find that

d(x, y) =
uδ(x, y)− u(x, y)

∂xu(x, y)
. (15)

Now, instead of minimizing J (k)
2 with respect to d, we replace in J (k) the uδ by

u(x + d(x, y)) and use the identity (15), and minimize with respect to u. Thus
the optimization problem for line pixel dejittering consists in the minimization
of the functional:

N (u) := α
1

2

∫
Ω

∣∣∣∣uδ(x, y)− u(x, y)

∂xu(x, y)

∣∣∣∣2 d(x, y) +
1

p

∫
Ω

∣∣∂kyu(x, y)
∣∣p d(x, y)︸ ︷︷ ︸

R

. (16)

Remark 1. When we use this approach to correct for line jitter, we have to
respect the fact that each line has the same shift, which leads to

0 = ∂xd(y) ≈ ∂x
(
uδ(x, y)− u(x, y)

∂xu(x, y)

)
.

Thus line jitter correction can be rephrased as an unconstrained minimization
of the functional

N (u) + β

∫
Ω

(
∂x

(
uδ(x, y)− u(x, y)

∂xu(x, y)

))2

d(x, y) , (17)

where β is a penalty parameter.

5 Pixel Dejittering

The problem of pixel jitter correction can be formulated again as a constraint
optimization problem, consisting in minimization of

J (k)
3 (d) :=

1

p

∫
Ω

∣∣∂kyuδ((x, y)− d(x, y))
∣∣p d(x, y) (18)

subject to ‖d‖(L2(Ω))2 ≤ σ̂. Note the fundamental difference that d : Ω → R
2,

while for line pixel jitter d : Ω → R, and for line jitter d : [0, 1]→ R.
Displacement error regularization for correcting pixel jitter has been consid-

ered in [8,9]. It is again based on Taylor expansion

uδ(x, y)− u(x, y) ≈ d · ∇u ,
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which implies that we can choose as a solution d ≈ (∇u)†(uδ − u) , where (∇u)†

denotes the Moore-Penrose pseudo-inverse of ∇u. This choice of an inverse of
∇u considers displacement errors which are orthogonal to level lines of u.

Here, we define

Ŝ(u) :=
1

2

∥∥(∇u)†(uδ − u)
∥∥2
L2(Ω)

.

Assuming that u is of finite total variation we ended up with the following
regularization functional [8,9]:

N̂ (u) := αŜ(u) +

∫
Ω

|∇u(x, y)| d(x, y) . (19)

Note that in comparison with (16),
∫
Ω

∣∣∂kyu(x, y)
∣∣p d(x, y) has been replaced by

the TV -semi norm
∫
Ω
|∇u(x, y)| d(x, y).

6 PDE Models as Formal Energy Flows

Considering S as a metric, the minimization of functional N defined in (16), can
be formally solved as metric flows of S with energy R. In [9], a PDE according
to (19) has been derived by considering N̂ (α, ·) as an implicit time-step of the
associated flow, following that, we state the flows according to (16) and (19).

– The flow associated with (16), for k = 1, 2 and p = 1, 2 is:
∂tu = |∂xu|2 ∂ky

(
∂kyu∣∣∂kyu∣∣2−p

)
;

u = uδ , in Ω × {0} ;

∂2l−1y u = 0 , on {0, 1} × [0, 1] , ∀l = 1, .., k .

(20)

– We emphasize that the flow associated to (19) is
∂tu = |∇u|2∇ ·

(
∇u
|∇u|

)
;

u = uδ , in Ω × {0} ;

∂nu = 0 , on ∂Ω .

(21)

7 Numerical Results

In this section we show the numerical results of our newly developed model
(20) for different choices of k and p, making comparisons with the approach
from [9], that consists in solving (21), and with Nikolova’s algorithm [14]. In the
implementation, for p = 2 in (20), we use standard finite differences discretization
with semi-implicit iteration, but for the case of p = 1, the solution of (20) is
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obtained by solving the convex optimization problem (22) iteratively, where we
generalised the TV denoising algorithm from [2] to approximate the solution.um+1 := arg minu

{
α

2

∫
Ω

|um(x, y)− u(x, y)|2

|∂xum(x, y)|2 + ε
+
∣∣∂kyu(x, y)

∣∣ d(x, y)

}
,

u0 = uδ.
(22)

Here α corresponds to the time-stepping and um ≈ u(mα). In all the experi-
ments, we use as stopping criteria some threshold of

∥∥um − um+1
∥∥
L2 . The test

data are generated by adding jitter to clean test images. In addition noisy test
data are generated by composing the test image with Gaussian noise of mean
0 and standard deviation 10. In order to evaluate the results quantitatively, we
consider the mean square error (MSE) computed by averaging the intensity dif-
ference between the analyzed pixel û(i, j) and the reference pixel u(i, j), and the
related quantity of peak signal to noise ration (PSNR)

MSE =
1

N

m∑
i=1

n∑
j=1

(û(i, j)− u(i, j))2 and PSNR = 10 log10

L2

MSE
,

where L is the dynamic range of allowable pixel intensities, e.g. for an 8-bit
per pixel image L = 28 − 1 = 255. These quantity are appealing but not well
matched to perceived visual quality as reported in [12] and [21]. For that reason
we consider also the structural similarity (SSIM) index [21] defined as:

SSIM(û, u) = f(l(û, u), c(û, u), s(û, u)) ,

where the three independent components l(û, u), c(û, u), s(û, u) are the similarity
functions of the luminance, the contrast and the structure, respectively, between
the reconstructed and test image, and f is a combination function.
Quantitatively, the higher PSNR value the better similarity between the test
data and the original clean image. Moreover, a small value of MSE points out
a good intensity approximation of the original data, and a larger value of SSIM
claims that the structure of the original image is better preserved.

Table 1 gives a comprehensive evaluation of different methods for image
dejittering, which are the algorithm for solving (20) presented in this paper,
and the algorithms from [9] and from [14], respectively. For the test images
used for line dejittering and line pixel dejittering, we have not superimposed the
data with additive noise. The test data used for pixel dejittered was considered
with additive noise. For line dejittering, Nikolova’s algorithm [14] gives the most
superior results. Evaluating the two different PDE models, we notice that (20)
performs better than [9] for line dejittering. [14] is not able to handle line pixel
dejittering, in contrast with the PDE models. In this case the method in [9]
achieves slightly better grades than (20); see Table 1. However visually, one
may find that (20) (e.g.with parameter k = 2, p = 1) has less blurring of the
reconstructed image and keeps more clear details; see Fig 3. The highlight of
the approach [9] happens in the pixel dejittering task, where it outperforms the
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Measure Test data k=1,p=2 k=2,p=2 k=1,p=1 k=2,p=1 cf.[9] cf.[14]
Line Jitter Data without Adding Noise

PSNR 17.814 19.886 20.031 20.109 20.461 19.807 24.818
MSE 1075.7 667.407 645.584 634.035 584.668 679.740 214.408
SSIM 0.622 0.704 0.714 0.709 0.729 0.691 0.998

Line Pixel Jitter Data without Adding Noise
PSNR 16.608 17.913 17.956 18.193 18.356 19.213 13.999
MSE 1420.0 1051.4 1040.9 985.634 949.517 779.525 2589
SSIM 0.484 0.552 0.558 0.566 0.571 0.618 0.308

Pixel Jitter Data with Adding Noise
PSNR 15.367 17.460 17.563 17.688 17.891 19.064 -
MSE 1889.8 1167.1 1139.6 1137 1056.6 806.614 -
SSIM 0.316 0.433 0.461 0.457 0.487 0.585 -

Table 1. Comparison of noisy and noise free data affected by different jitter types.

Fig. 2. Line Dejittering. Top row: The ground truth, the noisy free line jittered image,
dejittered with [14], dejittered with (20) k = 1, p = 2. Bottom row: dejittered with
(20) k = 2, p = 2, (20) k = 1, p = 1, (20) k = 2, p = 1, approach from [9].

others both quantitatively and qualitatively. Over all the tests, it is not hard to
find that, for the model (20), the choice of parameter k = 2, p = 1 gives the most
competitive results in compare with the other parameter choices.

8 Conclusion

The novelties of this paper are that we have shown the formal connection of
Nikolova’s method with variational displacement error correction and PDE meth-
ods. To do this, we have unified a family of variational methods for displacement
error regularization, which apply for different dejittering applications. The sec-
ond novelty is a comparison of the different models for different types of jitter.
An analysis of the proposed algorithms for minimizing models (16) is lacking
and this might be a future research topic. Another aspect will be to investigate
problems in tomography, which involve reconstruction of objects that show small
(unknown) displacements while being imaged.
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Fig. 3. Line Pixel Dejittering. Top row: The noisy line pixel jittered image, dejittered
with (20) k = 1, p = 2, (20) k = 2, p = 2. Bottom row: (20) k = 1, p = 1, (20)
k = 2, p = 1, approach from [9].

Fig. 4. Pixel Dejittering. Top row: The noisy line pixel jittered image, dejittered with
(20) k = 1, p = 2, (20) k = 2, p = 2. Bottom row: (20) k = 1, p = 1, (20) k = 2, p = 1,
approach from [9].
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