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Abstract

We extend the concept of optical flow to a dynamic non-Euclidean setting.
Optical flow is traditionally computed from a sequence of flat images. It
is the purpose of this paper to introduce variational motion estimation for
images that are defined on an evolving surface. Volumetric microscopy im-
ages depicting a live zebrafish embryo serve as both biological motivation
and test data.

Keywords: Computer Vision, biomedical imaging, optical flow, variational
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1 Introduction

Advances in laser-scanning microscopy and fluorescent protein technology have
increased resolution of microscopy imaging up to a single cell level [11]. They
allow for four-dimensional (volumetric time-lapse) imaging of living organisms
and shed light on cellular processes during early embryonic development. Un-
derstanding cellular development often requires estimation and analysis of cell
motion. However, the amount of data captured is tremendous and therefore
manual analysis is not an option.

The specific biological motivation for this work is to understand the motion
and division behaviour of fluorescently labelled endodermal cells of a zebrafish
embryo. The marked cells develop on the surface of the embryo’s yolk, where
they form a non-contiguous monolayer [17]. Loosely speaking, they only sit next
to each other but not on top of each other. Moreover, the yolk deforms over
time; see Fig. 1.
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Figure 1: Sequence of embryonic zebrafish images. The curved mesh represents
a section of the yolk’s surface. Depicted are frames no. 30, 45, 55, and 60 of the
entire sequence. All dimensions are in micrometer (µm). See Sec. 4.1 for more
details on the microscopy data.

We take these biological facts into account and restrict our attention to the
analysis of cell motion on the yolk’s surface. With this approach it is possible
to reduce the amount of data by one space dimension. The resulting problem
consists in the estimation of motion of brightness patterns that are restricted
to an itself moving surface. We approach this problem by adapting the classi-
cal concept of optical flow to the present setting, where the image domain is
both non-Euclidean and dynamic. Note that due to the monolayer structure
cell occlusions cannot occur. This makes the optical flow field a more reliable
approximation to the true motion field.

Our contributions in the field of optical flow are as follows. First, we for-
mulate the optical flow problem on an evolving two-dimensional manifold and
give two equivalent ways of linearising the brightness constancy assumption
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(Secs. 2.1 and 2.2). One uses a parametrisation of the evolving surface, the
other one is parameter-independent. Second, we use a generalisation of the
Horn-Schunck model to regularise the optical flow field (Sec. 2.3). For a given
global parametrisation of the evolving surface, we solve the associated Euler-
Lagrange equations in the parameter domain with a finite difference scheme
(Sec. 3). Finally, we apply this technique to obtain qualitative results from the
afore-mentioned zebrafish data (Sec. 4). Our experiments show that the optical
flow is an appropriate tool for analysing these data. It is capable of estimating
global trends as well as individual cell movements and, in particular, it is able
to indicate cell division events.

1.0.1 Related work.

Optical flow is the apparent motion in a sequence of images. Its estimation is a
key problem in Computer Vision. Horn and Schunck [5] were the first to propose
a variational approach assuming constant brightness of moving points and spa-
tial smoothness of the velocity field. Since then, a vast number of modifications
has been developed. See [1] for a recent survey.

Miura [13] observed that until 2005 optical flow has been mostly disregarded
as a method for motion extraction in cell biological data. Since then, a few
articles have explored this direction: Melani et al. [12] and Hubený et al. [6]
extended variational optical flow methods to volumetric images to obtain 3D
displacement fields. In the former article, the resulting algorithm is also applied
to zebrafish microscopy data. Quelhas et al. [15] use optical flow to detect cell
divisions in a live plant root. However, they work with 2D (plus time) data only.
Therefore, their approach suffers from errors caused by 3D off-plane motion.

Clearly, certain natural scenarios are more accurately described by a velocity
field on a non-flat surface rather than on a flat domain. With applications to
robot vision, Imiya et al. [7, 16] considered optical flow for spherical images.
In a more general setting, Lefèvre and Baillet [10] extended the Horn-Schunck
method to 2-Riemannian manifolds and showed well-posedness. They solve the
numerical problem with finite elements on a surface triangulation. In all of the
above works the underlying imaging surface is fixed over time, while in this
paper it is not.

2 Optical Flow on Evolving Surfaces

2.1 Brightness Constancy

Let Mt ⊂ R3, t ∈ I = [0, T ), be a compact smooth two-dimensional manifold
evolving smoothly over time. We assume the velocity to be unknown. Moreover,
denote by f̃ a scalar time-dependent quantity defined on the surface

f̃ :
⋃
t∈I

(Mt × {t})→ R.
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We begin with a Lagrangian specification of the optical flow field. That is,
for every starting point x0 ∈ M0 we seek a trajectory where the data f̃ are
conserved. More precisely, we want to find a function

γ : M0 × I →
⋃
t∈I
Mt,

such that

1. γ(x0, t) ∈Mt for all t ∈ I, for all x0 ∈M0,

2. γ(·, t) is a diffeomorphism between M0 and Mt for all t ∈ I,

3. γ(·, 0) = IdM0 ,

is fulfilled and which satisfies a “brightness” constancy assumption (BCA)

f̃(x0, 0) = f̃(γ(x0, t), t), for all (x0, t) ∈M0 × I. (1)

In classical optical flow computations it is common practice to linearise the
BCA by taking its time derivative and to solve the resulting equation for the
Eulerian unknown γ̇.1 We also take this route, but differentiation of f̃ is more
involved. Observe, for example, that for an arbitrary t0 ∈ I and x ∈ Mt0 the
usual partial derivative

∂tf̃(x, t0) = lim
h→0

1

h

(
f̃(x, t0 + h)− f̃(x, t0)

)
is not well-defined, simply because, in general, x is not an element of Mt0+h

for all h 6= 0.
In the next section we linearise (1) in two different ways. First, we use a

global parametrisation to pull the data back to a fixed reference domain and
linearise afterwards. In our second approach we borrow some notions from
continuum mechanics [2] to directly linearise (1).

2.2 Linearisation

Linearisation after pull-back. Let Ω ∈ R2 be a compact domain and

x : Ω× I → R3, (x1, x2, t) = (x, t) 7→ x(x, t) ∈Mt

be a parametrisation of the evolving surface. Denote by f the coordinate rep-
resentation of f̃ , that is,

f(x, t) = f̃(x(x, t), t) (2)

and let
β : Ω× I → Ω

1To simplify expressions we use Newton’s notation for those time derivatives that corre-
spond to actual velocities, for example γ̇ = ∂tγ.
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Figure 2: Commutative diagram describing the relation between unknowns β
and γ.

be the coordinate counterpart of γ. This means, if we let x0 = x(x0, 0), then
β(x0, t) gives the coordinates of γ(x0, t) ∈Mt in Ω (see Fig. 2). In other words,
we have the identity

γ(x(x0, 0), t) = x(β(x0, t), t), for all (x0, t) ∈ Ω× I. (3)

Now, from (1), (2) and (3) we get

f(x0, 0) = f̃(x0, 0)

= f̃(γ(x0, t), t)

= f̃(x(β(x0, t), t), t)

= f(β(x0, t), t),

which is a coordinate version of the BCA. After differentiation with respect to
t it becomes

∇2f · β̇ + ∂tf = 0, (4)

where ∇2 = (∂1, ∂2)> is the two-dimensional spatial gradient. Note that the last
equation is nothing but the classical optical flow constraint (OFC) for Euclidean
data f and a displacement field β̇.

Direct linearisation. We turn to our second derivation. While, as pointed
out above, the partial derivative ∂tf̃ is undefined in general, it does make sense
to differentiate f̃ following the surface movement. Let y be a point onMt0 and
ξ : t 7→ ξ(t) ∈ Mt an arbitrary smooth trajectory through the evolving surface
satisfying ξ(t0) = y. Now we can compute

d

dt
f̃(ξ(t), t)

∣∣∣∣
t=t0

= lim
h→0

1

h

(
f̃(ξ(t0 + h), t0 + h)− f̃(y, t0)

)
to obtain a valid derivative of f̃ . Since this time derivative only depends on the
vector v = ξ̇(t0), we denote it by dv

t f̃ . A natural candidate for a trajectory along
which to differentiate is given by the parametrisation ξ(t) = x(x, t). Another
possible choice would be a trajectory that is normal to Mt0 . The resulting
normal time derivative is accordingly denoted by dn

t f̃ .
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Finally, we also need the surface gradient ∇Mf̃ . If F is a smooth extension
of f̃ to an open neighbourhood of y ∈Mt0 in R3, then the surface gradient of F
at y is defined as the projection of the three-dimensional spatial gradient ∇3F
onto the tangent plane to Mt0

∇MF = ∇3F − (∇3F · n̂)n̂,

where n̂ is the unit normal to Mt0 . The surface gradient only depends on
the values of F on the surface; see e.g. [4, p. 389]. Thus, ∇Mf̃ = ∇MF is
well-defined.

The spatial and temporal derivatives of f̃ introduced above are related in a
simple way. As shown in [2], they satisfy the equality

dẋ
t f̃ = ∇Mf̃ · ẋ + dn

t f̃

= ∇Mf̃ · ẋtan + dn
t f̃ ,

(5)

where ẋtan is the tangential surface velocity, that is, the projection of ẋ onto the
tangent plane to Mt0 . This decomposition of dẋ

t f̃ into normal and tangential
components is clearly valid for any trajectory in place of x, and therefore in
particular for the unknown γ. This means we can use (5) in order to differentiate
the BCA (1) with respect to t. The resulting OFC reads

∇Mf̃ · γ̇tan + dn
t f̃ = 0. (6)

Discussion. We conclude this section with a brief comparison of the two OFCs
derived above. We start by showing how to obtain (4) from (6) and vice versa.
To this end we again assume the existence of a global parametrisation and
rewrite all quantities in (6) in terms of x. First observe that, by (3), the velocity
of γ equals the surface velocity ẋ plus a purely tangential component

γ̇ = ẋ + Jβ̇,

where J = (∂1x ∂2x) is the Jacobian matrix of x with respect to x. On the
other hand, by (5), the normal time derivative is equal to the time derivative of
f̃ following x minus its tangential component

dn
t f̃ = dẋ

t f̃ −∇Mf̃ · ẋ.

Using the last two equations to rewrite the left-hand side of (6) yields

∇Mf̃ · γ̇ + dn
t f̃ = ∇Mf̃ ·

(
ẋ + Jβ̇

)
+ dẋ

t f̃ −∇Mf̃ · ẋ

= ∇Mf̃ · Jβ̇ + dẋ
t f̃ ,

which is already the left-hand side of (4) in terms of f̃ . It only remains to observe
that dẋ

t f̃ = ∂tf and to replace the surface gradient ∇Mf̃ by its coordinate
expression Jg−1∇2f , where g = J>J is the coefficient matrix of the Riemannian
metric; see e.g. [9].
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We highlight the qualitative difference between the constraints (4) and (6).
Note that in the former the unknown is β̇, while in the latter it is γ̇tan =
ẋtan + Jβ̇. This means that (4) constrains the motion relative to the tangential
surface velocity ẋtan, while (6) constrains the absolute tangential motion.

The nature of our microscopy data suggests a simple global parametrisation
(see Sec. 3). We therefore pull the data back to the Euclidean plane and solve
(4). However, equation (6) is independent of any parametrisation. It can thus
serve as a starting point for alternative numerical approaches.

2.3 Regularisation

From now on we fix an arbitrary t0 ∈ I and turn to the actual solution of the
parametrised OFC for (u1(x), u2(x))> = u(x) = β̇(x, t0). Recall that with this
notation u contains the coefficients of the tangential vector field u = Jβ̇ with
respect to the tangential basis (∂1x, ∂2x) of Mt0 . Note also that, by fixing t0,
there is no more time-dependence in our problem which makes it effectively an
optical flow problem on a static surface. Hence we omit any reference to t0 from
now on and write M instead of Mt0 .

The sought vector field is underdetermined by the OFC alone. We over-
come this by minimising a functional that penalises violation of the OFC while
imposing an additional smoothness restriction on u. More precisely, we adopt
a recent extension of the original quadratic Horn-Schunck regularisation to a
Riemannian setting [10]. Basically, they propose to minimise

E(u) =
α

2

∥∥∇2f · u+ ∂tf
∥∥2

L2(M)
+

1

2

∥∥Du∥∥2

L2(M)
. (7)

Here, α > 0 is the regularisation parameter and Du = (Dju
i) is the 2×2 matrix

containing the coefficient functions of the covariant derivatives

∇ju =

2∑
i=1

Dju
i∂ix, j = 1, 2,

of u. Using the Christoffel symbols Γi
jk (see Sec. 3) associated to the parametri-

sation x the coefficients are given by

Dju
i = ∂ju

i +

2∑
k=1

Γi
jku

k, i, j = 1, 2.

Rewriting (7) as an integral over the coordinate domain, we arrive at the func-
tional

E(u) =
1

2

∫
Ω

[
α
(
∇2f · u+ ∂tf

)2
+ ‖Du‖2F

]√
det g dx, (8)

where ‖·‖F is the Frobenius norm.
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3 Numerical Solution

We solve the problem of minimising functional E via its associated Euler-Lagrange
equations. Regarding the integrand of E as a function G(x, u,∇2u1,∇2u2), they
read

Gu1 = ∂1G∂1u1 + ∂2G∂2u1

Gu2 = ∂1G∂1u2 + ∂2G∂2u2 ,

where subscripts of G denote partial derivatives. The resulting pair of linear
PDEs is of the form

∆u1 = ∇2u1 · c+∇2u2 · d+ u · b1 + a1

∆u2 = ∇2u2 · c+∇2u1 · d+ u · b2 + a2.
(9)

The coefficient vectors a, b1, b2, c, d are rather lengthy functions of the data f
and metric tensor g, which is why we do not write them out in full here. Letting
Ω = (0, 1)2 for simplicity, the natural boundary conditions of the variational
problem are

∂ju
i +
∑
k

Γi
jku

k = 0, for xj ∈ {0, 1}, (10)

where i, j ∈ {1, 2}. In case of a flat manifold, e.g. M = Ω, the Euler-Lagrange
equations (9) reduce to those of the original Horn-Schunck functional and the
boundary conditions become the usual homogeneous Neumann ones. For more
details on the calculus of variations we refer to [3].

Due to the nature of the microscopy data (see Sec. 4.1 and Fig. 1), the
manifold Mt modelling the deforming yolk is a surface with boundary that is
most easily parametrised as the graph of a function z : Ω × I → R. Hence, we
set x(x1, x2, t) = (x1, x2, z(x1, x2, t))

>. Accordingly, for the metric we get

g = I2 +∇2z∇2z>, det g = 1 + |∇2z|2,

where I2 ∈ R2×2 is the identity matrix. The Christoffel symbols turn out to be

Γi
jk =

1

2

2∑
m=1

gmi (∂jgkm + ∂kgmj − ∂mgjk) =
∂iz ∂jkz

det g
.

Partial derivatives of z and of the projected data f were approximated by central
differences. The system (9) with boundary conditions (10) was then solved with
a standard finite difference scheme. In the following section numerical results
are presented.

4 Experiments

4.1 Data

As mentioned before, the biological motivation for this work are cellular im-
age data of a zebrafish embryo. Endoderm cells expressing green fluorescent
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protein were recorded via confocal laser-scanning microscopy resulting in time-
lapse volumetric (4D) images; see [11] for the imaging techniques. This type
of image shows a high contrast at cell boundaries and a low signal-to-noise ra-
tio in general. Our videos were obtained during the gastrula period, which is
an early stage in the animal’s developmental process and takes place approxi-
mately five to ten hours post fertilisation. In short, the fish forms on the surface
of a spherical-shaped yolk; see e.g. [8] for many illustrations and detailed ex-
planations. For the biological methods such as the fluorescence marker and
the embryos used in this work we refer to [14]. The important aspect about
endodermal cells is that they are known to form a monolayer during gastru-
lation [17], meaning that the radial extent is only a single cell. This crucial
fact allows for the straightforward extraction of a surface together with a two-
dimensional image of the stained cells. Since only a cuboid region of approxi-
mately 860 × 860 × 340µm3 of the pole region is captured by the microscope,
this surface can easily be parametrised; cf. Sec. 3. The spatial resolution of the
Gaussian filtered images is 512 × 512 pixels and all intensities are given in the
interval [0, 1]. Our sequence contains 77 frames recorded in intervals of 240 s
with clearly visible cellular movements and cell divisions.

4.2 Numerical results

In the following we present qualitative results and demonstrate the feasibil-
ity of our approach. For every subsequent pair of frames we minimised the
functional (8) as outlined in Sec. 3. We chose grid size as well as temporal
displacement as h = 1 and the regularisation parameter was set to α = 10.
For demonstration purpose we make use of the standard flow colour-coding [1],
which maps (normalised) flow vectors to a colour space defined inside the unit
circle. It is easy to see that the same colours are valid all over the manifold due
to the parametrisation.

As representative candidates for this discussion we chose the displacement
field between frames 57 and 58 for the following reasons. First, the surface
is distinctly developed. Second, a considerable number of cells is present in
the image, and third, the interval contains cell divisions. Figure 3, left, shows
the colour-coded tangential vector field and the colour space whereas Fig. 3,
right, displays the same motion field as computed in the parameter space.2

A visual inspection of the dataset shows that cells tend to move towards the
embryo’s body axis, which roughly runs along the main diagonal in Fig. 3, right.
Clearly, the velocity field is sufficiently smooth and suggests this behaviour in
an adequate manner on a large scale. The expected change in orientation along
the body axis is well represented by the colour shift from orange-yellow below
the main diagonal to purplish blue in the region above. On the contrary, the
choice of the regularisation parameter ensures that individual movements are
well preserved as can be observed from the image.

Figure 4 gives a detailed view of the section outlined by a (red) rectangle

2Some figures may appear in colour only in the online version.
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Figure 3: Optical flow field between frames 57 and 58 of the sequence. Colours
indicate direction whereas darkness of a colour indicates the length of the vector.
Note that the colour circle has been enlarged for better visibility.

in Fig. 3, right. This section was chosen because it depicts a cell division.
Figure 4, left, and Fig. 4, right, display the frames before and after the event,
respectively. Moreover, in Fig. 4, left, the velocity field is shown. From the raw
data we observed that when a cell actually splits, the two daughter cells drift
apart in a 180 ◦ angle with respect to the mother cell. The displacement field
clearly shows the anticipated pattern caused by the diverging daughter cells. In
Fig. 3, right, the event is point up by two areas which are coloured mutually
opposite with respect to the colour space. Our results suggest that cell division
can be indicated reasonably well by our model. Both implementation and data
are available on our website.3

5 Conclusion

Aiming at efficient motion analysis of 4D cellular microscopy data, we gener-
alised the Horn-Schunck method to videos defined on evolving surfaces. The
biological fact that the observed cells move along an itself deforming surface
allows for motion estimation in 2D (plus time). In the course of this work, we
presented two ways to linearise the brightness constancy assumption and showed
that one could be obtained from the other and vice versa. The resulting opti-
cal flow constraint was solved by means of quadratic regularisation and verified
on the basis of the afore-mentioned data. Our qualitative results suggest that
both global trends as well as individual movements including cell division are
well shown in the surface velocity field. However, so far we only laid the basic
groundwork in terms of a mathematical model.

3http://www.csc.univie.ac.at
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Figure 4: Detailed view of a cell division occurring between frames 57 (left)
and 58 (right). All vectors are scaled and only every fourth vector is shown.
Intensities are interpolated for smooth illustration
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