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Introduction

Isogeometric Analysis (IGA) is a concept introduced for the first time
by Tom Hughes and co-workers (see [11]). It establishes a link between the
technologies of Computer Aided Design and numerical simulation via Finite
Element Analysis. The main advantage of the IGA framework consists in
the fact that the same function spaces can be used for both the geometric
representation of the computational domain and for the approximation of the
problem unknowns. Therefore, an exact representation of the computational
domain is available at all times during the simulation process. We refer the
reader to the monograph [7] for rather complete presentation of IGA.

Discontinuous Galerkin (DG) methods are becoming more and more pop-
ular for the approximation of PDEs. They are non-conforming methods,
which allow jumps across the boundaries of the elements. There is a wide
literature about this kind of methods with a Finite Element approach (e.g.
see [1] and the monograph [13] for a discussion of DG methods for solving
elliptic and parabolic equations and the paper [9] if interested in DG methods
with discontinuous coefficients).

The aim of this work is to link these two fields together to build a solid
theory about DG-IGA methods for elliptic problems with discontinuous co-
efficients and to give some hints about how to test the theoretical results
in a Matlab implementation. The only other reference in literature we have
found with DG methods in IGA setting consists in the paper [2] referred to
elastic problems.

In this thesis, we consider the scalar diffusion problem with Neumann
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and Dirichlet boundary conditions as model problem: Find u : Ω̄ Ñ R such
that $&

%
�divpα∇uq � f Ω

u � gD ΓD

α∇u � n � gN ΓN

(P)

where BΩ � ΓD

�
ΓN , α P L8pΩq is a piecewise constant and uniformly

positive diffusion coefficient, and f , gD and gN are given functions with
assigned regularity.

In Chapter 1, we recall the basics of Isogeometric Analysis.
In Chapter 2, we first introduce a partition of the domain Ω into subdo-

mains and the definition of the broken Sobolev spaces. Then we introduce
the concept of jumps and averages of functions along the interfaces of these
subdomains. These definitions are used to derive a Discontinuous Galerkin
formulation of the model problem (P) that reads as follows: Find u P V such
that

aDGpu, vq � xF, vy @v P V ,
where aDGp�, �q is the so-called DG bilinear form, F is a linear functional
and V is a suitable broken space. We then introduce a Multi-Patch NURBS
discretization and we define theDG-norm. Finally, we prove that the bilinear
form is coercive and bounded in the discrete DG-space Vh � V . Therefore,
due to Lax-Milgram’s theorem, there exists a unique solution of the discrete
variational problem.

Chapter 3 is devoted to the derivation of a priori discretization error
estimates in the DG-norm and in L2-norm.

In Chapter 4 we first give some numerical results with a Continuous
Galerkin method, by testing it with a benchmark problem for a single-patch
and multi-patch domain. Then we give some suggestions and indications on
how to write a code of a DG method. For the implementation part of this
work, we use the library GeoPDEs of Matlab, which contains useful built-in
functions for multi-patch domains in an Isogeometric setting.

Finally, in Chapter 5, we summarize our results and suggest possible
future work.



Chapter 1

Isogeometric Analysis

Isogeometric Analysis (IGA) is a new method for the numerical solu-
tion of problems governed by partial differential equations (see [11]). The
method shares some common features with the finite element method and
with meshless methods, but it is more based on geometry and is inspired
from Computer Aided Design (CAD) techniques. Some important goals are:

• to be geometrically exact no matter how coarse the discretization;

• to simplify mesh refinement by eliminating the need for communication
with the CAD geometry once the initial mesh is constructed;

• to more tightly link the mesh generation process and CAD.

1.1 B-splines

Unlike in standard finite element analysis, the B-spline parameter space is
local to patches rather than elements. That is, the reference element in FEA
is mapped into a single element in the physical space and each element has
its own such mapping. Alternatively, the B-spline mapping takes a patch of
multiple elements in the parameter space into the physical space. This means
that each element in the physical space is the image of the corresponding
element in the parameter space, but the mapping itself is global to the whole
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patch, rather than to the elements themselves. In this sense, patches play the
role of subdomains within which element types are assumed to be uniform.
In what follows, we will refer to ‘patches’ as subdomains comprised of many
‘elements’.

1.1.1 Knot vectors and basis functions

Definition 1. Let p be a non-negative degree and let s � ps1, . . . , smq be a
knot vector a set of coordinates in the parametric space with sk ¤ sk�1 for
all k. If knots are equally-spaced in the parametric space, they are said to be
uniform. An open knot vector is a knot vector s where the multiplicity
of a knot is at most p, except for the first and the last knots which have
multiplicity p� 1. We call knot span an interval rsk, sk�1s.

Open knot vectors are the standard in CAD literature.

Definition 2. The ns � m � p � 1 univariate B-spline basis functions

Bs
k,p : p0, 1q Ñ R, k � 1, . . . , ns are defined recursively starting with piecewise

constants (p � 0) as follows:

Bs
k,0pξq �

$&
%1 for sk ¤ ξ   sk�1

0 otherwise

Bs
k,ppξq �

ξ � sk
sk�p � sk

Bs
k,p�1pξq �

sk�p�1 � ξ

sk�p�1 � sk�1

Bs
k�1,p�1pξq. (1.1)

This is referred to as the Cox-de Boor recursion formula. When a zero
denominator appears in the definition above, the corresponding function Bs

k,p

is zero and the whole term is considered to be zero.

The results of applying (1.1) to a uniform knot vector are presented in
Figure 1.1. For p � 0 and p � 1, the basis functions are the same as for
standard piecewise constant and linear finite element functions, respectively.
On the contrary, for p � 2, B-spline basis functions differ from their FEA
counterparts: they are identical but shifted relative to each other, whereas
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Figure 1.1: Basis functions of degree 0, 1, 2 for uniform knot vector s �

t0, 1, 2, 3, 4, . . .u. (See [11])

the shape of a quadratic finite element function depends on whether it cor-
responds to an internal node or an end node. This fact holds also for higher
degree.

Some important properties of B-spline basis functions are the following.

• The basis constitutes a partition of unity, i.e., @ξ °ns

k�1B
s
k,ppξq � 1.

• The support of each basis function Bs
k,p is compact and contained in the

interval rsk, sk�p�1s (that is, it is always p� 1 knot spans). Therefore,
higher-degree functions have support over much larger portions of the
domain than do classical FEA functions.

• Each basis function is non-negative, i.e., Bs
k,ppξq ¥ 0 for all ξ. There-

fore, all the coefficients of a mass matrix computed from a B-spline
basis are non-negative.

• Basis functions of degree p have p � 1 continuous derivatives across
the knots. This feature has some relevant consequences for the use of
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splines as a basis for analysis and is one of the most distinctive features
of isogeometric analysis.

In general, basis functions of degree p have p�mi continuous derivatives
across the knot si, where mi is the multiplicity of the value of si in the
knot vector. When the multiplicity of a knot value is exactly p, the basis is
interpolatory at that knot. When the multiplicity is p�1, the basis becomes
discontinuous and the patch boundary is formed.

A quadratic example of this aspect is presented in Figure 1.2 for the
open non-uniform knot vector t0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5u. Note that the basis
functions are interpolatory at the ends of the interval and also at ξ � 4, the
location of a repeated knot. At this repeated knot, the functions are only
C0-continuous, whereas elsewhere the functions are C1-continuous.

Figure 1.2: Quadratic basis functions for open, non-uniform knot vector

t0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5u. (See [11])

Definition 3. The derivatives of B-spline basis functions are represented in
terms of B-spline lower degree bases. For a given degree p and a knot vector
s, the derivative of the kth basis function is given by

d

dξ
Bs

k,ppξq �
p

si�p � si
Bs

k,p�1pξq �
p

si�p�1 � si�1

Bs
k�1,p�1pξq.

Again, if the denominator of these coefficients is zero, the term is defined to
be zero.
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1.1.2 B-spline curves

B-spline curves in Rd are built by taking a linear combination of B-spline
basis functions, exactly as in the classical FEA.

The vector-valued coefficients of the basis functions are called control

points and piecewise linear interpolation of these points gives the control
polygon. These are analogous to nodal coordinates in finite element analysis
in the fact that they are the coefficients of the basis functions, but the non-
interpolatory nature of the basis does not lead to a concrete interpretation
of the control point values.

Definition 4. Given ns basis functions, Bs
k,p @k � 1, . . . , ns, and correspond-

ing control points Ck P Rd, @k � 1, . . . , ns, a piecewise-polynomial B-spline
curve is defined as

Cpξq �
nş

k�1

Bs
k,ppξqCk.

Piecewise linear interpolation of the control points gives the so-called control
polygon.

(a) Curve, control points
and control polygon.

(b) Curve and mesh de-
noted by knot locations.

Note in Figures 1.3a and 1.3b (see [11]) the difference between the control
points and the knot locations, which are the images of the knots in the
physical space and which partition the curve into elements.

Important properties of B-spline curves are the following.
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• B-spline curves of degree p have continuous derivatives of order p � 1

in case of non-repeated knots or control points;

• Locality : due to the compact support of the B-spline basis functions,
moving a single control point can affect the geometry of no more than
p� 1 elements of the curve;

• Convex hull property : a B-spline curve is completely contained within
the convex hull defined by its control points. For a curve of degree p,
we define the convex hull as the union of all of the convex hulls formed
by p� 1 successive control points.

• Repeating a knot or control point k times decreases the number of
continuous derivatives by k;

• Affine covariance: an affine transformation of a B-spline curve is ob-
tained by applying the transformation directly to the control points.

1.1.3 B-spline surfaces

Definition 5. Let tBs
k,puns

k�1 and tBt
l,qunt

l�1 be two families of univariate B-
spline basis functions defined by the degrees p and q and the open knot
vectors

s � ps1, . . . , sns�p�1q
t � pt1, . . . , tnt�q�1q

respectively. Given a control net tPpk,lqu, a tensor product B-spline

surface is defined by

Spξ1, ξ2q �
nş

k�1

nţ

l�1

Bs
k,ppξ1qBt

l,qpξ2qPpk,lq.

Many of the properties of a B-spline surface are the result of its tensor
product nature.
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• The basis is pointwise non-negative and forms a partition of unity as,
@pξ1, ξ2q P rs1, sns�p�1s � rt1, tnt�q�1s,

nş

k�1

nţ

l�1

Bs
k,ppξ1qBt

l,qpξ2q �
� nş

k�1

Bs
k,ppξ1q

	� nţ

l�1

Bt
l,qpξ2q

	
� 1.

• The number of continuous partial derivatives in a given parametric
direction may be determined from the associated one-dimensional knot
vector and degree.

• The surface again possesses the property of affine covariance and has a
strong convex hull property.

• The local support of the basis functions also follows directly from the
one-dimensional functions that form them. The support of a given bi-
variate function B̃s,t

k,l;p,qpξ1, ξ2q � Bs
k,ppξ1qBt

l,qpξ2q is exactly rsk, sk�p�1s�
rtl, tl�q�1s.

Associated to the knot vectors there is a mesh Q, that is, a partition of the
parametric domain I � p0, 1q2 into two-dimensional open knot elements:

Q :� tQ � psk, sk�1q b ptl, tl�1q|Q � H, 1 ¤ k ¤ ns � p, 1 ¤ l ¤ nt � qu.

Definition 6. The mesh is locally quasi-uniform if the ratio of the sizes
of two neighboring elements is uniformly bounded.

1.1.4 Knot insertion

The analogue of h-refinement of the finite element method is knot inser-
tion. The main point here is that knots can be inserted without changing a
curve geometrically or parametrically. Given a knot vector s � ts1, . . . , sns�p�1u,
we want to insert a new knot s̄ P rsl, sl�1s. The new ns � 1 basis functions
are formed recursively, using the definitions in (1.1) with the new knot vector
ts1, . . . , sl, s̄, sl�1, . . . , sns�p�1u. The new control points, tC̄1, C̄2, . . . , C̄ns�1u
are constructed from the original control points tC1, C2, . . . , Cnsu by

C̄k � αkCk � p1 � αkqCk�1, (1.2)
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where

αk �
$&
%

1 1 ¤ k ¤ l � p
s̄�sk

sk�p�sk
l � p� 1 ¤ k ¤ l

0 l � 1 ¤ k ¤ ns � p� 2.

Knot values already present in the knot vector may be repeated in this way,
thereby increasing their multiplicity, but the continuity of the basis will be
reduced. However, continuity of the curve is preserved by choosing the control
points as in (1.2). Insertion of new knot values has similarities with the
classical h-refinement strategy in finite element analysis as it splits existing
elements into new ones. It differs, however, in the number of new functions
that are created, as well as in the continuity of the basis across the newly
created element boundaries.

1.2 Non-Uniform Rational B-Splines

The step from B-splines to NURBS is a relevant one because we gain the
ability to exactly represent a wide range of objects that cannot be exactly
represented by polynomials.

Some useful geometric entities in Rd can be obtained by projective trans-
formation of B-spline entities in Rd�1. For instance, conic sections can be
exactly represented with projective transformations of piecewise quadratic
curves.

1.2.1 NURBS basis functions

We need to construct a basis for the NURBS space from knot vectors,
and to build curves and surfaces from linear combinations of basis functions
and control points. In this way, everything that we have said about B-splines
will also be true of NURBS.

Definition 7. Let wk, k P t1 . . . , nsu be positive weights. The univariate
NURBS basis functions are given by the piecewise rational functions

Rkpξq �
Bs

k,ppξqwk

W pξq , (1.3)
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where

W pξq �
nş

k̂�1

Bs
k̂,p
pξqwk̂.

As the NURBS basis functions are constructed from the B-spline basis
functions, the derivatives of rational functions will depend on the derivatives
of their non-rational counterparts as well.

Definition 8. Simply applying the quotient rule to (1.3), the derivatives of
the univariate NURBS basis functions are

d

dξ
Rkpξq � wk

W pξqBs
k,ppξq1 �W 1pξqBs

k,ppξq
pW pξqq2 ,

where

W 1pξq �
nş

k̂�1

Bs
k̂,p
pξq1wk̂.

1.2.2 NURBS curves

We obtain the control points for the NURBS curve by performing a pro-
jective transformation to the control points of the B-spline curve. In this
context, the B-spline, Cwpξq, is called the ‘projective curve’ with its asso-
ciated ‘projective control points’, Pw

k , while the term ‘curve’ and ‘control
points’ are reserved for the NURBS objects Cpξq and Pk, respectively.

With a given projective B-spline curve and its associated projective con-
trol points in hand, the control points for the NURBS curve are obtained
by the following relations:

pPkqj � pPw
k qj
wk

, j � 1, . . . , d

wk � pPw
k qd�1, (1.4)

where pPkqj is the jth component of the vector Pk and wk is referred to as
the kth weight.

Definition 9. Using the definition of NURBS basis functions and (1.4) leads
to an equation for a NURBS curve, as follows

Cpξq �
nş

k�1

RkpξqPk. (1.5)
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1.2.3 NURBS surfaces

We denote the set of all double-indices pk, lq of NURBS basis functions
by

R � tpk, lq : k P t1, . . . , nsu, l P t1, . . . , ntuu.

Definition 10. Let wpk,lq, pk, lq P R, be positive weights. We define the
bivariate NURBS basis functions as follows:

Rpk,lqpξ1, ξ2q �
RN
pk,lqpξ1, ξ2q
RDpξ1, ξ2q ,

where the numerator and the denominator are given by

RN
pk,lqpξ1, ξ2q � Bs

k,ppξ1qBt
l,qpξ2qwpk,lq

RDpξ1, ξ2q �
¸

pk1,l1qPR
RN
pk1,l1qpξ1, ξ2q.

The main advantage of the use of this kind of basis functions is that
the fields considered in the problem (in the following, the temperature) are
represented in terms of the same basis functions as the geometry.

Definition 11. Given a control net of control points Ppk,lq P R2, the two
dimensional NURBS-surface G : I Ñ GpIq is defined by

Gpξ1, ξ2q �
¸

pk,lqPR
Rpk,lqpξ1, ξ2qPpk,lq.

For brevity of notations, we collapse the double-indices pk, lq to k. We define
also the functions

R̂k � Rk �G�1, @k P R.

The coefficients of the basis functions are the degrees of freedom.
Important properties of NURBS are the following.

• NURBS basis functions form a partition of unity.

• The continuity and support of NURBS basis functions are the same as
for B-splines.
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• NURBS have the property of affine covariance.

• If weights are equal, NURBS become B-splines.

• NURBS surfaces are the projective transformations of tensor product
piecewise polynomial entities.

1.3 Multiple patches

In almost all practical circumstances, it will be necessary to describe do-
mains with multiple NURBS patches. For instance, if different material or
physical models are used in different parts of the domain, it might simplify
things to describe these subdomains by different patches. Moreover, if dif-
ferent subdomains are to be assembled in parallel on a multiple processor
machine, it is convenient from the point of view of data structures not to
have a single patch split between different processors.

1.4 NURBS as an analysis framework

In the framework of NURBS, the basis functions are usually not inter-
polatory. There are two kinds of mesh: the control mesh and the physical
mesh.

• The control mesh consists of multilinear elements and it is like a
scaffold that controls the geometry. Namely, it interpolates the control
points.

• The physical mesh is a decomposition of the actual geometry. There
are two notions of elements in the physical mesh: the patch and the
knot span.

1. The patch may be thought of as a macro-element or subdomain.
Each patch has two representations, one in parent domain and one
in physical domain.
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2. Each patch can be decomposed into knot spans. These define
element domains where basis functions are smooth. They may be
thought of as micro-elements because they are the smallest entities
we deal with.

One other very important notion is the index space, which uniquely iden-
tifies each knot and discriminates among knots having multiplicity greater
than one. A schematic illustration of the ideas is presented in Figure 1.3 for
a NURBS surface in R3.
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Figure 1.3: Schematic illustration of ideas of NURBS surfaces. (See [11])



Chapter 2

A Discontinuous Galerkin

formulation for multi-patch

NURBS discretization

Let Ω � R2 be a bounded Lipschitz domain. Let f P L2pΩq, gD P H 1
2 pΓDq

and gN P L2pΓNq be given functions. The classical boundary value problem
for the scalar diffusion problem reads as follows.

Find u : Ω̄ Ñ R such that$&
%

�divpα∇uq � f Ω

u � gD ΓD

α∇u � n � gN ΓN

(2.1)

where BΩ � ΓD Y ΓN , α P L8pΩq is a piecewise constant and uniformly
positive diffusion coefficient, and n is the unit outward normal vector in BΩ.

The usual variational formulation reads:
Find u P H1

DpΩq :� tw P H1pΩq, w � gD on ΓDu :»
Ω

α∇u �∇v �
»

Ω

fv �
»

ΓN

gNv (2.2)

@v P H1
0,DpΩq :� tw P H1pΩq : w � 0 on ΓDu.

It can be shown that there exists a unique solution u P H1
DpΩq of the prob-

lem (2.2) by using Lax-Milgram’s theorem (see [14, Lemma A.34]), which, in
general, states what follows.
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Lemma 1 (Lax-Milgram). Let ap�, �q be a symmetric, continuous and co-
ercive bilinear form defined on a Hilbert space H and let F be a linear
functional in the dual space H 1. Consider the following problem: find u P H
such that

apu, vq � xF, vy, @v P H. (2.3)

Then (2.3) has a unique solution, satisfying

}u}H ¤ 1

β
}F }H 1 ,

where β is the constant of coercivity.

2.1 A Discontinuous Galerkin formulation

2.1.1 Motivations

The ‘usual’ methods choose an approximation space Vh � V :� H1
0 .

Methods with this property are called conforming. Non-conforming means
that Vh � V . DG is non-conforming.

In the framework of DG methods, we are not confined by continuity
or differentiability requirements at element interfaces. Numerical fluxes will
help us enforce the regularity requirements we are choosing. This will happen
by means of penalty methods. These advantages come at a price, however.
A calculation using DG methods typically has about twice the number of
degrees of freedom of a conforming one.

2.1.2 The derivation of a DG formulation

Definition 12. Let TH � tΩpiquni�1 be a partition of Ω into patches Ωpiq such
that Ω̄ � �n

i�1 Ω̄piq and ΩpiqXΩpjq � H for i � j. We assume in the following
that α|Ωpiq � αi � const @i � 1, . . . , n. We define the broken Sobolev

space as follows:

V :� HspTHq � tv P L2pΩq : v|
Ωpiq

P HspΩpiqq @i � 1, . . . , nu.
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In what follows we will require s ¡ 3
2
. The goal is to obtain a variational

formulation of the problem (2.1) over Ω in the space V . Since the continuity
along the interfaces between patches is not required, first of all we multiply
(2.1) by an arbitrary test function v P V and integrate on each patch Ωpiq

separately, i.e., for i � 1, . . . , n,

�
»

Ωpiq

divpαi∇uqv �
»

Ωpiq

fv.

By applying Green’s theorem,»
Ωpiq

αi∇u �∇v�
»
BΩpiq

pαi∇u � nqv �
»

Ωpiq

fv @i � 1, . . . , n @v P V . (2.4)

By summing (2.4) over all patches, we obtain
ņ

i�1

»
Ωpiq

αi∇u �∇v �
ņ

i�1

»
BΩpiq

pαi∇u � nqv �
»

Ω

fv. (2.5)

We now want to rewrite the summation in (2.5), by taking into account the
fact that, along the interfaces, the functions and the derivatives may present
jumps. To do this, we introduce the following definitions.

Definition 13. Let Γpi,jq � BΩpiq X BΩpjq be the interface between the two
subdomains Ωpiq and Ωpjq, Γpi,Dq � BΩpiqXΓD and Γpi,Nq � BΩpiqXΓN . Then,
for v P T pΓq :� ±n

i�1 L
2pBΩpiqq, we define respectively the average and the

jump tvu, rvs P L2pΓSq, where ΓS �
�n

i�1 BΩpiq, by

tvu :�
vi

|Γpi,jq
� vj

|Γpi,jq

2

rvs :� vi
|Γpi,jq

� vj
|Γpi,jq

+
on Γpi,jq, i ¡ j

and for b P tD,Nu:

tvu :� vi
|Γpi,bq

rvs :� vi
|Γpi,bq

+
on Γpi,bq.

Definition 14. For simplicity of notation, we also define the following sets.
The set of coupling edges is

EC :� tΓpi,jq : i ¡ j,meas1pΓpi,jqq ¡ 0u.



2.1 A Discontinuous Galerkin formulation 19

The set of Dirichlet edges is

ED :� tΓpi,Dq : i � 1, . . . , nu.

The set of Neumann edges is

EN :� tΓpi,Nq : i � 1, . . . , nu.

With this notation, we have that ECYEDYEN � �n
i�1 BΩpiq. Note that these

edges are not necessarily straight lines.

Definition 15. We define the diffusion coefficients on Γpi,jq and Γpi,Dq as
follows:

αpi,Dq :� αi

αpi,jq :� αi � αj

2
.

Thanks to these definitions, we can now rewrite the summation in (2.5)
as

ņ

i�1

»
BΩpiq

pαi∇u � niqv �
¸

Γpi,DqPED

»
Γpi,Dq

�
αi∇u � niqv �

¸
Γpi,NqPEN

»
Γpi,Nq

gNv

�
¸

Γpi,jqPEC

»
Γpi,jq

�
pαi∇u� αj∇uq � ni

	
v.

The normal vector n is defined on
�n

i�1 BΩpiq such that n � ni on Γpi,jq for
i ¡ j. Thus, we have the following:

rα∇u � ns � αi∇ui � ni � αj∇uj � ni

tα∇u � nu � 1

2

�
αi∇ui � ni � αj∇uj � ni

	
.
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We note that on Γpi,jq the following holds:

rpα∇u � nqvs � αi∇ui � nivi � αj∇uj � nivj

� 1

2
αi∇ui � nivi � 1

2
αj∇uj � nivi � 1

2
αi∇ui � nivj � 1

2
αj∇uj � nivj

� 1

2
αi∇ui � nivi � 1

2
αi∇ui � nivj � 1

2
αj∇uj � nivi � 1

2
αj∇uj � nivj

� 1

2
αi∇ui � nipvi � vjq � 1

2
αj∇uj � nipvi � vjq

� 1

2
αi∇ui � nipvi � vjq � 1

2
αj∇uj � nipvi � vjq

� tα∇u � nurvs � rα∇u � nstvu.

By the regularity of the solution u P V , since s ¡ 3
2
and hence ∇u P

H
1
2 p�n

i�1 BΩpiqq, we have that

rα∇u � ns � 0,

and therefore
rpα∇u � nqvs � tα∇u � nurvs.

So, we can now express (2.5) as
ņ

i�1

»
Ωpiq

αi∇u �∇v �
¸

Γpi,�qPECYED

»
Γpi,�q

tα∇u � nurvs

�
»

Ω

fv �
¸

Γpi,NqPEN

»
Γpi,Nq

gNv, (2.6)

where with Γpi,�q P EC Y ED we mean Γpi,jq P EC or Γpi,Dq P ED.
Now we introduce the following consistent penalty terms in the left-hand

side of (2.6) to guarantee symmetry:

�
¸

Γpi,jqPEC

»
Γpi,jq

tα∇v � nurus �
¸

Γpi,jqPEC

αi � αj

2
δpi,jq

»
Γpi,jq

rusrvs.

Then we impose weakly the Dirichlet boundary condition on ΓD. For this
purpose, we add to the left-hand side of (2.6) the following expression

ε
¸

Γpi,DqPED

»
Γpi,Dq

pαi∇v � niqpu� gDq �
¸

Γpi,DqPED
αiδ

pi,Dq
»

Γpi,Dq

pu� gDqv,
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where the expression of δpi,Dq will be specified later. These terms are consis-
tent as they vanish for the solution u of (2.2). We choose ε � �1 to guarantee
the symmetry of the bilinear form of the resulting variational formulation (see
[13]). Summarizing, we obtain:

ņ

i�1

»
Ωpiq

αi∇u �∇v �
¸

Γpi,�qPECYED

»
Γpi,�q

tα∇u � nurvs

�
¸

Γpi,�qPECYED

»
Γpi,�q

tα∇v � nurus �
¸

Γpi,�qPECYED

αpi,�qδpi,�q
»

Γpi,Dq

rusrvs

�
»

Ω

fv �
¸

Γpi,NqPEN

»
Γpi,Nq

gNv �
¸

Γpi,DqPED

»
Γpi,Dq

�
� αi∇v � n� αiδ

pi,Dqv
	
gD.

(2.7)

Therefore, the final variational formulation is:
Find u P V such that

aDGpu, vq � xF, vy @v P V , (2.8)

where:

• aDGpu, vq �
°n

i�1 aipu, vq � bpu, vq � cpu, vq is a bilinear form, where

aipu, vq :�
»

Ωpiq

αi∇u �∇v;

bpu, vq :� �
¸

Γpi,�qPECYED

»
Γpi,�q

�
tα∇u � nurvs � tα∇v � nurus

	
;

cpu, vq :�
¸

Γpi,�qPECYED

αpi,�qδpi,�q
»

Γpi,�q
rusrvs.

• F is a linear functional defined as

xF, vy �
»

Ω

fv�
¸

Γpi,NqPEN

»
Γpi,Nq

gNv�
¸

Γpi,DqPED

»
Γpi,Dq

�
�αi∇v�n�αiδ

pi,Dqv
	
gD.

Note that the solution u of (2.2) solves (2.8). Furthermore, it can be
shown that the solution of (2.8) is unique (see [6]).
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2.2 Multi-patch NURBS discretization

To define precisely the discrete problem associated to (2.8), we use the
definitions from Isogeometric Analysis that we introduced in Chapter 1.

In our specific case the physical domain Ω � R2 is represented by n

single patch NURBS mappings Gpiq, i � 1, . . . , n, each of which maps the
parameter domain I to the patch Ωpiq � GpiqpIq. We use the superscript piq
to indicate that knot vectors, degrees, NURBS basis functions, index sets,
etc. are associated with a mapping Gpiq. We assume that the mesh Qpiq

underlying to the NURBS mapping Gpiq is quasi-uniform for all i � 1 . . . , n.
We denote by hi the element size of Qpiq.

We also define the following space:

Vh � tv P L2pΩq : @i � 1, . . . , n v|Ωpiq P XhipΩpiqqu,

where
XhipΩpiqq � spantR̂piq

k ukPRpiq

denotes the space of NURBS functions on Ωpiq. We see that Vh � V .
We introduce the family of meshes tQpiq

hi
uhi

, such that there exists a coars-
est mesh Qpiq

hi0
of which all the other meshes are refinement and such that the

description of the geometry is fixed at the level of Qpiq
hi0

. Associated to this
family, we introduce the nested family of spaces tVpiqhi

uhi
and the family of

meshes on the physical domain tKpiq
hi
uhi

. When the mesh and the spaces are
refined, the weights wpk,lq are selected such that RDpξ1, ξ2q stays fixed and
the control points are adjusted such that Gpiq remains unchanged. Thus the
geometry and its parametrization are held fixed in the refinement process
(see [3]).

The discrete problem associated to (2.8) reads as follows:
Find uh P Vh such that

aDGpuh, vhq � xF, vhy @vh P Vh. (2.9)
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2.3 Properties of the bilinear form aDGp�, �q

We now want to prove that the bilinear form is coercive and bounded
on Vh, in order to apply the Lax-Milgram theorem and state existence and
uniqueness of the solution of the discrete problem (2.9).

For this purpose, we state some results from previous literature in order
to prove a useful inverse trace inequality.

Lemma 2. Let m be a non-negative integer, Q P Qh and ω � GpQq. For all
functions v P Hmpωq, it holds that

|v �G|HmpQq ¤ Cshape}det∇G�1}1{2
L8pωq

m̧

j�0

}∇G}jL8pQq|v|Hjpωq

|v|Hmpωq ¤ Cshape}det∇G}1{2
L8pQq}∇G}�m

L8pQq

m̧

j�0

|v �G|HjpQq,

where Cshape is a uniform constant which depends only on the shape of ω.

Proof. See [3, Lemma 3.5].

Lemma 3. (See [3, Theorem 4.1]) It holds that

|v|H2pωq ¤ Cshapeh
�1
ω |v|H1pωq @ω P Kh, @v P Vh, (2.10)

where hω is the size of the physical element ω.

Proof. Lemma 2 yields, for m � 2,

|v|H2pωq ¤ Cshape}det∇G}1{2
L8pQq}∇G}�2

L8pQq}v �G}H2pQq, (2.11)

where ω � GpQq. Moreover

}v �G}H2pQq ¤ C
��� 1

RD

���
W 2,8pQq

}RDpv �Gq}H2pQq.

Since RDpv �Gq is polynomial, for a usual inverse inequality we have

}v �G}H2pQq ¤ Ch�1
Q

��� 1

RD

���
W 2,8pQq

}RDpv �Gq}H1pQq. (2.12)
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We now have, using again Lemma 2,

}RDpv �Gq}H1pQq ¤ C}RD}W 1,8pQq}v �G}H1pQq

¤ Cshape}RD}W 1,8pQq}det∇G�1}1{2
L8pωq

1̧

j�0

}∇G}jL8pQq|v|Hjpωq.

(2.13)

Joining the above bounds (2.11), (2.12) and (2.13), we finally obtain

|v|H2pωq ¤ Cshapeh
�1
Q

1̧

j�0

}∇G}j�2
L8pQq|v|Hjpωq. (2.14)

Let now vω represent the constant function equal to the average of v on ω;
note that vω P Vh. Therefore, applying (2.14), classical polynomial interpo-
lation results and recalling that }∇G}�1

L8pQqhω � hQ, it easily follows that

|v|H2pωq � |v � vω|H2pωq

¤ Cshapeh
�1
Q

1̧

j�0

}∇G}�1
L8pQq|v � vω|Hjpωq

¤ Cshapeh
�1
ω |v|H1pωq.

Now, we are ready to state and prove the following significant result,
which will be essential for the proofs of the properties of the bilinear form.

Lemma 4 (Inverse trace inequality). There exists a uniform constant Ct ¡ 0

such that, for all u P Vh, i � 1, . . . , n and for all edges E P EC Y ED Y EN
with E � BΩpiq,

}∇ui}2
L2pEq ¤

Ct

hi
}∇ui}2

L2pΩpiqq (2.15)

where ui � u|Ωpiq and hi is the element size within the patch Ωpiq.

Proof. Let e � E be the image of an edge of Q P Qpiq under the NURBS
map Gpiq, and observe that, due to our quasi-uniformity assumption, there
exist uniform constants C1, C2 only depending on Ωpiq such that

C1hi ¤ he :� diampeq ¤ C2hi.
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Let ωe � GpiqpQq be the physical element attached to e. Since ωe is a Lipschitz
domain, the usual trace inequality implies that (see [14, (3.16) page 67]) there
exists C̃ ¡ 0 @w P H1pωeq such that

}w}2
L2peq ¤ C̃

� 1

he
}w}2

L2pωeq � he|w|2H1pωeq
	
.

Since e and ωe can be transformed to their reference counterparts in Qpiq, it
can be argued that C̃ is indeed a uniform constant.

Since u|ωe P H2pωeq, this implies

}∇ui}2
L2peq ¤ C̃

� 1

he
}∇ui}2

L2pωeq � he|∇ui|2H1pωeq
	
. (2.16)

Moreover, we use the inverse inequality proved in Lemma 3, which is related
to ωe,

|∇ui|H1pωeq ¤ Cshapeh
�1
i }∇ui}L2pωeq, (2.17)

where Cshape is a uniform constant depending only on the shapes of Ωpiq.
Combining the above estimates, we are able to prove the following:

}∇ui}2
L2pEq �

¸
e�E

}∇ui}2
L2peq

(2.16)¤ C̃
¸
e�E

� 1

he
}∇ui}2

L2pωeq � he|∇ui|2H1pωeq
	

(2.17)¤ C̃
¸
e�E

� 1

he
}∇ui}2

L2pωeq � C2
shapeheh

�2
i }∇ui}2

L2pωeq
	

he�hi¤ Ct

hi
}∇ui}2

L2pΩpiqq,

which completes the proof.

Thanks to the result of Lemma 4, in the following, we will prove the
properties related to the bilinear form, by choosing

δpi,�q � δ

hi
, (2.18)

where δ P R� is a global parameter which has to be chosen sufficiently large
(see Lemma 5). This means that, when changing the discretization space Vh,
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we have to adapt δpi,�q and, therefore, the bilinear form aDG and the linear
functional F will change.

We also introduce the following definition (see [12]).

Definition 16. For pi, jq such that Γpi,jq � H, we collect the indices of those
basis functions in Ωpiq whose support intersects the interface Γpi,jq:

Bpi, jq � tk P Rpiq : suppR̂piq
k X Γpi,jq � Hu.

We say that two subdomains Ωpiq and Ωpjq are fully matching if the following
two conditions are fulfilled:

1. The interface Γpi,jq is the image of an entire edge of the respective
parameter domains;

2. For each index k P Bpi, jq, there must be a unique index l P Bpj, iq,
such that

R̂
piq
k |Γpi,jq � R̂

pjq
l |Γpi,jq .

In what follows, we assume for simplicity the case of fully matching sub-
domains. This implies that on Γpi,jq it holds hi � hj.

Definition 17. We define the energy norm for the Discontinuous Galerkin
method as follows: for all v P V ,

}v}2
DG �

ņ

i�1

αi}∇vi}2
L2pΩpiqq �

¸
Γpi,�qPECYED

αpi,�q
hi

»
Γpi,�q

rvs2.

2.3.1 Coercivity

Lemma 5 (Coercivity of aDGp�, �q). There exist δ0 ¡ 0 and D ¡ 0 such that
for δ ¡ δ0 and u P Vh

aDGpu, uq ¥ D}u}2
DG, (2.19)

where D is independent of hi, n and αi.
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Proof. Using (2.18) and the Definition 17, we easily obtain the identity

aDGpu, uq � }u}2
DG � bpu, uq � cpu, uq � 1

δ
cpu, uq

� }u}2
DG � bpu, uq � δ � 1

δ
cpu, uq.

Note that the last term scales linearly with pδ�1q (see the definition of cp�, �q
and (2.18)). The proof reduces to show that

� bpu, uq ¤ 1

2

ņ

i�1

aipu, uq � δ0

δ
cpu, uq, (2.20)

because, if (2.20) holds, then we have

bpu, uq ¥ �1

2

ņ

i�1

aipu, uq � δ0

δ
cpu, uq.

Therefore

aDGpu, uq ¥ }u}2
DG �

1

2

ņ

i�1

aipu, uq � δ � 1 � δ0

δ
cpu, uq. (2.21)

We know that δ ¡ δ0; this is equivalent to δ � 1 � δ0 ¥ �1 � D, for some
D P p0, 1

2
s. So, (2.21) becomes

aDGpu, uq ¥ }u}2
DG �

1

2

ņ

i�1

aipu, uq � D � 1

δ
cpu, uq

�
ņ

i�1

aipu, uq � 1

δ
cpu, uq � 1

2

ņ

i�1

aipu, uq � D � 1

δ
cpu, uq

� 1

2

ņ

i�1

aipu, uq � D

δ
cpu, uq

DPp0, 1
2
s

¥ D}u}2
DG.

Now, let us prove (2.20). We recall that we have by definition

bpu, uq � �2
¸

Γpi,�qPECYED

»
Γpi,�q

tα∇u � nurus.
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We observe that, if Γpi,jq P EC , then��� »
Γpi,jq

tα∇u � nurus
��� ¤ 1

2
pαi}∇ui}L2pΓpi,jqq � αj}∇uj}L2pΓpi,jqqq}ui � uj}L2pΓpi,jqq.

If Γpi,Dq P ED, instead, we have��� »
Γpi,Dq

tα∇u � nurus
��� ¤ αi}∇ui}L2pΓpi,Dqq}ui}L2pΓpi,Dqq.

Therefore, using Lemma 4,

|bpu, uq| ¤ 2
¸

Γpi,jqPEC

�
1

2
pαi}∇ui}L2pΓpi,jqq � αj}∇uj}L2pΓpi,jqqq}ui � uj}L2pΓpi,jqq

�

� 2
¸

Γpi,DqPED

αi}∇ui}L2pΓpi,Dqq}ui}L2pΓpi,Dqq

Lemma 4¤
a
Ct

¸
Γpi,jqPEC

� αi?
hi
}∇ui}L2pΩpiqq �

αja
hj
}∇uj}L2pΩpjqq

	
}rus}L2pΓpi,jqq�

�
a
Ct

¸
Γpi,DqPED

2
αi?
hi
}∇ui}L2pΩpiqq}rus}L2pΓpi,Dqq. (2.22)

By using Young’s inequality, i.e.

ab ¤ εa2 � b2

4ε
@ε ¡ 0, (2.23)

with

a � }∇ui}L2pΩpiqq

b � 1?
hi
}rus}L2pΓpi,�qq

we obtain

αi?
hi
}∇ui}L2pΩpiqq}rus}L2pΓpi,�qq

(2.23)¤ αi

�
ε}∇ui}2

L2pΩpiqq �
1

4εhi
}rus}2

L2pΓpi,�qq
�
,
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and analogously for uj. Therefore, using that hi � hj, we have the following,

|bpu, uq| ¤
a
Ct

¸
Γpi,jqPEC

�
αipε}∇ui}2

L2pΩpiqq �
1

4εhi
}rus}2

L2pΓpi,jqqq

� αjpε}∇uj}2
L2pΩpjqq �

1

4εhj
}rus}2

L2pΓpi,jqqq
�

� 2
a
Ct

¸
Γpi,DqPED

αipε}∇ui}2
L2pΩpiqq �

1

4εhi
}rus}2

L2pΓpi,Dqqq

�
¸

Γpi,jqPEC

�
ε
a
Ctpαi}∇ui}2

L2pΩpiqq � αj}∇uj}2
L2pΩpjqqq

�
?
Ct

4ε

�αi

hi
}rus}2

L2pΓpi,jqq �
αj

hj
}rus}2

L2pΓpi,jqq
	�

�
¸

Γpi,DqPED
pε
a
Ctαi}∇ui}2

L2pΩpiqq �
?
Ct

2ε

αi

hi
}rus}2

L2pΓpi,Dqqq

¤ 4ε
a
Ct

ņ

i�1

αi}∇ui}2
L2pΩpiqq �

?
Ct

4ε

¸
Γpi,�qPECYED

αpi,�q
hi

}rus}2
L2pΓpi,�qq

ε� 1

8
?

Ct� 1

2

ņ

i�1

αi}∇ui}2
L2pΩpiqq � 2Ct

¸
Γpi,�qPECYED

αpi,�q
hi

}rus}2
L2pΓpi,�qq,

which is (2.20) with δ0 � 2Ct.

2.3.2 Boundedness

Lemma 6 (Boundedness of aDGp�, �q). There exists M ¡ 0 such that @u, v P
Vh

|aDGpu, vq| ¤M}u}DG}v}DG, (2.24)

where M is independent of hi, n and αi.

Proof. Since aDGpu, vq �
°n

i�1 aipu, vq � bpu, vq � cpu, vq we estimate each
term separately. Let u, v P Vh be arbitrary but fixed.

• With Cauchy-Schwarz in Rm where m � |EC Y ED|, we can easily
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conclude that
��� ņ

i�1

aipu, vq
��� ¤ ņ

i�1

αi}∇ui}L2pΩpiqq}∇vi}L2pΩpiqq

¤
� ņ

i�1

αi}∇ui}2
L2pΩpiqq

	 1
2 �
� ņ

i�1

αi}∇vi}2
L2pΩpiqq

	 1
2

¤ }u}DG}v}DG.

• For the third term we use again the Cauchy-Schwarz inequality in Rm:

|cpu, vq| ¤
¸

Γpi,�qPECYED

αpi,�q
δ

hi
}rus}L2pΓpi,�qq}rvs}L2pΓpi,�qq

¤ δ
� ¸

Γpi,�qPECYED

αpi,�q
hi

}rus}2
L2pΓpi,�qq

	 1
2
� ¸

Γpi,�qPECYED

αpi,�q
hi

}rvs}2
L2pΓpi,�qq

	 1
2

¤ δ}u}DG}v}DG.

• Now we proceed with the estimate of the second term of the bilinear
form:

|bpu, vq| �
��� ¸

Γpi,�qPECYED

»
Γpi,�q

�
tα∇u � nurvs � tα∇v � nurus

	���.
We know, following the same steps as in the proof of coercivity, that

|bpu, vq| ¤
¸

Γpi,jqPEC

�1

2
pαi}∇ui}L2pΓpi,jqq � αj}∇uj}L2pΓpi,jqqq}vi � vj}L2pΓpi,jqq

� 1

2
pαi}∇vi}L2pΓpi,jqq � αj}∇vj}L2pΓpi,jqqq}ui � uj}L2pΓpi,jqq

�
�

¸
Γpi,DqPED

�
αi}∇ui}L2pΓpi,Dqq}vi}L2pΓpi,Dqq

� αi}∇vi}L2pΓpi,Dqq}ui}L2pΓpi,Dqq
�
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Therefore,

|bpu, vq| Lemma 4¤
?
Ct

2

¸
Γpi,jqPEC

�� αi?
hi
}∇ui}L2pΩpiqq �

αja
hj
}∇uj}L2pΩpjqq

	
}rvs}L2pΓpi,jqq

�
� αi?

hi
}∇vi}L2pΩpiqq �

αja
hj
}∇vj}L2pΩpjqq

	
}rus}L2pΓpi,jqq

�

�
a
Ct

¸
Γpi,DqPED

� αi?
hi
}∇ui}L2pΩpiqq}rvs}L2pΓpi,Dqq

� αi?
hi
}∇vi}L2pΩpiqq}rus}L2pΓpi,Dqq

�
.

Now, using the Cauchy-Schwarz inequality, we apply on each sum above
an argument similar to the following:¸
Γpi,�qPECYED

?
αpi,�q}∇ui}L2pΩpiqq �

c
αpi,�q
hi

}rvs}L2pΓpi,�qq

¤
� ¸

Γpi,�qPECYED

αpi,�q}∇ui}2
L2pΩpiqq

� 1
2

�
� ¸

Γpi,�qPECYED

αpi,�q
hi

}rvs}2
L2pΓpi,�qq

� 1
2

¤ }u}DG}v}DG.

Hence,
|bpu, vq| ¤ 4

a
Ct}u}DG}v}DG.

So the continuity of the bilinear form follows with M � 1 � δ � 4
?
Ct.

2.3.3 Existence and uniqueness of the DG solution

Thanks to the results of the two previous subsections we are able to state
existence and uniqueness of the solution of (2.9) applying the Lax-Milgram
theorem (see Lemma 1).

Theorem 1. Let f P L2pΩq, gN P L2pΓNq and gD P H
1
2 pΓDq be given

functions. Then there exists a unique solution u P Vh such that

aDGpu, vq � xF, vy @v P Vh
and there is a continuous dependence of the solution from the data.



Chapter 3

Discretization error analysis

Definition 18. Let Πhi
u P Vh

|Ωpiq
be an interpolant of u on Ωpiq and Πhu

denote the interpolant on Ω such that Πhu � Πhi
u on Ωpiq. Note that Πhu

may be discontinuous across the interfaces Γpi,�q.

In order to provide error estimates in the DG norm and in the L2 norm,
we need the following lemmas.

Lemma 7. Let k and s be integer indices with 0 ¤ k ¤ s ¤ p� 1. We have,
@v P HspΩpiqq,

|v � Πhv|2HkpΩpiqq ¤ Cshape

¸
ωPKhi

h
2ps�kq
i

ş

t�0

}∇Gi}2pt�sq
L8pG�1

i pωqq|v|2Htpωq

¤ Cshapeh
2ps�kq
i

ş

t�0

}∇Gi}2pt�sq
L8pIq |v|2HtpΩpiqq. (3.1)

where we recall that I � p0, 1q2 is the parameter domain.

Proof. See [3, Theorem 3.2].

Remark 1. Note that the NURBS space Vh on the physical domain Ωpiq

delivers the optimal rate of convergence, as for the classical finite element
spaces of degree p. Note, moreover, that a bound on the kth-order seminorm
of the error v�Πhv requires a control on the full sth-order norm of v, unlike
for finite elements, where only the sth-order seminorm of v is involved in the
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right-hand side of the estimate. This is due to the role played by the weighting
function W and the geometrical map Gi.

Lemma 8. Let u be the solution of (2.8) and Πhu be the interpolant of u
as in the definition 18. Then, for s ¡ 3

2
, the following bound holds:

}u� Πhu}2
DG ¤ Cshape

ņ

i�1

αih
2ps�1q
i }ui}2

HspΩpiqq, (3.2)

where Cshape is independent of hi, n and the jumps of αi.

Proof. By definition, we have

}u� Πhu}2
DG �

ņ

i�1

αi}∇pui � Πhuiq}2
L2pΩpiqq

�
¸

Γpi,�qPECYED

αpi,�q
hi

}ru� Πhus}2
L2pΓpi,�qq. (3.3)

Since u P Hs
ãÑ C0 for s ¡ 3

2
and d � 2, 3, if we choose an interpolant Πhu

such that rΠhus � 0, we have that the second sum in (3.3) is zero.
Therefore, we can state the following:

}u� Πhu}2
DG �

ņ

i�1

αi|ui � Πhui|2H1pΩpiqq

Lemma 7¤ Cshape

ņ

i�1

αih
2ps�1q
i }u}2

HspΩpiqq.

3.1 Error estimate in the DG-norm

Theorem 2. Let u and uh be the solutions of (2.8) and (2.9), respectively.
For s ¥ 2, the following bound holds:

}u� uh}2
DG ¤ Dshape

ņ

i�1

α2
ih

2ps�1q
i }ui}2

HspΩpiqq, (3.4)

where Dshape is independent of hi, n and the jumps of αi.
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Proof. By the triangle inequality we have

}u� uh}DG ¤ }u� Πhu}DG � }Πhu� uh}DG. (3.5)

Since Πhu� uh P Vh, we can use the coercivity of the bilinear form aDGp�, �q
on Vh � Vh:

}Πhu� uh}2
DG ¤ D�1aDGpΠhu� uh,Πhu� uhq.

Moreover, we observe that the following holds:

aDGpΠhu� uh,Πhu� uhq � aDGpΠhu,Πhu� uhq � aDGpuh,Πhu� uhq
� aDGpΠhu,Πhu� uhq � xF,Πhu� uhy
� aDGpΠhu,Πhu� uhq � aDGpu,Πhu� uhq
� aDGpΠhu� u,Πhu� uhq,

and

aDGpΠhu� u,Πhu� uhq �
ņ

i�1

»
Ωpiq

αi∇pΠhu� uq �∇pΠhu� uhq

�
¸

Γpi,�qPECYED

»
Γpi,�q

tα∇pΠhu� uq � nurΠhu� uhs

�
¸

Γpi,�qPECYED

»
Γpi,�q

tα∇pΠhu� uhq � nurΠhu� us

�
¸

Γpi,�qPECYED

αpi,�q
δ

hi
rΠhu� usrΠhu� uhs �: A�B � Cloomoon

�0

� Dloomoon
�0

.
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It remains to estimate A and B. We have the following:

|A| �
��� ņ

i�1

»
Ωpiq

αi∇pΠhu� uq �∇pΠhu� uhq
���

¤
ņ

i�1

αi}∇pΠhu� uq}L2pΩpiqq}∇pΠhu� uhq}L2pΩpiqq

¤
�

ņ

i�1

αi}∇pΠhu� uq}2
L2pΩpiqq

� 1
2� ņ

i�1

αi}∇pΠhu� uhq}2
L2pΩpiqq

� 1
2

¤ }Πhu� u}DG}Πhu� uh}DG

Lemma 8¤ Cshape

�
ņ

i�1

αih
2ps�1q
i }ui}2

HspΩpiqq

� 1
2

}Πhu� uh}DG. (3.6)

|B| �
��� ¸

Γpi,�qPECYED

»
Γpi,�q

tα∇pΠhu� uq � nurΠhu� uhs
���

¤
¸

Γpi,�qPECYED

}tα∇pΠhu� uqu}L2pΓpi,�qq}rΠhu� uhs}L2pΓpi,�qq
� hi
αpi,�q

	 1
2
�αpi,�q

hi

	 1
2

¤
� ¸

Γpi,�qPECYED

}tα∇pΠhu� uqu}2
L2pΓpi,�qq

hi
αpi,�q

� 1
2

�
� ¸

Γpi,�qPECYED

αpi,�q
hi

}rΠhu� uhs}2
L2pΓpi,�qq

� 1
2

¤ C
� ¸

Γpi,�qPECYED

}tα∇pΠhu� uqu}2
L2pΓpi,�qqhi

	 1
2 }Πhu� uh}DG. (3.7)
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Now we have to estimate the last sum in (3.7).¸
Γpi,�qPECYED

hi}tα∇pΠhu� uqu}2
L2pΓpi,�qq

zh:�Πhu�u�
¸

Γpi,DqPED
hiα

2
i }∇zh|Ωpiq}2

L2pΓpi,Dqq

�
¸

Γpi,jqPEC
hi
α2
pi,jq
4

}∇zh|Ωpiq �∇zh|Ωpjq}2
L2pΓpi,jqq

¤
¸

Γpi,DqPED
hiα

2
ih

�1
i p}∇zh}2

L2pΩpiqq � h2
i |∇zh|2H1pΩpiqqq

�
¸

Γpi,jqPEC

hiα
2
pi,jqh

�1
i

4
p}∇zh}2

L2pΩpiqq � }∇zh}2
L2pΩpjqq

� h2
i |∇zh|2H1pΩpiqq � h2

i |∇zh|2H1pΩpjqqq

¤ C
ņ

i�1

α2
i

�
}∇zh}2

L2pΩpiqq � h2
i |∇zh|2H1pΩpiqq

	
Lemma 7¤ Cshape

ņ

i�1

α2
i

�
h

2ps�1q
i }u}2

HspΩpiqq � h2
ih

2ps�2q
i }u}2

HspΩpiqq
	

¤ Cshape

ņ

i�1

α2
ih

2ps�1q
i }u}2

HspΩpiqq.

So, we have

aDGpΠhu� u,Πhu� uhq ¤ Cshape

� ņ

i�1

α2
ih

2ps�1q
i }ui}2

HspΩpiqq
	 1

2 }Πhu� uh}DG

and we obtain that

}Πhu� uh}DG ¤ Cshape

D

� ņ

i�1

α2
ih

2ps�1q
i }ui}2

HspΩpiqq
	 1

2
.

Because of this last inequality and of Lemma 7, (3.5) becomes

}u� uh}DG ¤ Cshape

� ņ

i�1

α2
ih

2ps�1q
i }ui}2

HspΩpiqq
	 1

2
.

which is what we wanted to prove.

3.2 Error estimate in the L2 norm

We consider the problem (2.8) in the particular case of αpxq � 1 @x P Ω

and ΓN � H.
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Theorem 3. Let u and uh be the solutions of (2.8) and (2.9) respectively.
For s ¥ 2, the following bound holds:

}u� uh}L2pΩq ¤ Eshape

�
maxni�1thiu

	2ps�1q� ņ

i�1

}ui}2
HspΩpiqq

	 1
2
, (3.8)

where Eshape is independent of hi and n.

Proof. In the following, we will apply the Aubin-Nitsche lift technique, which
works well if the scheme is symmetric (see [13]).

We assume that the solution of the dual problem" �divp∇φq � u� uh Ω

φ � gD ΓD
(3.9)

belongs to H2pΩq with continuous dependence on u� uh:

}φ}H2pΩq ¤ C}u� uh}L2pΩq. (3.10)

Thus, we have

}u� uh}2
L2pΩq �

»
Ω

pu� uhq2 (3.9)� �
»

Ω

pdiv∇φqpu� uhq.

Denoting eh � u� uh and integrating by parts on each element yields

}eh}2
L2pΩq �

ņ

i�1

»
Ωpiq

∇eh �∇φ�
¸

Γpi,�qPECYED

»
Γpi,�q

t∇φ � nurehs. (3.11)

We now subtract the orthogonality equation

aDGpu� uh, vhq � 0 @vh P Vh

from the equation (3.11):

}eh}2
L2pΩq � }eh}2

L2pΩq � aDGpeh, vhq

�
ņ

i�1

»
Ωpiq

∇eh �∇pφ� vhq �
¸

Γpi,�qPECYED

»
Γpi,�q

t∇pφ� vhq � nurehs

�
¸

Γpi,�qPECYED

»
Γpi,�q

t∇eh � nurvhs �
¸

Γpi,�qPECYED

δ

hi

»
Γpi,�q

rehsrvhs.
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We choose vh � Πhφ, a continuous interpolant of φ. We assume that such
an interpolant exists. So we have that rvhs � 0 and the last two terms on
the right-hand side of the equation above vanish. Thus, we obtain

}eh}2
L2pΩq �

ņ

i�1

»
Ωpiq

∇eh �∇pφ� Πhφqlooooooooooooooomooooooooooooooon
:�A

�
¸

Γpi,�qPECYED

»
Γpi,�q

t∇pφ� Πhφq � nurehsloooooooooooooooooooooooomoooooooooooooooooooooooon
:�B

.

The first term is bounded using Cauchy-Schwarz’s inequality and Lemma 7:

A ¤
ņ

i�1

}∇eh}L2pΩpiqq}∇pφ� Πhφq}L2pΩpiqq

¤
�

ņ

i�1

}∇eh}2
L2pΩpiqq

� 1
2
�

ņ

i�1

}∇pφ� Πhφq}2
L2pΩpiqq

� 1
2

¤ }eh}DG

�
ņ

i�1

Cshapeh
2ps�1q
i }φi}2

H2pΩpiqq

� 1
2

(3.10)¤ C̃shape}eh}DG

�
maxni�1thius�1

	
}eh}L2pΩq.

The second term is bounded by using the property of boundedness of the
bilinear form:

B ¤ aDGpφ� Πhφ, ehq
¤M}φ� Πhφ}DG}eh}DG

¤M

�
ņ

i�1

Cshapeh
2ps�1q
i }φi}2

H2pΩpiqq

� 1
2

}eh}DG

(3.10)¤ C̃shape}eh}DG

�
maxni�1thius�1

	
}eh}L2pΩq.

Therefore,

}eh}L2pΩq ¤ Eshape

�
maxni�1thiu

	s�1

}eh}DG

Theorem 2¤ Eshape

�
maxni�1thiu

	2ps�1q� ņ

i�1

}ui}2
HspΩpiqq

	 1
2
.
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Numerical results

In this chapter, we want to describe briefly the structure and the ad-
vantages of the built-in Matlab library GeoPDEs, in order to show some
numerical results for the solution of the Poisson problem in the Continuous
Galerkin case for single-patch and multi-patch domains. Then, we will out-
line the techniques for a Discontinuous Galerkin implementation, which, for
reasons of time, we leave as a future work.

4.1 GeoPDEs

GeoPDEs is a software tool for research on Isogeometric Analysis of PDEs.
It consists of a set of interrelated packages and it provides a flexible frame-
work for implementing and testing new isogeometric methods in various ap-
plication areas.

The main package, called geopdes_base, defines the basic data-structures
and methods. Other packages deal with applications in linear elasticity, fluid
mechanics and electromagnetism. There is also a specific package for multi-
patch NURBS geometries and it is very useful for our purposes.

In this library, the computations for the geometry, the discrete basis func-
tions and the matrices for the analysis are done separately. Moreover, all data
needed for these computations is stored in independent structures, in such a
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way that each part of the code can be modified without affecting the others.
For more information about the library GeoPDEs we suggest to read

the paper [8], which explains in detail the main structures and the built-in
functions to operate on them.

4.1.1 Main steps to write a code with GeoPDEs

In this paragraph we want to describe the main steps to write a code with
the built-in functions and the structures within the library GeoPDEs.

There are three main structures that have to be built before starting to
assemble the matrices and the vectors.

1. The geometry structure. The first step is to define the geometry of
the physical domain. This is done by invoking the function geo_load,
which takes as input the name of a file in Matlab binary format and
gives as output a structure which contains the information to compute
the geometry parametrization and its derivatives.

2. The mesh structure. The second step consists in defining the do-
main partition and to set the quadrature rule in each element, in order
to compute the matrices and the right-hand side vector of the problem
by numerical integration. The most simple possibility is to define a
tensor product partition where the quadrature elements coincide with
the knot spans in the geometry. For this purpose, we can use the func-
tion msh_gauss_nodes to compute the quadrature nodes and weights
for a standard Gaussian quadrature rule.

3. The space structure. The most important structure of the imple-
mentation is the one which contains the information regarding the basis
functions of the discrete space Vh and their evaluation at the quadrature
nodes, in order to numerically compute the integrals of the problem.
Since the basis functions in IGA are locally supported, the integrals on
each element of the partition are only computed for a reduced number
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of basis functions. Similarly, only the values of some basis functions are
stored on each element. A global numbering of the basis functions is
introduced. Then, for each element of the quadrature partition, we give
its connectivity, that is, the number associated to the basis functions
whose support intersects the element.

Once the three basic data structures have been initialized , the next step is
to assemble the stiffness matrix and the right-hand side of the linear system.
GeoPDEs provides several functions that allow to compute these terms for
different PDE problems. These functions all have a similar structure, which
may be adapted with very little changes to handle different differential prob-
lems. There are also some built-in functions which allow the imposition of
the boundary conditions.

4.2 Continuous Galerkin (CG) methods

We used the library GeoPDEs to solve the Poisson problem with a Con-
tinuous Galerkin method for some benchmark problems on two-dimensional
and three-dimensional domains.

4.2.1 CG methods for a single-patch domain in 2D

First of all, we introduce a very simple benchmark problem with a single-
patch domain.

We consider the Poisson problem (2.1) with α � 1 and ΓN � H. The
domain Ω � Ωp1q is one quarter of a ring, with inner radius equal to 1

and outer radius equal to 2. We calculate the analytical expression of the
functions f and gD such that the exact solution in Ω of the problem is

upx, yq � �px2 � y2 � 1qpx2 � y2 � 4qxy2.

We look for a numerical solution of the benchmark problem in the space
of NURBS functions of degree 3 with an increasing number of subdivisions
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and four quadrature nodes in each element of the patch. We represent the
subdivision of the domain with different values of the element size h in Figure
4.1.

(a) h � 1{9 (b) h � 1{18

(c) h � 1{36 (d) h � 1{72

Figure 4.1: Grid on the ring domain, with different values of the element

size h.

In Figure 4.2 we represent the exact solution and the numerical solution
we found with a Matlab code in GeoPDEs.

Moreover, we study the convergence of the method in L2-norm and in
H1-norm, using different values of h. The numerical values are in Table 4.1.
For clarity’s sake, in Figure 4.3 we represent the trend of the errors in both
norms we are considering.

We can easily recognize from Figure 4.3 that the theoretical estimates for
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Figure 4.2: Comparison of exact solution and numerical solution.

Figure 4.3: Trends of the errors in L2-norm and in H1-norm for the bench-

mark problem on a ring domain.
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h Error in L2-norm Error in H1-norm

1/9 2.4274e-004 0.0092
1/18 1.4089e-005 0.0012
1/36 8.7255e-007 1.4849e-004
1/72 5.4632e-008 1.8746e-005

Table 4.1: Errors in L2-norm and in H1-norm for the benchmark problem

on a ring domain.

the errors are verified, since

L2 Ñ Oph4q
H1 Ñ Oph3q.

4.2.2 CG methods for a single-patch domain in 3D

In this section, we show that it is also easily possible to solve Poisson
problems with boundary conditions on a three-dimensional domain with the
library GeoPDEs.

Namely, we consider a domain as in Figure 4.4, which reproduces a quarter
of a thick ring.

We assume that the exact solution of the benchmark problem is:

upx, y, zq � exsinpxyqcospzq

and we look for a numerical solution in the NURBS space of degree 2. As
we have done in the preceding section, we let the element size h vary and we
calculate the errors inH1- and in L2-norm. Then, we analyse the convergence
of the numerical solution to the exact one in the two norms in Figure 4.5.

We note the estimated following trends:

L2 Ñ Oph3q
H1 Ñ Oph2q.
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Figure 4.4: Three-dimensional domain of a thick ring.

h Error in L2-norm Error in H1-norm

1/4 0.1008 0.7770
1/8 0.0077 0.1422
1/16 7.2055e-004 0.0300
1/32 8.2405e-005 0.0072

Table 4.2: Errors in L2-norm and in H1-norm for the benchmark problem

on a thick ring domain.
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Figure 4.5: Trends of the errors in L2-norm and in H1-norm for the bench-

mark problem on a thick ring domain.

4.2.3 CG methods for a multi-patch domain in 2D

We consider now a benchmark problem with a multi-patch domain. Namely,
we assume that the domain consists of three patches as in Figure 4.6, where
ΓD � t1, 2u and ΓN � t3, 4, 5, 6u.

The exact solution of the benchmark problem is given by

upx, yq � exsinpxyq

and we look for a solution in the NURBS space of degree 3.
We study the convergence of the method applied to this specific bench-

mark problem with the calculation of the errors in H1-norm and in L2-norm
with different values of h (see Table 4.3). We represent the numerical errors
of the Table 4.3 in Figure 4.7.
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Figure 4.6: L-shaped multi-patch domain.

Figure 4.7: Trends of the errors in L2-norm and in H1-norm for the bench-

mark problem on a L-shaped domain.
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h Error in L2-norm Error in H1-norm

1/9 3.0064e-007 1.7752e-005
1/18 1.9452e-008 2.2797e-006
1/36 1.2372e-009 2.8919e-007
1/72 7.8004e-011 3.6428e-008

Table 4.3: Errors in L2-norm and in H1-norm for the benchmark problem

on a L-shaped domain.

Therefore, we obtain the expected rates of convergence:

L2 Ñ Oph4q
H1 Ñ Oph3q.

4.3 Ideas for a DG implementation

Because of time constraints, we could not work extensively on the numeri-
cal results of the theory we developed in the previous chapters. Nevertheless,
we would like to give some indications for a possible future work in this direc-
tion. In our opinion, the built-in library GeoPDEs is a useful tool that can
be used as a starting point for the implementation of Discontinuous Galerkin
methods. Therefore, we suggest to modify some built-in functions of this
library in order to adapt them to the specific case of DG methods and to add
new functions related to the jump and average terms using the geometry and
data structures already available in GeoPDEs.

4.3.1 The linear system

First of all, it is useful to identify all the entries of the matrices and
vectors involved in the discrete problem. We insert the following expressions



4.3 Ideas for a DG implementation 49

for uh and vh in the variational formulation of the discrete problem (2.9):

uh �
ņ

s�1

¸
lPRpsq

u
psq
l R̂

psq
l

vh � R̂
ptq
k @k P Rptq, @t � 1, . . . , n.

The bilinear form and the linear functional can be rewritten as follows:

aDGpuh, vhq �
ņ

s�1

¸
lPRpsq

aDGpR̂psq
l , R̂

ptq
k qupsql

xF, vhy � xF, R̂ptq
k y,

@k P Rptq and @t � 1, . . . , n. We can write explicitly every term of the
previous expressions.

aDGpR̂psq
l , R̂

ptq
k q �

ņ

i�1

aipR̂psq
l , R̂

ptq
k q � bpR̂psq

l , R̂
ptq
k q � cpR̂psq

l , R̂
ptq
k q

:�
ņ

i�1

Ass
lk �

� ¸
Γpi,jqPEC

Bst
lk �

¸
Γpi,DqPED

BsD
lk

	
�
� ¸

Γpi,jqPEC
Cst

lk �
¸

Γpi,DqPED
CsD

lk

	
,

xF, R̂ptq
k y :� f tk,

where
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Ωpiq

αi∇R̂psq
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psq
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Bst
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Γpi,jq

�
tα∇R̂psq
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k s � tα∇R̂ptq

k � nurR̂psq
l s
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»
Γpi,Dq

R̂
psq
l R̂

ptq
k
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»

Ω

fR̂
ptq
k �

¸
Γpi,NqPEN

»
Γpi,Nq

gN R̂
ptq
k

�
¸

Γpi,DqPED

»
Γpi,Dq
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Note that on Γpi,jq we assume the following:

tα∇R̂psq
l � nu � 1

2

�
αip∇R̂psq

l q|Ωi � ni � αjp∇R̂psq
l q|Ωpjq � niq

	
rR̂psq

l s � pR̂psq
l q|Ωpiq � pR̂psq

l q|Ωpjq .

Therefore, we can say that, for each patch Ωpsq, we have to solve the
following linear system:

¸
lPRpsq

�
Ass

lk �
¸

Γpi,jqPEC
Bst

lk �
¸

Γpi,DqPED
BsD

lk �
¸

Γpi,jqPEC
Cst

lk

¸
Γpi,DqPED

CsD
lk

�
u
psq
l � f tk,

for all k P Rptq and for all t � 1, . . . , n.
The implementation of this system is quite complex and a particular

care with the jump and average terms is needed. Two tricky steps are the
choice of the numbering of the shape functions that are non-zero along the
interfaces and the implementation of the gradients of the shape functions on
the boundaries of the patches.

4.3.2 Pseudocode for DG methods

In the following, we write the pseudocode for the resolution of the Poisson
problem on a single-patch domain. In this case, all the terms related to
jumps or averages are zero. Note that some built-in functions can be easily
used for the terms which appear also in CG methods. The remaining terms,
specific of DG variational formulation, can be evaluated with some built-in
functions with the proper entries or with some functions that still have to
be implemented (as op_gradv_n and op_gradu_n_v). Therefore, a first step
of the implementation of DG methods on single-patch domains consists of
building this missing functions.

With the two lines

stiff_mat = op_gradu_gradv_tp (sp,sp,msh,c_diff_fun)

rhs = op_f_v_tp (sp, msh, f)
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we can evaluate, respectively, the stiffness matrix and the right-hand-side of
the classical variational formulation:»

Ω

∇u �∇v and
»

Ω

fv.

With the loop over the Neumann boundary sides,

for iref = nmnn_sides

msh_side, sp_side, g_n_val

rhs_nmnn = op_f_v (sp_side, msh_side, g_n_val);

rhs(sp_side.dofs) = rhs(sp_side.dofs) + rhs_nmnn;

end

it is possible to evaluate the boundary integrals

¸
Γpi,NqPEN

»
Γpi,Nq

gNv.

With the loop over the Dirichlet boundary side, all the remaining bound-
ary integrals, except the ones over EC , can be evaluated and assembled in
the stiffness matrix and in the right-hand-side.

for iref = drchlt_sides

msh_side, sp_side, g_d_val

rhs_drchlt_1 = c_diff*delta/h.*op_f_v ( sp_side,

msh_side, g_d_val );

rhs_drchlt_2 = -c_diff.*op_gradv_n ( sp_side,

msh_side, g_d_val );

lhs_drchlt_1 = -c_diff.*op_gradu_n_v ( sp_side,

sp_side, msh_side );

lhs_drchlt_2 = delta/h.*op_u_v (sp_side, sp_side,

msh_side, c_diff_fun( x, y ));

global_dofs = gnum{iptc}(sp_side.dofs);

stiff_mat(global_dofs,global_dofs) = stiff_mat
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(global_dofs,global_dofs)+ lhs_drchlt_1 + ...

(lhs_drchlt_1)’ + lhs_drchlt_2 ;

rhs(global_dofs) = rhs(global_dofs)

+ rhs_drchlt_1 + rhs_drchlt_2;

end

u = stiff_mat \ rhs;

The implementation of DG methods on multi-patch domains requires also
the evaluation of the terms related to jumps and averages of functions. This
is the trickiest step, since it is necessary to pay attention to the numbering
of the shape functions in order to match correctly the corresponding values
of the functions along the interfaces. For this purpose, it will be particularly
useful the assumption of fully matching subdomains we made in Chapter 2.



Chapter 5

Conclusions

This Thesis consists in two parts: a theoretical and a numerical one.
In the first part we introduced the main ideas and concepts of Isogeometric

Analysis and we used this new method of representing complex geometries in
order to solve partial differential equations, namely the Poisson problem with
Dirichlet and Neumann boundary conditions. We deduced the variational
formulation of this problem and we verified the hypothesis of Lax Milgram’s
Lemma (the main steps are the proofs of the boundedness and the coercivity
of the bilinear form). Therefore, we could state existence and uniqueness
of the solution of the problem and continuous dependence from the data.
Finally, we obtained the error estimates in the L2-norm and in the DG-norm,
which we summarize in the following theorem.

Theorem 4 (Error estimates in L2- and in DG-norm). Let u and uh be the
solutions of (2.8) and (2.9), respectively. For s ¥ 2, the following two bounds
hold:

}u� uh}2
DG ¤ Dshape

ņ

i�1

α2
ih

2ps�1q
i }ui}2

HspΩpiqq

}u� uh}L2pΩq ¤ Eshape

�
maxni�1thiu

	2ps�1q� ņ

i�1

}ui}2
HspΩpiqq

	 1
2

where Dshape is independent of hi, n and the jumps of αi and Eshape is inde-
pendent of hi and n.
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In the second part, some numerical tests with CG methods have been
discussed with a benchmark problem for a single-patch domain in 2D (a
quarter of a ring) and in 3D (a quarter of a thick ring) and for a multi-patch
domain (a L-shaped domain with three patches). We verified the theoretical
estimates of the CG methods in IGA with a study of the convergence for
all the benchmark problems. Moreover, we gave some suggestions and ideas
about how to implement a DG code with the help of the built-in Matlab
library GeoPDEs, which is, in our opinion, a very useful tool to approach
this kind of issues. For this purpose, we wrote a pseudocode for a DG-method
on a single-patch domain.

As a future work, an implementation of the DG method in Isogeometric
Analysis could be interesting and useful for many industrial application, since
it is more flexible and it seems more efficient than CG methods in Finite
Element analysis. Once a complete implementation of this code has been
reached, all the error estimates, that we have formulated as a theoretical
result, can be tested and verified. Moreover, it could be particularly useful
the development of specific DG solvers to reduce cost and running time of
the implementation of these methods.

With DG methods, models of heat diffusion on domains with different
materials can be described more in detail and, in general, all the problems
with solutions with steep gradients along the interfaces can be implemented
with some programming work. Finally, we hope that this Thesis can be a
useful starting point for those who are interested in implementing a code
with DG methods.
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