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Abstract

We present a method for constructing blades of hydroelectric turbines and ship propellers based on design parameters
that possess a clear hydraulic meaning. The design process corresponds to the classical construction of a blade using
the medial surface of the blade and profile curves attached to it. The main new contribution of the paper consists in
realizing this construction using B-spline techniques. In particular, it is shown how to obtain blade boundary surfaces
(which describe the pressure and the suction side of the blade) which are joined with C1-smoothness along the leading
edge. Moreover, special attention is paid to the construction of propeller blades with a well-defined tangent plane at
the tip, which is a singular point of the blade boundary surfaces. In order to guarantee these smoothness properties,
we generate and analyze singularly parameterized medial surfaces. We contribute novel shape modeling techniques
that are based on singular parameterizations and demonstrate their potential for applications in industry. Finally, it is
shown how to represent the blades as B-spline surfaces with a relatively small number of control points.

Keywords: CAD-model, B-spline representation, hydroelectric turbine blade, propeller blade, medial axis-based
design

1. Introduction

Blades of hydroelectric turbines and ship propellers
are instances of functional free-form surfaces. Such
blades are individually designed for each specific appli-
cation scenario, taking into account various parameters
controlling their performance. Thus, intuitive methods
for designing blades are of vital interest.

Traditional tools for surface design in Computer-
Aided Design, such as control points, are not directly
suitable for blade design. Instead, the designers prefer
to work with design parameters that possess a clear hy-
draulic meaning. For instance, the tangent direction of
the blade at the leading edge – which can be derived
from the angular velocity of the turbine and the veloc-
ity and direction of the incoming water – is one of the
preferred design parameters.

On the other hand, the results created by the blade
design process have to be compatible with the existing
standard technology of Computer-Aided Design. Con-
sequently, a B-spline representation of the blade sur-
faces is required, which then forms the basis for the sub-
sequent steps in the product development pipeline, such
as Computer-Aided Manufacturing. In recent years, the
B-spline representation is even directly used for the nu-

merical simulation, using the novel technology of iso-
geometric analysis [8].

Techniques for blade design have a long history going
back to classical papers such as [17]. This paper uses
the conformal mapping of a surface of revolution into
the plane for designing streamlines, which will also be
one of the first steps in our approach.

In more recent years, the use of Computer-Aided De-
sign technology has opened new possibilities for blade
design. Miller et al. [12] describe a methodology for
interactive design of turbomachinery blades. The blade
sections may be defined with respect to general surfaces
of revolution which can then be adapted to the path of
the fluid. The approach aims mostly at applications to
gas turbines.

In [16] and [9] the authors focus on coupling CFD
and Computer-Aided parametric geometry definitions
to find the best design. This approach is shown by the
design of Francis turbine runners coupled with 3-D Eu-
ler flow analysis.

Ye at al. [18] present a technique for designing func-
tional surfaces by incorporating physical constraints
that involve surface normal vectors. The method is il-
lustrated by using it to design propeller blade surfaces
in conjunction with hydrodynamic analysis. Anders and
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Haarmeyer [1] used two different Bézier curves and two
circles (or ellipses) on leading and trailing edges to de-
scribe the blade profile, using twenty parameters. Their
approach, however, does not consider the use of a B-
spline representation.

In [7], turbine blades are represented via lofted B-
spline surfaces which are constructed from given planar
profile curves in B-spline representation. The authors
consider lofted surfaces with profile curves lying either
in parallel planes, on concentric cylinders, or in concen-
tric cones. While these are reasonable assumptions for
gas turbines, they are generally too restrictive for hydro-
electric turbines and ship propellers.

Qian and Dutta [15] present an approach for the de-
sign of a turbine blade which allows the designer to
control both geometry and material composition. A
heterogeneous turbine blade is made of different con-
stituent material and possesses gradient material prop-
erties. In [10], blades are represented as NURBS sur-
faces using design parameters which correspond to two-
dimensional blade sections. The blade surface is con-
structed as a single NURBS surface using a skinning
procedure.

Our approach to blade design is based on the medial
representation of the blades, as medial surface with pro-
file curves attached to it. This is closely related to the
concept of medial axis, see e.g. [4] and the references
therein. Recently, methods for computing the medial
axis of three-dimensional solid objects with free-form
boundaries have been studied [14]. Also, the medial
representation has been used as a design tool, e.g. in
medical and biological applications [19]. A generalized
medial representation has been used successfully for de-
signing blends of canal surfaces [2].

In this paper we present a method for constructing a
B-spline based geometric model for blades of turbines
governed by design parameters with clear hydraulic
meaning. The design process is based on the medial sur-
face of the blade and the profile attached to it. The me-
dial surface is represented by three-dimensional space
curves which describe the rough shape of the blade.
For the representation of the resulting blades we use B-
spline surfaces with a relatively small number of control
points compared to current models.

So far, the computer implementation of the classical
medial surface-based approach to blade design uses a
point-based description via streamlines, which are rep-
resented as polylines. As the main new contribution of
our paper, we realize the entire construction using B-
spline techniques. Using a suitable parameterization of
the medial surfaces we guarantee that the two B-spline
surfaces which describe the pressure and the suction

side of the blade meet with C1-smoothness along the
leading edge of the blade. In the case of ship propellers,
which require a singular point at the tip, we reparam-
eterize the medial surface using a cut-out function in
order to construct a B-spline representation with a well-
defined tangent plane at the tip. In order to guarantee
these smoothness properties, we generate and analyze
singularly parameterized medial surfaces. It is shown
that G1-smooth surfaces can be generated by suitably
combining and adding several contributions, some of
which possess singular parameterizations. We con-
tribute novel shape modeling techniques that are based
on singular parameterizations and demonstrate their po-
tential for applications in industry.

The remainder of this paper is organized as fol-
lows. Section 2 describes the different design param-
eters which are used to generate a procedurally defined
medial surface of the blade. In Section 3 and Section 4
we generate a B-spline representation of a turbine and
propeller blade, respectively, from the procedurally de-
fined medial surface. Our design scheme corresponds
to the classical construction of a blade, using the medial
surface and profiles which are added in normal direc-
tions to the medial surface. Within these two sections
we present different examples of generated turbine and
propeller blades which demonstrate the performance of
the design process. Finally, we conclude this paper.

2. Design parameters of blades

The design of blades for hydroelectric turbines and
ship propellers follows the classical approach described
in [17]. First, the medial surface is designed using the
conformal mapping of the projected streamlines. Sec-
ond, the profile curves are added to the medial surface.
The resulting surface is given by a medial surface and
profiles attached to it.

This section recalls the classical approach using mod-
ern notation and explains the various design parameters
in some detail.

We denote the first partial derivatives of a bivariate
function f : [0, 1]2 → Rd (d ∈ {1, 2, 3}) with respect to
the first and second argument by

f1(u0, v0) =
∂

∂u
f(u, v)

∣∣∣
(u,v)=(u0,u0)

and

f2(u0, v0) =
∂

∂v
f(u, v)

∣∣∣
(u,v)=(u0,v0) .

Analogously, let f11, f12, f22, . . . be the corresponding
higher partial derivatives of f. In addition, the first
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derivative of a univariate function g : [0, 1] → Rd

(d ∈ {1, 2, 3}) is denoted by g′, i.e.

g′(t0) =
∂

∂t
g(t)

∣∣∣
t=t0

.

2.1. Design of the medial surface via streamlines

The first step of the blade construction is the gen-
eration of the medial surface of the blade, which is
represented by three-dimensional space curves, called
streamlines, given in cylindrical coordinates (r, ϕ, z),
where the z-axis is the axis of rotation of the turbine /
propeller. A direct construction of these streamlines is
in general extremely difficult for the designer. There-
fore it is preferable to use design parameters defined in
a two-dimensional space for simplifying the generation
of the medial surface of the blade.

The construction of the medial surface works as fol-
lows. We consider the projected two-dimensional rz-
space, which is obtained from the rϕz-space by omit-
ting the coordinate ϕ. At first, we design the channel
contour of the blade by determining the contours of hub
and shroud. Then we specify the trace of leading and
trailing edge and obtain an area which is called merid-
ian contour.

Depending on the axial path of the fluid flow, we
obtain projected streamlines on the meridian contour,
which define the blade in the rz-plane, see Figure 1. Let
h : [0, 1]2 → R2 with

h(u, v) = (r(u, v), z(u, v))

be a parameterization of this contour such that shroud,
hub, leading edge and trailing edge are given by h(u, 0)
and h(u, 1), h(0, v) and h(1, v), respectively. The curve

u 7→ h(u, v0) = (r(u, v0), z(u, v0)) (1)

is then called a projected streamline of the blade for a
constant v0. The parameterization h is chosen in such a
way that the projected streamlines form a well-behaved
family of curves (approximately parallel, as far as this
is possible).

Each projected streamline (1) defines a surface of rev-
olution. In the rϕz-coordinates, this surface is given by

(u, ϕ) 7→ (r(u, v0), ϕ, z(u, v0)). (2)

In Cartesian coordinates, the surface of revolution is
represented as

(u, ϕ) 7→ (r(u, v0) cosϕ, r(u, v0) sinϕ, z(u, v0)).
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Figure 1: The meridian contour with some projected streamlines.

This surface of revolution is now mapped into the µϕ-
plane by

Φ(v0) : (r(u, v0) cosϕ, r(u, v0) sinϕ, z(u, v0))
7→ (µ(u, v0), ϕ), (3)

where µ(u, v0) is given by

µ(u, v0) =

∫ u

0

√
ru(t, v0)2 + zu(t, v0)2

r(t, v0)
dt.

The function µ(u, v0) can be seen as the normalized arc
length of the chosen segment of the projected streamline
with respect to radius r(u, v0).

Lemma 1. The mapping Φ(v0) given by (3) is confor-
mal.

Proof. It is sufficient to show that there exists a function
c(u, ϕ) > 0 such that

ḡi j(u, ϕ) = c(u, ϕ)gi j(u, ϕ) for i, j ∈ {1, 2}, (4)

where gi j(u, ϕ) and ḡi j(u, ϕ) are the coef-
ficients of the first fundamental form of
(r(u, v0) cosϕ, r(u, v0) sinϕ, z(u, v0)) and (µ(u, v0), ϕ),
respectively (see [11]). A short computation confirms
that equations (4) are satisfied with c(u, ϕ) = 1

r(u,v0)2 . �
As next step, we construct for each surface of revo-

lution (2) a streamline in the µϕ-plane using design pa-
rameters with a clear hydraulic meaning. This step is
explained in more detail in Section 2.2.

Then by applying the inverse mapping

Φ−1(v0) : (µ, ϕ) 7→ (r(µ, ϕ) cosϕ, r(µ, ϕ) sinϕ, z(µ, ϕ)),

we obtain from the projected streamline in the µϕ-plane
a streamline in the rϕz-space, which preserves the cho-
sen angles in the µϕ-plane. Thus, the designer can spec-
ify the angles of the streamline with respect to the tan-
gent vectors of the circles on the surface of revolution.
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Figure 2: Point cloud of the procedurally defined medial surface of a
turbine blade and a part of the hub of the blade.

This is highly important since these angles are essen-
tially determined by the angular speed of the turbine
and the velocity of the water at the inlet and outlet of
the turbine.

Finally, the entire medial surface m(0) is obtained by

m(0)(u, v) = Φ−1(v)(h(u, v)). (5)

The inversion of the conformal mapping Φ(v0) and
hence the construction of the streamlines are performed
approximately by using a look-up table and linear in-
terpolation. Consequently, the medial surface is de-
scribed only procedurally; no closed form representa-
tion is available at this stage.

An example of a procedurally defined medial surface
of a turbine blade is shown in Figure 2. In this case the
medial surface is given by 11 curves each represented
by 41 points.

2.2. Design of a single streamline
We explain the construction of the streamlines in the

µϕ-plane. The design of a single streamline in the µϕ-
plane for a given surface of revolution (2) with a con-
stant v0 works as follows. We choose for the streamline
in the µϕ-plane a cubic Bézier curve, i.e.

g(u, v0) = B3
0(u)b0(ϕ0) + B3

1(u)b1(ϕ0, β0, ζ0) (6)
+ B3

2(u)b2(ϕ1, β1, ζ1) + B3
3(u)b3(ϕ1),

where (B3
i (u))i=0,...,3 are the Bernstein polynomials of

degree 3. The control points (bi)i=0,...,3 are defined by
the 6 design parameters ϕ0, ϕ1, β0, β1, ζ0 and ζ1 which
describe different angles of the streamlines on the lead-
ing and trailing edge.

• ϕ0 and ϕ1 determine the coordinates ϕ of the
streamline of the medial surface on the leading (ϕ0)
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Figure 3: A streamline with the corresponding surface of revolution
and the angles β0 and β1.

and trailing edge (ϕ1) using cylindrical coordinates
(r, ϕ, z).

• β0 and β1 are the angles between the tangent of the
streamline of the medial surface and the tangent of
the circle on the surface of revolution on the lead-
ing (β0) and trailing edge (β1).

• ζ0 and ζ1 specify how long the tangent directions
of the streamline of the medial surface (defined by
the angles β0 and β1) will be kept starting from the
leading (ζ0) and trailing edge (ζ1).

Figure 3 shows an example of a surface of revolution
defined by a streamline. The angle β is the angle be-
tween the tangent of the medial surface and the tangent
of the circle on the surface of revolution.

In detail, the four control points (bi)i=0,...,3 for a
streamline (6) are constructed in the following way.

• Since the starting and end point of a streamline
have to be on the corresponding circle on the sur-
face of revolution at the leading and trailing edge,
respectively, the first coordinate of the first (b0) and
last control point (b3) is already fixed. The second
coordinate of the first and last control point is given
by the parameter ϕ0 and ϕ1, respectively.

• The second control point (b1) is defined by the pa-
rameters ϕ0, β0 and ζ0, see Figure 4.

• The third control point (b2) is determined by the
parameters ϕ1, β1 and ζ1, see Figure 4.

Since the mapping Φ(v0) is conformal, the resulting
streamline in the rϕz-space preserves the chosen angles
on the leading and trailing edge, see Subsection 2.1.
This is an important feature for the blade designer, since
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Figure 5: The 6 design parameter curves defined on the leading edge (blue) and on the trailing edge (green).
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Figure 4: The effect of the parameters β0, β1, ζ0 and ζ1 on the position
of the control points of a streamline in the (µ, ϕ) plane.
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Figure 6: A few streamlines for a turbine blade in the coordinate sys-
tem (µ, ϕ).

it allows to control the angle between the blade and the
water flow and inlet and outlet.

For designing several streamlines we vary the design
parameters continuously with v. Figure 5 shows the 6
parameter curves defined on the arc length parameter-
ized leading and trailing edge. The parameter curves
are chosen as quadratic Bézier curves. An example of
a few streamlines for a turbine blade in the µϕ-plane is
shown in Figure 6.

2.3. Blade generation

The blade (two surfaces representing pressure and
suction side) is obtained by adding a scaled profile to
both sides of the medial surface.

The profile curve provides additional thickness infor-
mation along the cross sections of the blade. In our case,

y

x

d

v

Figure 7: Example of a profile curve (left) and a scaling function
(right) for a turbine blade.

the profile curve is a Bézier curve p(t) = (x(t), y(t)) for
t ∈ [0, 1] with x(0) = 0 and x(1) = 1. Furthermore, we
have that x′(0) = 0 and x′(t) > 0 for t ∈ (0, 1].

The y-coordinate of p(t) and a scaling function d(v)
determine the thickness, which is added to the medial
surface along its normal to obtain the pressure and the
suction side of the blade.

The scaling function d(v) depends on the streamline
and may also be different for pressure and suction side.
In general, it is even possible to use different profile
curves for each streamline and side. In this work we
consider only the case where all streamlines share the
same profile curve. An example of a profile curve and a
scaling function is given in Figure 7.

The pressure and the suction side of the blade are ob-
tained by

b(t, v) = m(0)(u(t), v) ± d(v)n(u(t), v)y(t), (7)

where m(0) denotes the medial surface and n the associ-
ated normals. u(t) is such that x(t) is proportional to the
arc length of the u-parameter lines of the medial surface.

Figure 8 summarizes the main idea of this design
scheme.

The only procedural definition of the medial surface
is inherited by the two surfaces representing the pres-
sure and the suction side. For various applications,
which range from manufacturing to numerical simula-
tion, it is essential to have a high-quality CAD model of
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Figure 8: Schematic computation of a blade.

the blade available, representing it as a NURBS surface.
This will be discussed in the next section.

3. B-spline representation of turbine blades

In this section we describe the different steps which
have do be performed for generating a CAD-model for
a turbine blade. Summing up, we have the following
input for the computation of the blade:

1. A procedurally defined medial surface of the blade
2. A profile, which consists of the curve p(t) and the

scaling function d(v)

The pressure and the suction side of the blade are ob-
tained by adding or subtracting the scaled profile to the
medial surface in the following way:

b = m ± dny. (8)

Here, m denotes the medial surface, n the normals of
the medial surface, y is the y-coordinate of the profile
curve and d is the scaling function.

For the generation of a CAD-model for a blade the
following steps are necessary:

1. Initial B-spline representation of medial surface
2. Reparameterization of the medial surface
3. Computation of the normals
4. Generating the blade surface

The following sections describe these steps in more de-
tail.

3.1. Initial B-spline representation of medial surface
We describe a method for the approximation of the

medial surface m(0) of a blade by a B-spline surface.
We are interested in a B-spline surface m(u, v) which

approximates the surface m(0) best in the sense of least-
squares and whose control points have the following ad-
ditional property: In each u-direction the first two con-
trol points ci j coincide, i.e.

c0 j = c1 j for j ∈ {0, . . . , n}. (9)

This condition is necessary for attaching the profile
curve to the medial surface, because the speed of the
u-parameter lines at u = 0 has to be zero since the pro-
file curve has a vertical tangent at this point (see next
section).

The B-spline surface m(u, v) is computed by solving
the least-squares problem

f (c) =

∫ 1

0

∫ 1

0
‖m(u, v) −m(0)(u, v)‖2, (10)

where c is the vector of the unknown coefficients (con-
trol points) {ci j}

j=0,...,n
i=0,...,m. The degrees (p, q), the number

of control points (m+1)× (n+1) and the knot sequences
S and T of m(u, v) are specified by the user. In ad-
dition, we force the first two control points ci j in each
u-direction to be equal, see equation (9).

For the resulting B-spline surface m(u, v) we have

m1(0, v) = (0, 0, 0) for v ∈ [0, 1], (11)

which implies

m1(0, v) ×m2(0, v) = (0, 0, 0) for v ∈ [0, 1]. (12)

Nevertheless, the following lemma ensures that m(u, v)
has well-defined normals everywhere, despite possess-
ing a singular curve.

Lemma 2. Let m(u, v) be a B-spline surface of de-
gree (p, q) for p ≥ 2 with control points fulfilling condi-
tion (9) and open knot vectors S and T with (p + 1) and
(q + 1)-fold boundary knots respectively. In addition, let

m1(u, v) and m2(u, v) for (u, v) ∈ (0, 1] × [0, 1],

and
m11(0, v) and m2(0, v) for v ∈ [0, 1]

be linearly independent, respectively. Then m(u, v) is
G1-smooth and normals for u = 0 can be obtained by

m11(0, v) ×m2(0, v)
‖m11(0, v) ×m2(0, v)‖

for v ∈ [0, 1]. (13)
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Proof. At first, we show that there exists a reparame-
terization of m(u, v) which is C1-smooth and regular. It
suffices to consider a piecewise polynomial representa-
tion which is parameterized with respect to [0, 1]2.

Since

m1(0, v) = (0, 0, 0) for v ∈ [0, 1],

there exists a surface m̄(u, v) such that

m1(u, v) = um̄1(u, v) for (u, v) ∈ [0, 1]2.

The unit normal field is obtained by

N =
m1(u, v) ×m2(u, v)
‖m1(u, v) ×m2(u, v)‖

=
m̄1(u, v) ×m2(u, v)
‖m̄1(u, v) ×m2(u, v)‖

.

(14)
Now, we consider the reparameterized surface

m̃(s, v) = m(
√

s, v).

and the associated normals

Ñ(s, v) = N(
√

s, v).

We have to show that:
(i) m̃1 · Ñ = m̃2 · Ñ = 0 and

(ii) m̃1 and m̃2 are linearly independent everywhere.

Since

m̃1(s, v) =
1

2
√

s
m1(
√

s, v) =
1
2

m̄1(
√

s, v) (15)

and
m̃2(s, v) = m̄2(

√
s, v)

the first statement (i) holds. In order to prove the linear
independence (ii), we consider two cases. For the case
s , 0 (ii) is obvious. For the second case (s = 0) we
obtain from (15) that

m̃1(0, v) =
1
2

m̄1(0, v). (16)

Furthermore,

m11(u, v) = m̄1(u, v) + um̄11(u, v).

In particular we obtain that

m11(0, v) = m̄1(0, v). (17)

Combining (16) and (17) gives m̄1(0, v) = 1
2 m11(0, v),

thus (ii) is also fulfilled for s = 0, since we assume that
m11(0, v) and m2(0, v) are linear independent.

So we have shown that m̃(s, v) is regular and C1.
Finally, the normals (13) result from equations (14) and
(17). �

Thus, the medial surface m(u, v) has well-defined
normals on the entire domain. Hence, by using a least-
squares fit we can compute a B-spline surface n(u, v)
which represents the normal directions of m(u, v).

3.2. Reparameterization of the medial surface

We describe a method for the reparameterization of
the medial surface of the blade. For adding the profile
to the medial surface, the horizontal speed of the profile
has to match the parametric speed of the medial surface.
Otherwise, we would obtain a deformed profile along
this streamline. This requirement can be formulated as
the condition

‖m1(u, v)‖ = λ(v)x′(u), (18)

where m(u, v) is the medial surface, λ(v) is the arc
length of the entire u-parameter line (streamline) of
m(u, v) at v and x′(u) denotes the derivative of the first
coordinate of the profile.

Note that x′(0) = 0, since the blade profile has a ver-
tical tangent at the tip. This, however, is not a problem
since the constructed medial surface possesses a singu-
lar edge for u = 0, i.e., m1(0, v) = 0.

In order to fulfill the condition (18) we use a repa-
rameterization of the medial surface.

We look for a function u(t) : [0, 1] → [0, 1] such that
the following condition

‖
∂

∂t
m(u(t), v)‖ = λ(v)x′(t) (19)

is satisfied.

Remark 1. We cannot find a function u(t) which fulfills
condition (19) exactly for every v since the arc length of
the u-parameter lines depends on v. Therefore we com-
pute a function u(t) which fits best for every v. One
might use a reparameterization u(t, v) but experiments
confirmed that using only u(t) is sufficient for applica-
tions.

For solving equation (19) numerically we formulate the
condition as a minimization problem∫ 1

0

∫ 1

0
(‖m1(u(t), v)‖u′(t) − λ(v)x′(t))2 dt dv→ min

u(t)
.

(20)
As the optimization problem (20) is in general nonlin-
ear, we use an iterative method for solving it. Starting
with an initial solution u0, in each iteration step the new
approximation u+ of the exact solution is computed by
evaluating

u+ = uc + h∆u, (21)

where uc denotes the current solution, ∆u the update and
h ∈ (0, 1] the step size.
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As an ansatz for the unknown function u(t) we take a
quadratic B-spline function

u(t) =
∑̀
i=0

diB2
i (t) (22)

with control points d = (d0, . . . , d`)T , di ∈ R, and B-
splines B2

i (t) of degree 2. Thus, we rewrite (21) as

d+ = dc + h∆d,

where d+ = (d+
0 , . . . , d

+
` )T . dc = (dc

0, . . . , d
c
`)

T denotes
the control points of the current solution and ∆d =

(∆d0, . . . ,∆d`)T is the update.
We solve the optimization problem (20) by a Gauss-

Newton-type method which is an iterative method for
solving nonlinear least-squares problems. Let

Q(t, v,d) = ‖m1(u(t), v)‖u′(t). (23)

By applying first Taylor series expansion with respect to
d we get a linear approximation of Q(t, v,d) at d0. This
leads to the objective function

F =

∫ 1

0

∫ 1

0
(Q(t, v,d0) + ∇Q(t, v,d0)∆d−

−λ(v)x′(t))2 dt dv,
(24)

where d0 = (d0
0 , . . . , d

0
`
)T denotes the initial solution and

∇Q is a row vector given by the partial derivatives of
Q with respect to the control points di. The objective
function (24) gives the minimization problem

F → min
∆d

. (25)

In order to simplify the computation we discretize the
parameter intervals and replace the integrals in the ob-
jective function by sums. A necessary condition for a
minimum is that the gradient with respect to ∆d of the
objective function vanishes at the minimum. Since F is
quadratic in the update ∆d we obtain a system of lin-
ear equations, which can be solved easily. In one step
of the Gauss-Newton-type method we solve the system
of linear equations for ∆d and compute the better ap-
proximation of the exact solution with d+ = dc + h∆d.
Additionally, a step-size control might be used, but this
was not necessary in our examples.

As initial solution we use a quadratic B-spline curve
with control points (d0, d1, d2). Obviously, u(t) has to
fulfill the boundary conditions u(0) = 0 and u(1) = 1,
which determine the control points d0 and d2 as 0 and 1,
respectively. The point d1 is chosen as 0.5.

We use knot insertion (see [5, Subsection 7.6]) to ob-
tain more control points of the ansatz function u(t). In

order to satisfy the boundary conditions during the iter-
ation method we apply the Gauss-Newton-type method
to the control points d1, . . . , d`−1.

Finally, we get a one-dimensional quadratic B-spline
function u(t) fulfilling approximately condition (19).

Example 1. We compute the reparameterization u(t)
for the medial surface given in Figure 2 and the profile
curve shown in Figure 7. Figure 9 presents the resulting
B-spline curve u(t) which is obtained by solving equa-
tion (19) and the ratio of the length of the u-parameter
line of the reparameterized medial surface and the speed
of the profile curve. The different colors correspond to
different values of v. The figure shows that the ratio is
approximately constant.

3.3. Computation of the normals
Similar to the method described in Section 3.1 we

generate a B-spline approximation n = n(u, v) of the
unit normal vector field of the initial blade surface. Note
that these unit normal vectors are well-defined, despite
the fact that we have a singularly parameterized medial
surface.

3.4. Generating the blade surface
Using the previous results we generate a B-spline rep-

resentation of the blade.
Let u(t) be a one-dimensional B-spline function such

that m(u(t), v) and p(t) satisfy equation (19) approxi-
mately. Then the two sides of the turbine blade are ob-
tained by

b(±)(t, v) = m(u(t), v) ± d(v)n(u(t), v)y(t). (26)

Proposition 1. The two sides b(±) of the blade fit to-
gether at t = 0 with C1-continuity, more precisely

b(+)

1 (0, v) = −b(−)

1 (0, v). (27)

Proof. It is obvious that the two boundary curves
b(+)(0, v) and b(−)(0, v) coincide since y(0) = 0.

Computing the tangents in t-direction of b(+) and b(−),
respectively, and using that m1(0, v) = (0, 0, 0) and
y(0) = 0 gives

b(±)

1 (0, v) =

0︷   ︸︸   ︷
m1(0, v) u′(0) ± d(v)n1(0, v)u′(0)

0︷︸︸︷
y(0) ±

± d(v)n(0, v)y′(0)

which implies (27). �
We obtain a procedurally defined B-spline surface

which represents a turbine blade. By choosing suitable
degrees and the knot sequences, we can compute the
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(b) Ratio of ‖ ∂∂t m(u(t), v)‖ and λ(v)x′(t).

Figure 9: Example of a reparameterization function u(t).

control points exactly, using formulas for the composi-
tion and multiplication of B-spline functions [3, 13].

In general, however, the resulting B-spline surface
has high degrees and a large number of control points.
Therefore, we use degree reduction and knot removal
to obtain a high-quality model with lower degree and a
smaller number of control points, see [6].

3.5. An example

We consider the point cloud of the procedurally de-
fined medial surface of the turbine blade given in Fig-
ure 2 and the profile curve and the scaling function given
in Figure 7.

We generate the pressure and the suction side of the
turbine blade by adding or subtracting the profile to the
medial surface, as described in Section 3. Figure 10(a)
shows a point cloud which represents the turbine blade.

Figure 10(b)-(c) shows the approximated turbine
blade which is described by a B-spline surface of de-
gree (2, 2) with open uniform knot vectors and 20 × 10
control points from two different views.

As can be seen in Figure 10, the blade has a high
curvature at the edge where pressure and suction side
fit together. In order to improve the accuracy of the fit
at this edge we choose a non-uniform knot vector in u-
direction. We set the knots more dense in the middle
of the interval to obtain a B-spline surface with more
control points in this region. We compute the average
error (28) between the original point cloud and the ob-
tained B-spline surface using different numbers of con-
trol points and different knot vectors. Table 1 shows the
residual errors e,

e =

∑m
i=0

∑n
j=0 ‖qi j − pi j‖

(m + 1)(n + 1)
, (28)

where qi j is the closest point to a point pi j forming a
dense grid on b(u, v).

Comparing the different errors we see that not just
the number of control points but also the choice of the
knot vectors has an influence. Therefore we can further

ErrorsNumber of CP
uniform non-uniform

10 × 5 0.58 0.54
20 × 5 0.25 0.18

10 × 10 0.18 0.1
20 × 10 0.08 0.06
25 × 10 0.05 0.021

Table 1: The error e of resulting B-spline surfaces (turbine blades)
of degree (2, 2) with different numbers of control points and different
knot vectors. The bounding box is about 115 × 220 × 160.

reduce the number of control points by choosing a suit-
able knot vector in u-direction. This may be a topic for
future research.

4. B-spline representation of propeller blades

In the case of a propeller blade design we have to
use a slightly different approach than for turbines. In
contrast to turbine blades, a propeller blade possesses a
singular point, since the last streamline collapses to one
point, see Figure 11. Figure 12 shows a surface obtained
via a direct fit. Note that all parameter lines with respect
to one direction end in the singular point. Hence the
derivative with respect to the second parameter direction
is zero. As a consequence, the medial surface has no
well-defined normal direction at this point. Therefore,
no profile can be added at this point.

We propose the following approach to handle this sit-
uation. First we create an extended medial surface that
enlarges the original one. Second, with the help of a
cut-out function c, this medial surface can be trimmed
to the original size.

Figure 13 presents the idea of the cut-out function.
The gray surface in the middle quadrilateral shows the
cut-out function. The original medial surface with the
singular point at the tip is described by the gray sur-
face in the right picture. The extended medial surface is
given by the entire surface (gray + red parts).

Summing up, we have to apply the following steps for
the construction of a CAD-model of a propeller blade.

9



(a) Point cloud of the procedurally defined
turbine blade.

(b) Turbine blade - view 1. (c) Turbine blade - view 2.

Figure 10: Turbine blade.
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Figure 11: Point cloud of the procedurally defined medial surface of
a propeller blade.

1. Create the extended medial surface and extended
approximate normals.

2. Define the cut-out function.
3. Apply the reparameterization of the medial sur-

face.
4. Generate the blade surface.

The main difference between the process used for tur-
bine blades and the generation of a CAD-model for a
propeller blade is the cut-out function c. In the follow-
ing, we describe how the method is adjusted to propeller
design.

4.1. Extended medial surface and normals

For attaching the profile, the medial surface has to
have well-defined normal directions on the entire do-
main. As observed before, this is not fulfilled for the
medial surface of a propeller blade which is obtained by

Figure 12: Parameter lines of the medial surface of a propeller blade.
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Figure 13: Sketch of a cut-out function c.

using a direct fit. To handle this situation we need to cre-
ate an extended medial surface which has well-defined
normals everywhere. In order to do so we compute a
B-spline surface m∗ that enlarges the original surface m
and which possesses well-defined normal directions on
the entire domain. Figure 14 shows an example of an
extended medial surface.

4.2. Cut-out function
The cut-out function c is defined on the parameter do-

main [0, 1] × [0, 1]. The function c is used to “cut out”
the medial surface m of a propeller blade from the ex-
tended medial surface m∗. Consequently, we obtain a
medial surface m with well-defined normals as the re-
striction of m∗.

10



ext

Figure 14: Extended medial surface (left) and zoom into the extension
of the medial surface (right).

v

u

Figure 15: Example of a cut-out function c fulfilling conditions (29),
(30), (31) and (32) marked by green, red, blue and black loops, re-
spectively.

For the cut-out function c we use a B-spline surface
of degree (p, q) with control points {bi j}

i=0...m
j=0...n and open

knot vectors.
A typical function c is shown in Figure 15. Note that

the function c has the following properties. Since the
profile curve has a vertical tangent at t = 0, the speed of
the u-parameter lines of the restricted medial surface at
u = 0 has also to be zero. Furthermore, we have to en-
sure that the medial surface of the propeller blade has a
singular point. Additionally, we require that the bound-
ary curve at u = 1 of the resulting pressure and suction
side of the propeller blade have collinear tangents at the
tip of the blade.

Using the technique of B-splines all this properties
can be achieved by choosing the control points of the
cut-out function c in the following way:

b0n = b1n = . . . = bmn (29)
b0 j = b1 j j ∈ {0, . . . , n} (30)

bmn = bm(n−1) (31)
bmn and b0(n−1),b1(n−1), . . . ,bm(n−1) are collinear (32)

y

x

d

v

Figure 16: Example of a profile curve (left) and a scaling function
(right) for a propeller blade.

4.3. Reparameterization of the medial surface
For adding or subtracting the profile we have to repa-

rameterize the medial surface. In order to do so, we use
a modified version of condition (18), which we applied
to turbine blades. Considering propeller blades we are
interested in a function u(t) : [0, 1] → [0, 1] such that
the following condition is satisfied:

‖
∂

∂t
(m∗ ◦ c)(u(t), v)‖ = λ(v∗)x′(t), (33)

where λ(v∗) is the arc length of the u∗-parameter line
of (m ◦ c)(u, v) at v∗. Since the profile is added only
to the trimmed medial surface we have to compose the
extended medial surface with the cut-out function.

Figure 16 shows the typical form of a profile curve for
a propeller blade. The scaling function for a propeller
blade is zero at the end since no profile is added to the
singular point of the medial surface, see Figure 16.

4.4. Generating the propeller blade
Using the previous results, the pressure side and the

suction side of a propeller blade can be obtained by the
formula

b(±) = (m∗ ◦ c) ± d(n∗ ◦ c)y, (34)

where m∗ and n∗ describe the extended medial surface
and the associated normals, respectively. Furthermore,
c denotes the cut-out function, y is the y-coordinate of
the profile curve and d is the scaling function.

That means, for computing the pressure and the suc-
tion side of the blade we have to compose the extended
medial surface m∗ and the normals n∗ with the cut-out
function. We add the profile to the trimmed and repa-
rameterized medial surface and obtain a propeller blade
with a well-defined behavior of the tangent plane every-
where.

Proposition 2. Let c(u, v) be a B-spline surface satisfy-
ing the properties given in (29)-(32). Furthermore, we
assume that the scaling function d(v) is zero at v = 1
and the profile curve p(t) = (x(t), y(t)) fulfills x′(0) = 0.
Consider the B-spline surfaces

b(±)(t, v) = (m∗ ◦ c)(u(t), v) ± d(v)(n∗ ◦ c)(u(t), v)y(u(t)).
(35)
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Then we have the following results:
1. b(+)(t, v) and b(−)(t, v) fit together with C1-continuity

at t = 0.
2. The resulting propeller has a well-defined tangent

plane at the tip.
3. The boundary curves b(+)(1, v) and b(−)(1, v) have

collinear tangents at v = 1.

Proof. 1. The proof is similar to Proposition 1.
2. In a second step we show that the propeller has a
well-defined tangent plane at the tip. Let c(u(t), v) =

(c1(u(t), v), c2(u(t), v)).
First we compute b(+)

1 (t, 1). Using that d(1) = 0 and
according to the construction of c, see Figure 15, we
have that

b(+)

1 (t, 1) = m∗1(c(u(t), 1)) c1
1(u(t), 1)︸     ︷︷     ︸

=0

u′(t)+ (36)

+ m∗2(c(u(t), 1)) c2
1(u(t), 1)︸     ︷︷     ︸

=0

u′(t) = 0 (37)

Thus, one edge collapses to a single point. It is obvi-
ous that also b(−)

1 (t, 1) is zero, and similar for all higher
derivatives,

∂k

∂tk b(+)(t, v)

∣∣∣∣∣∣
v=1

=
∂k

∂tk b(−)(t, v)

∣∣∣∣∣∣
v=1

= 0. (38)

In order to show that a well-defined tip exists, we have
to prove that all derivatives with respect to v are copla-
nar. We get

b(±)

2 (t, 1) = m∗1(c(u(t), 1)︸    ︷︷    ︸
=(1,1)

)c1
2(u(t), 1)+

+ m∗2(c(u(t), 1)) c2
2(u(t), 1)︸     ︷︷     ︸

=0

±

± d′(1)(n∗(c(u(t), 1)︸    ︷︷    ︸
=(1,1)

)y(u(t))±

± d(1)︸︷︷︸
=0

∂

∂v
(n∗ ◦ c)(u(t), 1)

= m∗1(1, 1)c1
2(u(t), 1) ± d′(1)n∗(1, 1)y(u(t)).

(39)

This proves that all directions b(+)

2 (t, 1) and b(−)

2 (t, 1) lie in
the plane spanned by the vectors m∗1(1, 1) and n∗(1, 1).
3. Finally, we have to show that the two boundary
curves b(+)(1, v) and b(−)(1, v) have collinear tangents at
v = 1, see Figure 17. We obtain from (39) the two tan-
gent directions

b(±)

2 (1, 1) = m∗1(1, 1) c1
2(1, 1)︸  ︷︷  ︸

=0

±d′(1)n∗(1, 1)y(1) (40)

which are collinear. �

c

d

a

b

b2

b1

Figure 17: Having collinear tangents at v = 1 for the two boundary
curves b(+)(1, v) and b(−)(1, v).

4.5. An example
We consider a grid of points sampled along the

streamlines of a procedurally medial surface of the pro-
peller blade given in Figure 11 and the profile curve and
the scaling function given in Figure 16. As described
in the previous sections, we use the following proce-
dure for generating a B-spline representation of the pro-
peller. First we compute the extended medial surface
and the associated normal vectors. Then we reparam-
eterize the medial surface and generate the propeller
blade by adding the profile. The resulting point cloud
which describes the pressure and the suction side of the
blade is given in Figure 21(a).

First we have to compute an extended medial surface
which possesses well-defined normals on the entire do-
main. This is done by generating additional points for
some of the streamlines close to the tip. For this we fit
the data points of a streamline by a curve and extrap-
olate this curve to get additional data points. For sim-
plicity, we take a quadratic Bézier curve, and choose the
parameter values of the data points chord length param-
eterized. The number of additional data points depends
on the shape of the blade. According to our experience
with typical blades we obtain feasible results by com-
puting about 10 additional points per streamline.

Figure 18 shows a fixed streamline (black points)
which is fitted via a Bézier curve (black curve). The
extrapolated points are shown in red. The associated pa-
rameter values are lying in the red regions. This extrap-
olation is performed for several streamlines. Clearly,
the choice of the streamlines which are to be extrapo-
lated depends on the cut-out function c.

At the singular point at the tip of the blade we have
to proceed differently, as no curve can be fit to a single
point. Hence, we translate the Bézier curve from the
last but one streamline such that it passes through the
singular point.

12



c000uis

ui
0

1

Figure 18: Streamline with additional points.

Figure 20: Zoom into the tip of the propeller blade.

We extend the original grid of points by adding the
extrapolated points and apply least-squares fitting to ob-
tain an extended medial surface m∗ which possesses
well-defined normals on the entire domain. An exam-
ple of a B-spline surface which describes an extended
medial surface is given in Figure 19(b).

Now we can apply the construction described in the
previous sections to generate the two boundary surfaces
of the blade.

In order to analyze the behavior of the tip of the pro-
peller blade, we visualize the point cloud given in Fig-
ure 21(a) as a surface. Figure 20 shows the zoom of the
tip. The picture confirms that the resulting propeller has
a well-defined tangent plane at the tip. Similar to the
case of turbine blades we use least-squares approxima-
tion to obtain a B-spline surface representing the pro-
peller blade. In order to preserve the well-defined tan-
gent plane at the tip of the propeller we have to prescribe
the normal direction at the tip in the fitting process. Fig-
ure 21 shows a B-spline surface of degree (2, 2) with
30×10 control points which describes both the the pres-
sure and the suction side of the propeller blade.

Analogously to the turbine blade we compute the av-
erage error e for different numbers of control points and
different knot vectors. Table 2 shows the resulting er-
rors.

5. Conclusion

We presented a design tool for constructing a CAD-
model for blades of turbines and propellers. Our design

ErrorsNumber of CP
uniform non-uniform

10 × 5 0.32 0.21
20 × 5 0.21 0.18

10 × 10 0.2 0.09
20 × 10 0.067 0.047
25 × 10 0.059 0.04

Table 2: The error e of resulting B-spline surfaces (propeller blades)
of degree (2, 2) with different numbers of control points and different
knot vectors. The bounding box is about 100 × 60 × 40.

scheme corresponds to the classical construction of a
blade, using the medial surface and profiles attached to
it. As the main new contribution of the paper, we re-
alized the entire construction based on B-spline tech-
niques. To this end we designed suitable reparamer-
izations and cut-out functions, which were composed
with a B-spline representation of the blade’s medial sur-
face. We contributed novel shape modeling techniques
based on singularly parameterized medial surfaces and
showed that these techniques are of substantial interest
for industrial applications.

The main difference between the computation of a
CAD-model for a turbine blade and for a propeller blade
is the construction of an extended medial surface in the
case of propellers. This is necessary for handling the
singular point at the tip of the propeller. The single steps
of the design process of the turbine and propeller blade
are described in Section 3 and 4, respectively. Further-
more we presented several examples.

Obviously, it is possible to modify different steps in
the construction. For instance, one may use other, more
direct, methods for designing the medial surface.

Our method is fully implemented and is suitable for
an interactive design process. As can be seen in the ex-
amples in Section 3.5 and Section 4.5, B-spline surfaces
with about 200 control points lead to feasible results.
Compared to existing models used by ANDRITZ HY-
DRO with approximately 1000 points, this number is
very small.
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